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SESP- Smart Energy Systems Platform

WP2: Protection and
automation

Task 2.3 Report about AC Microgrid protection

» The reporthighlights the results of fault studies of AC Microgrids in both grid-connected and islanded modes of operation.

» Adaptive OC protectionis generally required for that type AC Microgrid which could also be operated in islanding mode.

« After islanding only local DGs have to provide the fault contribution during faults. If the local DGs are converter-based DGs
(PV/WTG) then they can provide very limited fault current contribution (1-2 p.u.). For islanded operation some or all converters of
DGs in AC Microgrid should operate in grid-forming mode in order to regulate the local voltage. In this study, central BESS has
been used as grid forming source whereas PV and WTG are operated in grid-following mode.

» Transfertrip signals are used to change relay settings from grid-connected mode settings to islanded-mode settings.



AC Microgrid Protection studies

AC Microgrid with radial network

AC Microgrid with radial and ring network

AC Microgrid with radial structure
(2.4 MW load)
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AC Microgrid Protection Studies

Radial network model
(2.4 MW load)

Real-time model and protection results

-Software-in-the-Loop (SIL) results for adaptive OC protection
-Hardware-in-the-Loop (HIL) results for IEC61850 Goose testing



Radial network model (2.4 MW)-Average model Y
Top View: Three Subsystems (Two subsystems + Conso
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Radial network model (2.4 MW)-Average model
SM_Grid1l subsystem
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Radial network model (2.4 MW)-Average model
SS WTG PV1 subsystem
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Radial network model (2.4 MW)-Average model
PV_System
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Trip signals

3-Ph fault F1 (3-4 s) in grid-connected mode
- CB1 trips at 3.04 s and CB2 transfer trips at 3.08 s

2 . . \ 15
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (3-4 s) in grid-connected mode

-Voltage, current, active and reactive power at the main grid bus B20-1 v
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (3-4 s) in grid-connected mode

-AC Microgrid is islanded at 3.1 s, BESS between B20-2 and B20-3 immediately
acts as grid forming source (provides balancing power and regulated voltage)
-Voltage and current at MV-buses B20-2 and B20-3
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (3-4 s) in grid-connected mode
- WTG set to provide 1.2 p.u. rated current during fault
- Voltage and current at LV-bus (B690) and MV-bus (B20-4) of WTG
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (3-4 s) in grid-connected mode
-Voltage and current at LV load and PV
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Trip signals

3-Ph fault F2 (12-13 s) in islanded mode
- CB6 trips at 12.04s and CB7 transfer trips at 12.08 s
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F2 (12-13 s) in islanded mode (B20-1 and B20-2 disconnected)
-B6 trips at 12.04s, B7 transfer trips at 12.08s (MV and LV systems isolated)
-Isolated MV system consists of BESS, WTG and 2 MW load

-Isolated LV system consists of PV system and LV load.

> BESS provides 2.6 x In during fault in islanded-mode (I-B20-3)

> Voltage and current at MV-bus B20-3
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F2 (12-13 s) in islanded mode
- Voltage and current at LV load and PV
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Active and reactive power

3-Ph fault F1 (3-4 s) in grid-connected mode

3-Ph fault F2 (12-13 s) in islanded mode
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Radial network model (2.4 MW)-Average model
Real-time simulation results: Active and reactive power

3-Ph fault F1 (3-4 s) in grid-connected mode
3-Ph fault F2 (12-13 s) in islanded mode
-Active and reactive power at BESS connection point, MV-load and LV-load
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AC Microgrid Protection Studies

Radial and ring network model
(10 MW load)

Real-time model and protection results

-Software-in-the-Loop (SIL) selected results

The results show that everything works fine within limits in both grid-connected and islanded mode



Radial and ring network model (10 MW)-Average mo
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Radial and ring network model (10 MW)-Average model
SM_Grid1l subsystem
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Radial and ring network model (10 MW)-Average model
SS WTG1 subsystem
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Radial and ring network model (10 MW)-Average model
SS PV1 subsystem
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Radial and ring network model (10 MW)-Average model
PV_Systeml
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Radial and ring network model (10 MW)-Average model
Parameters for central-BESS (9 MWh)

| & Block Parameters: Battery I- =

Battery (mask) (link) S

‘| Implements a generic battery that model most popular battery types.
Uncheck the "Use parameters based on Battery type and nominal values"
parameter to edit the discharge characteristics.

I Parameters | View Discharge Characteristics | Battery Dynamics |
Battery type ’Lithium—Ion ']

Nominal Voltage (V)
750

Rated Capacity (Ah)
14500

Initial State-Of-Charge (%)
90

Use parameters based on Battery type and nominal values
Maximum Capacity (Ah)
114500 |

1

Fully Charged Voltage (V)
|872.9904 |

Nominal Discharge Current (A)
|6304.3478 |

Internal Resistance (Ohms)
|0.00051724 |

Capacity (Ah) @ Nominal Voltage
[13113.0435 |

Exponential zone [Voltage (V), Capacity (Ah)]
[[810.2804  712.3913] |

| OI_( ” Cancel H Help H Apply |
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Trip signals

3-Ph fault F1 (2-3 s) in grid-connected mode
- CB1 trips at 2.8 s and CB3 transfer trips at 2.8 s

™ CB1trip (1= Close, 0 = Open) I~ CB3trip (1=Close, 0=Open) |

D/
v

0.8 sis the normal OC
coordination delay with
downstream relays

No delay in transfer trip
Is assumed for this model
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode
-Voltage, current, active and reactive power at the main grid bus B110-1 v

v

30.04.2019 University of Vaasa — Aushiq Memon




Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode
-AC Microgrid is islanded at 2.8 s, BESS between B20-3 and B20-4 immediately

acts as grid forming source (provides balancing power and regulated voltage)
-Voltage and current at MV-buses B20-3 and B20-4 before and after islanding. .

v
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode
- WTG set to provide 1.2 p.u. rated current during fault
- Voltage, current and frequency at LV-bus (B690) of WTG

Connecting a resistor of few hundred milli-Ohms in series with RL-choke of WTG during fault removes the
ferroresonance phenomena previously observed in "Radial network model (2.4 MW)”, however it reduces the
fault contribution from WTG during fault. This also decreases the overvoltage at C_dc-link during fault.

\
v
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode

-Central-BESS is activated with trip signal of CB3

-Voltage (V) and current (A) at MV-bus (left) and LV terminal (right)
of central-BESS before and after islanding due to fault F1.
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode
-Voltage and currentin p.u. at MV loads L1 and L2 before and
after islanding due to fault F1.
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Voltages and currents

3-Ph fault F1 (2-3 s) in grid-connected mode
-PV set to provide 2 p.u. rated current during fault
-Voltage and current at LV load and MV bus of PV_System1 before and after i

islanding due to fault F1
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AR A T il
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Active and reactive power

3-Ph fault F1 (2-3 s) in grid-connected mode
-Active power (MW) and reactive power (Mvar) at HV bus B110 1
and MV bus of Central-BESS before and after islanding due to fault F1

D/
v
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Active and reactive power

3-Ph fault F1 (2-3 s) in grid-connected mode
-Active power (MW) and reactive power (Mvar) at MV loads L1 and L2
before and after islanding due to fault F1

4 4
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Radial and ring network model (10 MW)-Average model
Real-time simulation results: Active and reactive power

3-Ph fault F1 (2-3 s) in grid-connected mode
-Active power (MW) and reactive power (Mvar) at LV terminals of WTG
and PV before and after islanding due to fault F1

4 4
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IEC 61850 Goose communication testing

using real-time simulation

GOOSE

- message

SS_WTG_PV1

RT-LAB Model (Host PC)

-Hardware-in-loop (HIL) testing

-lIEC 61850 Standard

-GOOSE message (Publisher/Subscriber)
-Ethernet network )

PR

OPAL:-RT
o S noraoics

aiTAL SIMULATOR

Real-time simulator (RTS)

GOOSE
message

VAMP Relay
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IEC 61850 Goose communication testing
using real-time simulation

 VAMP relay to OPAL-RT => "Goose-2BOOL” as Boolean pulse (Green)
» Goose pulse is recorded using OpWriteFile inside OPAL-RT model

» Goose message published and subscribed from eth4

» Mike modified the icd file of VAMP relay => used inside the Goose
subscriber block of Goose-2BOOL.: RT simulation (500...600 s)

Green signal shows OPAL-RT does not subscribe to every status change from VAMP relay

1.5 \ \ 7 T
—Goose-1BOOL published by OPAL eth4
—— Goose-1BOOL subscribed by OPAL eth4
. — Goose-2BOO0OL subscribed by OPAL (Published by VAMP)
5 [1finnnn (
=
o
‘»
S 0.5%
Q@
o
@
0 1 | Jut { U U L L
_05 | | | | & | | | |
500 510 520 530 540 550 560 570 580 590

Time (s)

30.04.2019 University of Vaasa — Aushig Memon

600




Conclusions

-Couple of AC Microgrid models have been developed and RT-simulation performed

-WTG and PV-System models behave with LVRT capability

P provide fault contribution of 1.1-2 pu of nominal current at their connection

points depending on grid-side converter settings

-Central BESS also integrated for islanded mode operation

-BESS behavior during faults in islanded mode is also done

b Fault contribution from central BESS storage is 2.6xIn during 3-phase faults,
this should be limited to maximum 2xIn using some kind of fault current limiters
in grid-forming mode of converter.

-Protection IED models are also implemented in RT-models

> Protection IEDs include IEEE devices 50, 51, 27 and 59

P Only IEEE 50 and 51 protection functions tested

-Real-time SIL-testing of IED models done for few SC faults.

-IEC 61850 GOOSE HIL-testing with VAMP relays done

b IEC 61850 Goose communication from OPAL to VAMP relay works fine but
VAMP to OPAL communication has some problems of missing data (OPAL does
not subscribe to every status change)

> More comprehensive case studies and HIL testing will be presented in the
continuation project (VINPOWER). The requirement of adaptive protection with
respect to limitation of fault current contribution from both the grid-forming
converter and grid-following converters will be analyzed further.
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Future work

-Evaluation of protection algorithm based on IEC 61850 standard

> Additional BESS at DG locations for black-start capability

> Directional OC evaluation

> Directional selectivity requirements for networks with DG at both ends
> Review of new IEEE Std. 1547 requirements

> Negative sequence current provision by DGs

> New standards for BESS and islanding operation of AC Microgrids
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Thank you!
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