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Abstract

Pape, Bernd (2007). Asset Allocation, Multivariate Position Based Trading, and the
Stylized Facts. Acta Wasaensia No 177, 205 p.

The returns of virtually all actively traded financial assets share a set of common
statistical characteristics, such as absence of serial correlations, a leptokurtic return
distribution with power-law decay of extreme returns, and clustered volatility with
different degrees of long-term dependence for varying powers of absolute returns. These
empirical findings are so robust across various financial markets, that they have become
known as so called stylized facts of financial returns in the econometrics literature.

Recently a body of literature has developed which attempts to explain these stylized
facts with the interaction of a large number of heterogeneously behaving market parti-
cipants, rather than postulating their existence already in an unobservable news arrival
process, as is done in traditional finance. The present study contributes to this emer-
gent literature on heterogeneous agent models in financial markets.

I take issue with a common assumption in the agent-based literature, that traders base
their orders upon (risk adjusted) expected profits alone, that is in particular without
taking their current portfolio holdings into account. It has been claimed earlier (Farmer
& Joshi 2002) that such an assumption may imply unbounded portfolio holdings, which
is economically hard to justify given alone the risk constraints that portofolio managers
face.

Taking a prominent agent-based model (Lux & Marchesi 2000) as an example, I show
that order based trading does indeed lead to unbounded positions and I explain why
this must be the case. An alternative formulation is then suggested, which takes
acquired portfolio holdings explicitly into account and implies bounded inventories. At
the same time, the single risky asset model is extended into a multivariate framework
containing a second risky asset and a riskfree bond. Asset allocation and security
selection are modeled as seperate decision processes in line with common practice in
financial institutions. The resulting dynamics are shown to replicate the stylized facts
of financial returns in a similar vein as earlier agent-based models, but under more
realistic assumptions regarding traders’ behaviour and inventories.

Bernd Pape, Department of Mathematics and Statistics, University of Vaasa, P.O. Box
700, FI-65101 Vaasa, Finland.

Key words: Asset allocation, multivariate price dynamics, heterogeneous agents,
position based trading.
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1 Introduction

This PhD thesis is devoted to offering a behavioural explanation of the stylized facts

of financial returns in a multi asset market under realistic assumptions regarding both

the investment behaviour of traders and their holdings. As such it belongs to the

field of heterogeneous agent models, which attempt to explain statistical properties

of financial time series endogenously with the interaction of only boundedly rational,

heterogeneous market participants, rather than with exogeneous news processed by a

perfectly rational representative agent alone.

Chapter 2 deals with the statistical properties of equity returns, most of which they

share with financial returns in general. Absence of serial correlations, heavy tails,

volatility clustering, long memory, multiscaling and a positive corellation between trad-

ing volume and return variance are common to returns of every acivively traded finan-

cial asset. This is why they have become known as so called Stylized Facts, which every

viable statistical model of asset returns should be able to generate. Asymmetric effects

such as the leverage effect, return anomalies, and details about the autocorrelation and

moment structure of stock and stock index returns are more specific to equities and

appear thus less central in such modelling efforts. In chapter 3 it will be demonstrated

how difficult it actually is to come up with a viable model generating those stylized

facts. The first model being capable of simultaneously generating at least the unvivari-

ate stylized facts–the multifractal model of asset returns–has first been introduced

in 1997.

In chapter 4 I shall turn to behavioural models that have been offered in order to

explain the stylized facts of financial returns. Particular emphasis will be given to the

model by Lux & Marchesi (2000), as the model I shall suggest in chapter 5 may well be

regarded as a multivariate extension to their univariate setup. On the practical side it

appears reasonable to first rebuild their model in order to cross-check for any technical

or methodological errors, before programming my own specifications. The results of

this pre-testing will also be a part of chapter 4.
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In chapter 5 I shall then extend the univariate model by Lux & Marchesi (2000) with

one risky asset into a multivariate setup containing a second risky asset and a riskless

bond. In order to add some further realism to the model, the investment process will be

split up into asset allocation and security selection, as is common practice in financial

institutions (see e.g. Davis & Steil (2001)).

The interaction of chartists and fundamentalists on multiple assets has also been con-

sidered by Westerhoff (2004) who generates return series similar to those observed in

real markets. My main contribution relative to his study and those by Lux & Marchesi

(1999, 2000) consists in removing inconsistencies concerning traders inventories result-

ing from the order-based setup of their models. Both Lux and Westerhoff consider

trading at disequilibrium prices in order-driven markets following the tradition initi-

ated by Beja & Goldman (1980) and Day & Huang (1990). That is, traders place orders

proportional to the expected profits of their investments, while a market maker adjusts

prices proportional to net excess demand, filling any imbalances between demand and

supply from his inventory. The consequences of such a setup upon traders inventories

remained unexplored until Farmer & Joshi (2002) pointed out that pure order-based

trading implies non-stationary positions and traders can accumulate unbounded inven-

tories, which is unacceptable from a risk management point of view.

Order-based trading appears also unrealistic because it is well established standard in

the academic literature at least since Markowitz (1959), that investors consider portfolio

holdings rather than orders as the relevant object of profit and risk considerations. The

inconsistencies of an order-based setup become particularly obvious when extending a

univariate model into a multi asset framework. Suppose for example that a trader

has favoured asset A over asset B for a while, but receives now a signal which favours

asset B over asset A. A consistent model would require the trader to close or at least

diminish his position in asset A before entering a new position in asset B. That is, a

new signal favouring B over A would not only generate buying orders for B, but also

selling orders for A, until the desired new positions in assets A and B are established.

This is not achieved by näıvely extending the order-based setup by Beja & Goldman to

multiple assets, as it would falsely neglect any acquired position in A when producing

new orders for asset B.
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The traders in my model use therefore position-based rather than order-based trad-

ing strategies. That is, they choose portfolio holdings (rather than producing orders)

proportional to expected investment profits. Trading orders are generated only when

target portfolios change, as is expressed by the derivatives of target holdings with

respect to time. In chaper 5 I shall demonstrate that the neat duplications of real fi-

nancial returns’ statistical properties in Lux’ model extend to both the index and single

asset returns in a multivariate setup with two risky stocks and a riskless bond, when

asset allocation and security selection are modeled as separate decision processes and

traders use position-based rather than order-based strategies. Chapter 6 will conclude.
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2 Statistical Properties of Stock Returns

2.1 Unit of Measurement

From the viewpoint of an investor, the relevant quantity to measure the performance

of an investment at time t over an investment period τ is its return Rt(τ) defined as

the appreciation of its market value V scaled by its original market value: Rt(τ) =

(Vt − Vt−τ )/Vt−τ .

In sufficiently liquid markets we may assume the market price P to be independent of

the quantity purchased or sold, such that the return of an investment in identical non

dividend bearing assets may be written as

Rt(τ) =
Pt − Pt−τ
Pt−τ

=
Pt
Pt−τ

− 1. (2.1)

The return of an investment in stocks may generally not be calculated by (2.1) above,

since stocks as a rule pay dividends. Also capital adjustments such as stock splits

and stock dividends imply changes in market prices which do not reflect corresponding

changes in investment value.

Returns of dividend paying stocks may thus only be written in the form (2.1) if market

prices are adjusted to neutralize the effects of dividend payments and capital adjust-

ments. Such adjusted prices are nowadays provided by most data vendors and are the

appropriate building blocks for the analysis of meaningful investment returns. As is

common in the empirical finance literature, we will refer with P to the adjusted rather

than the quoted market prices.

Returns depend upon the the investment horizon τ : Multiperiod returns are products

of single period returns.1 The calculation of multiperiod returns as products of single

period returns complicates the analysis of returns over different investment horizons

1More precisely, the multiperiod return Rt+τ (τ = τ1 + τ2 + · · · + τn) is related to the subperiod
returns Rt+ j

i=1 τi)
(τj), j = 1, . . . , n by the following product:

(1 +Rt+τ (τ)) = (1 +Rt+τ1(τ1)) · (1 +Rt+τ1+τ2(τ2)) · · · (1 +Rt+ n
i=1 τi

(τn)).
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somewhat. For example, if we assume single period returns independently identically

distributed (iid) under some symmetric distribution, the corresponding multiperiod

return will be increasingly right-skewed as a function of the investment horizon just

due to the multiplication of single period returns.

From a statistical point of view, it is then desirable to transform returns in such a way

that multiperiod returns may be constructed from sums rather than products of single

period returns. Such a transformation is given by introducing logreturns rτ (t) as

rt(τ) = ln (1 +Rt(τ)) = lnPt − lnPt−τ . (2.2)

Multiperiod returns over long investment horizons become then normally distributed

for iid returns by virtue of the central limit theorem2. Logreturns are also called

continously compounded returns because they represent the yield of an investment

under continuous compounding. Their difference from simple returns remains negligible

for returns in the range of ±15%, implying that logreturns may be cross-sectionally
aggregated with negligible loss of accuracy for investment horizons up to at least one

week, as long as no extraordinary returns occur.

The use of returns (or logreturns) rather than (adjusted) prices in the analysis of

financial time series may also be motivated statistically by the so called unit root

property of asset prices and their logs. That is, in autoregressions of the Dickey-Fuller

type

lnPt = ρ lnPt−1 + ut (2.3)

with stationary increments ut one is generally unable to reject the hypothesis ρ =

1,3 implying difference stationarity of the differenced series as is obtained by taking

logreturns. This provides an additional argument for the use of returns beyond that

of reflecting the investors viewpoint, since stationary time series are easier to analyse

than those having a unit root.

2provided that single period returns have finite variance. For a discussion of the general case, see
section 3.2.1.

3see, for example, pages 18—21 in Pagan (1996).
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2.2 Absence of Serial Correlation

The fact that stock price changes appear to be uncorrelated was already noted by King

(1930). Kendall & Hill (1953) provide the first rigorous analysis of the time series of

stock indices. They find only small (and usually positive) autocorrelations in the weekly

return series of 19 British stock indices in 1928-38, half of them insignificant. Even the

highest measured autocorrelation coefficients stay below 0.24, implying predictability

(R2) of less then 6% of a weeks return by the return of the preceding week.

Fama (1965) investigated in his doctoral thesis both daily and weekly returns of in-

dividual stocks in 1957-62. He found small predominantly positive autocorrelations

(usually below 0.1) at daily and even smaller predominantly negative autocorrelations

(usually above -0.05) at weekly frequency. A rapid decline of the autocorrelation above

the first lag has since then be confirmed in many studies for both stocks and stock

indices,4 and even for high frequency data,5 making absence of autocorrelations in re-

turns a well accepted working hypothesis for all horizons despite its marginal rejection

at the first lag.

2.3 Excess Kurtosis

Returns of stocks and stock indices, like the returns of many other financial assets, are

bell shaped similar to the normal distribution, but contain more mass in the peak and

the tail than the Gaussian. Such distributions are called leptokurtic. Leptokurtosis

becomes visually evident as a curve shaped as an elongated S in so called QQ-plots, in

which the quantiles of an empirical distribution are plotted against the corresponding

quantiles of a normal distribution with mean and variance identical to those of the

empirical distribution.

4see for example Fama (1970, 1976); Taylor (1986); Ding, Granger & Engle (1993) and references
therein.

5see Gopikrishnan et al. (1999).
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Osborne (1959) contains such plots with the characteristic elongated S shape of lep-

tokurtic returns, but he did not comment on this obvious deviation from normality.

First Alexander (1961) noted that Osborne’s data appeared to contain far more large

price changes than are characteristic of a normal distribution. Fama (1965) found lep-

tokurtic returns in each of 30 constituents of the Dow Jones Industrial Average stock

index and Mandelbrot (1963) references leptokurtosis in other financial time series back

to 1915.

Leptokurtosis manifests itself mathematically in having a kurtosis (or coefficient of

kurtosis) larger than 3, which is the kurtosis of the normal distribution. The coefficient

of kurtosis κ of a random variable X is defined as

κ(X) =
E[X −E(X)]4
{E[X −E(X)]2}2 , (2.4)

where E(·) stands for the mathematical expectations operator. Some studies define
kurtosis as the difference between κ and its benchmark 3. The normal distribution

would then have a kurtosis of 0. In this study we will call κ− 3 Excess Kurtosis and
use the terms kurtosis and coefficient of kurtosis as synonyms, such that a normally

distributed variable has a kurtosis κ of 3 and an excess kurtosis of 0. Studies with

sampling frequency higher than 1 month report consistently kurtosis in excess of 3,

often even 2 digit numbers, no matter whether investigating individual stocks or stock

indices and independent of the time period and region considered.6

While the finding of excess kurtosis appears to be a robust result also for financial time

series other than equities,7 the finding of 2 digit numbers for κ has to be interpreted

with care. Raising deviations from the mean in (2.4) to the 4th power implies that

kurtosis estimates are highly sensitive to outliers. More robust measures of kurtosis

tend to report still consistent but much milder excess kurtosis with less fluctuations

over subperiods than the traditional measure κ.8 Furthermore we shall see below, that

κ need not necessarily be well defined for stock and stock index returns, which impedes

its usefulness in the analysis of such time series.

6see for example Fama (1976); Schwert (1990); Campbell, Lo & MacKinlay (1997); Aparicio &
Estrada (2001) and references therein.

7see for example Pagan (1996); Farmer (2000); Cont (2001) and references therein.
8see for example Kim & White (2004).
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2.4 Heavy Tails

The kurtosis κ of a random variable X is a measure of its dispersion around the two

values μ±σ, where μ and σ stand for the expected value and standard deviation of X,
respectively.9 This implies that κ grows with probability mass both in the center and

the tails, and declines with probability mass in the shoulders. For risk-mangagement

purposes, however, it is desirable to have a measure of fat-tailedness only.

Extreme value theory10 provides such a measure through its classification of the limiting

distributions of sample extremes of iid random variables with continuous distributions.

Denoting with Mn = max{x1, x2, . . . , xn} the maximum of n sample observations of

the iid random variables X1, X2, ..., Xn, it has been shown by Fisher & Tippett (1928),

that there exist only three classes of non-degenerate limiting distributions for suitably

shifted and rescaled sample maximaMn in the limit n→∞, calledGeneralized Extreme
Value (GEV) distributions:

1. Gumbel (GEV Type I): GI(x) = exp{−e−x}, x ∈ R, (2.5)

2. Fréchet (GEV Type II): GII,α(x) = exp{−x−α}Ix>0, (2.6)

3. Weibull (GEV Type II): GIII,α(x) = exp{−(−x)α}Ix≤0 + Ix>0. (2.7)

where Ix>0 and Ix≤0 denote the corresponding indicator functions and α is a positive
shape parameter often denoted as Tail Index for reasons that will become apparent

below. Their representation may be unified within the so called von Mises parame-

trization as

Gξ(x) = exp{−(1 + ξx)−1/ξ}, (2.8)

where the sign of the shape parameter ξ determines the type of the limiting distribution:

ξ > 0 for Fréchet (II), ξ < 0 for Weibull (III) and ξ → 0 for Gumbel (I). ξ is related

to α by ξ = 1/α in the type II (Fréchet) case and ξ = −1/α in the type III (Weibull)
case.11

9see Moors (1988).
10Recent expositions of extreme value theory include Adler, Feldman & Taqqu (1998); Embrechts,

Klüppelberg & Mikosch (1997) and Reiss & Thomas (1997).
11Some studies denote the parameter ξ rather than α as tail index. We shall use this term for

the parameter α as it has the more intuitive interpretation as the highest defined moment of Xi in
distributions with infinite support (see below).
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The survival or tail probabilities F̄ (x) = P (X > x) of a random variable X whose

maxima are described by one of the GEV distributions, is connected to G(x) through

the relation:

F̄ (x) = − lnG(x), if lnG(x) > −1. (2.9)

This implies the following tail probabilities for the random variables X:

Type I: Medium-tailed F̄ (x) = exp(−x)Ix≥0, (2.10)

Type II: Fat-tailed F̄ (x) = x−αIx≥1, (2.11)

Type III: Thin-tailed F̄ (x) = (−x)αI−1≤x≤0. (2.12)

The labels medium-, fat-, and thin-tailed in (2.10) to (2.12) refer to the decay of F̄ (x).

We see that random variables whose extremes may be described by Gumbel (type

I) or Fréchet (type II) distributions are characterized by exponentially respectively

hyperbolically declining tails, whereas distributions with extremal behavior of type III

(Weibull) have finite endpoints. Any distribution with limiting extremal behavior may

then be classified into one of the three types according to the asymptotical decay of its

tails. Note that the tail index α coincides in the case of fat-tailed distributions (type

II) with the exponent of the hyperbolic decay, implying non-existence of any moments

higher than α for such distributions.

A unifying representation of (2.10) to (2.12) is given by the survival or tail probability

of the Generalized Pareto Distribution (GDP):

F̄ξ(x) = (1 + ξx)−1/ξ (2.13)

where the sign of ξ classifies the distribution into type I (ξ → 0), type II (ξ > 0) and

type III (ξ < 0), and the tail index α is related to ξ by the identity α = 1/|ξ| as in
(2.8) above.

Hill (1975) provides the following maximum likelihood estimator for ξ conditional on

the tail size:

ξ̂ =
1

k

k3
i=1

{lnx(n−i+1) − lnx(n−k)} (2.14)
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where x(i) denotes the i’th order statistics of the sample and k denotes the number

of the n sample observations for which the asymptotic behavior described in (2.10) to

(2.13) is assumed to be valid.

Jansen & de Vries (1991) apply the Hill-estimator to daily returns of ten US stocks and

two stock indices in 1962—86 and obtain estimates for the tail index α in the range 3.2—

5.2. Loretan & Phillips (1994) obtain α—estimtes in the range 3.1—3.8 for daily returns

of the S&P 500 index in 1962—87 and 2.5—3.2 for monthly stock index return series

from 1834—1987. Abhyankar, Copeland & Wong (1995) and Longin (1996) investigate

a data set of daily US stock return series from 1985—1990 at various frequencies and find

estimates for the tail index in the range 3—4. Lux (1996b) applies the Hill estimator

to daily returns of the German share index DAX and its constituents in 1988—94 and

obtains estimates for α in the range 2.3—3.8.

While the existence of the 4th moment (kurtosis) cannot decisivly be ruled out from the

studies above, it appears at least questionable for return periods of 1 day and above.

The existence of the 3rd moment (skewness) appears somewhat more likely, though not

guaranteed, whereas the the consistent finding of tail index estimates significantly above

2 points towards the existence of the 2nd moment (variance) of the return generating

process.

Estimates for the tail index α in high frequency returns below 1 day down to 1 minute

yield values in a much closer range around 3,12 where the existence of kurtosis can be

definitely ruled out while the existence of skewness remains possible.

2.5 Heteroscedasticity and Volatility Clustering

The absence of autocorrelation discussed in section 2.2 does not rule out the pres-

ence of nonlinear dependencies between returns of stocks and stock indices. Indeed it

has been found that tests for for independence like the BDS test by Brock, Dechert

12see Gopikrishnan et al. (1998, 1999) and Plerou et al. (1999).
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& Scheinkman (1987) regularly reject the null hypothesis of independence of equity

returns as of financial returns in general13.

Even swift visual inspections of plots of equity return series as of financial return series

in general reveal Heteroscedasticity as the most obvious violation of the assumption of

independently and identically distributed returns: volatility as measured by absolute

or squared returns is not constant through time.

Heteroscadasticity was first noted by Mandelbrot (1963) in daily returns of cotton

prices. Fielitz (1971) investigated the returns of 200 stocks listed at the New York Stock

Exhange (NYSE) from 1963-68 and found that almost half of the stocks investigated

exhibited significant variation in realized volatility of the daily returns. For weekly

returns the fraction with statistically significant heteroscedasticity was one quarter14.

Schwert (1989) reports volatility estimates of monthly stock returns in 1857-1987 vary-

ing from 2% in the early 1960’s to 20% in the early 1930’s. Haugen, Talmor & Torous

(1991) identify more than 400 significant changes in volatility of the daily price changes

in the Dow Jones Index in 1887-1988.

Volatility is not only fluctuating but also correlated through time. Again this fact

has first been noted by Mandelbrot for daily returns of cotton prices in his famous

statement that

large changes tend to be followed by large changes–of either sign–and

small changes tend to be followed by small changes.

(Mandelbrot 1963: page 418).

Fama (1965) finds an increased conditional probablility of large price changes on stocks

with large price changes on the preceding day in a sample of 10 randomly selected US

13see Scheinkman & LeBaron (1989); Hsieh (1991); Brock, Hsieh & LeBaron (1991); Bollerslev,
Engle & Nelson (1994); Pagan (1996).
14Further early illustrative examples of heteroscedasticity in equity returns include Wichern, Miller

& Hsu (1976) and Hsu (1977, 1979a, 1982).



20 ACTA WASAENSIA

stocks.

Engle (1982) suggest a Lagrange Multiplier test to test the assumption of Gaussian

white noise 6t|It−1 ∼ N (0, σ2) in the dynamic regression model yt = xtβ + 6t against

the time varying alternative

6t|It−1 ∼ N (0, σ2t ), σ2t = α0 +

p3
j=1

αj6
2
t−j ≡ α0 + α(L)62t (2.15)

where 6t|It−1 denotes the residuals conditional on the information set It−1, N (0, σ2t )
denotes the normal distribution with mean 0 and time-varying variance σ2t , the αj’s are

non-negative parameters not to be mixed up with the tail index, L is the back-shift op-

erator and α(L) is the correlsponding polynomial in L with coefficients αj. Engle named

this alternative ARCH for AutoRegressive Conditional H eteroscedasticity. ARCH ef-

fects have been been extensively documented for a wide range of financial time series,

including stock and stock index returns15.

ARCH effects provide a potential explanation for leptokursis of returns by application of

Jensen’s inequality to (σ2t )
2 in (2.15). Assuming the returns Rt to be ARCH-distributed

implies for the standardized return

zt ≡ Rt
σt

eeee It−1 ∼ N (0, 1)
which yields for the kurtosis of the return process:

E(R4t )

E(R2t )
2
=

E(z4t ) ·E(σ4t )
E(z2t )

2 ·E(σ2t )2
≥ E(z4t )

E(z2t )
2
= 3 (2.16)

Note that the reasoning above is not confined to ARCH but may be applied to any

heteroscedastic volatility process. As such, heteroscedasticity will always increase kur-

tosis, no matter whether the underlying volatility process is specified as ARCH or

not.

15see e.g. Bollerslev (1987); French, Schwert & Stambaugh (1987); Lamoureux & Lastrapes (1990);
Koutmos, Lee & Theodossiou (1994) and the reviews in Bollerslev, Chou & Kroner (1992); Gouriéroux
(1997) and Degiannakis & Xekalaki (2004).
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2.6 Long Range Dependence

Taylor (1986) shows that the autocorrelation function (ACF) for squared residuals

in Engle’s ARCH(p) process (2.15) follow the same Yule-Walker equation as a corre-

sponding AR(p)process, which implies an exponentially declining ACF of the squared

residuals for lags longer than the highest lag in the ARCH specification.

Visual inspections of autocorrelograms for absolute and squared financial returns raise

however doubts over such fast a decay. For example the autocorrelogram in Taylor

(1986: p.55) of absolute and squared stock returns betweeen 1966 and 1976 stays sig-

nificantly positive over all lags plotted up to 30 days. Ding et al. (1993) calculate sample

ACF’s for various powers between 1/8 and 3 of absolute daily returns of the S&P 500

index in 1929—91 and find significant positive values at least up to lag 100, the first

negative autocorrelation coefficient usually occuring around lag 2500 corresponding to

a time interval of approximately 10 years.

Such findings have led to the consensus that the autocorellation structure of absolute

and squared returns is better described by hyperbolic rather than exponential decline16.

Hyperbolic decline in the autocorrelation function is a defining property of Long Mem-

ory or Long Range Dependence (LRD), which for stationary processes Xt with finite

mean and variance may be equivalently defined as follows 17:

1. There exists a real number a ∈ (0, 1) and a constant cρ > 0 such that the autocor-
relation function ρ(k) = E[(Xt − μ)(Xt−k − μ)]/σ2 has the asymptotic behavior

lim
k→∞

ρ(k)/[cρk
−a] = 1. (2.17)

2. There exists a real number b ∈ (0, 1) and a constant cf > 0 such that the spectral
density f(λ) = σ2

2π

�∞
k=−∞ ρ(k)e

ikλ has the asymptotic behavior

lim
λ→0

f(λ)/[cf |λ|−b] = 1. (2.18)

16see Mantegna & Stanley (2000); Cont (2001); Lux & Ausloos (2002) and references therein.
17see Beran (1994: Chapter 2).
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The parameters a and b are related to a long memory parameter called Hurst Exponent

H by the identities a = 2−2H and b = 2H−1. The Hurst exponent of a long memory
process is thus in the range 1/2 < H < 1.

The variance V of the averaged process X̄n =
1
n

�n
i=1Xi of a long memory process

with Hurst exponent H scales asymptotically as18

lim
n→∞

V(X̄n)

cγn2H−2
=

1

H(2H − 1) (2.19)

implying hyperbolic decay in the variance of the time-averaged process with the same

exponent a as in the autocorrelation function (2.17).

Long Memory has traditionally been detected using the Rescaled Range (R/S) statistics

Qn invented by Hurst (1951) as the standardized range of the partial sum of the first

l deviations of Xj from the sample mean X̄n:

Qn(l) ≡ 1

sn

^
max
1≤l≤n

l3
t=1

(Xt − X̄n)− min
1≤l≤n

l3
t=1

(Xt − X̄n)
�

(2.20)

with standard deviation estimator sn ≡
^
1

n

n3
t=1

(Xt − X̄n)2
�1/2

(2.21)

The R/S statistics has been developed further by Lo (1991) who increased its robustness

against the effects of short-range dependence by modifying the standardization in (2.20)

and derived asymptotic sampling theory for the modified statistics.

A related approach is given by Detrended Fluctuation Analysis (DFA) introduced by

Peng, Buldyrev, Havlin, Simons, Stanley & Goldberger (1994). DFA divides the full

sequence of n cumlative sums Yt =
�t

τ=1Xτ , t = 1, 2, . . . , n into n/l nonoverlapping

boxes of length l, substracts the local trend–determined as the slope of a least-squares

regression–within each box, and calculates a test statistics Fn(l) as the average stan-

dard deviation about the resulting detrended walk. Both statistics Qn(l) and Fn(l) are

expected to scale with H as lH for large values of l with H > 1/2 in the presence of

long range dependence.

18Theorem 2.2 in Beran (1994), cγ > 0 is a constant.
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A particular class of processes capable of producing long range dependence are the

fractionally integrated autoregressive moving average (ARFIMA) models independently

introduced by Granger & Joyeux (1980) and Hosking (1981) with spectral density

f(λ) =
σ2

2π

ee1− e−iλee−2d = σ2

2π

w
4 sin2

λ

2

W−d
. (2.22)

The fractional differencing parameter d ∈ (−0.5, 0.5) has the same sign as the autocor-
relations of the observations generated by (2.22) and is related to the Hurst exponent

H by the identity

d = H − 1/2. (2.23)

Fractionally integrated autoregressive moving average processes with 0 < d < 1/2

generate therefore positively autocorrelated observations with long range dependence.

The spectral representation of the ARFIMA model (2.22) motivated Geweke & Porter-

Hudak (1983) to determine d from a log-log regression of the sample analogon I(λj) to

the spectral density f(λ) in (2.18)

I(λj) =
1

2πn

eeeee
n3
t=1

(Xt − X̄)eitλj
eeeee
2

, X̄ =
1

n

n3
t=1

Xt, (2.24)

evaluated at Fourier frequencies λj in finite samples of size n,

λj =
2πj

n
, j = 1, 2, . . . , (n− 1)/2, (2.25)

against the spectral density of an ARFIMA process (2.22),

ln I(λj) = β0 + β1 ln

w
4 sin2

λj
2

W
+ 6j, (2.26)

such that

d̂ = −β̂1, Ĥ = d̂+ 1/2. (2.27)

In long memory processes other than ARFIMA the spectral representation (2.22) may

hold only approximately for small enough frequencies λ, such that the regression (2.26)

of I upon λj is to be performed upon the lowest m = g(n) Fourier frequencies only,

with g usually chosen as m = nu, where u ≈ 0.5.

Identifying the presence of Long Range Dependence in squares of returns is important,

since the slower than n−1 decline in variance (see (2.19)) may invalidate standard
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inferences about squared returns and volatility. In particular, the sample standard

deviation defined in (2.21) applied to squared returns is biased with sampling variance

decling slower than 1/n, which implies errors in the ACF-estimates of squared returns,

used for example in ARCH-modelling, with wider than expected confidence bands19.

Furthermore, the slower than n−1 decline in autocorrelations (see (2.17)) implies that

the infinite sum of autocorrelations is no longer finite, such that there exists no charac-

teristic correlation time after which the process may be approximated as Markovian20.

Crato & de Lima (1994) find long range dependence in the daily squared returns of

3 US stock indices in the time period from January 1980 to December 1990. Lobato

& Savin (1996) extend this finding for absolute and squared returns of the S&P 500

index and the 30 constituents of the Dow Jones Industrial Average between July 1962

and December 1994. Lux (1996a) finds evidence for long memory in daily returns of

the German share index DAX and its 30 constituents in 1959—88.

Long range dependence in high frequency equity returns has been reported for the US

stock market e.g. by Cizeau et al. (1997); Liu et al. (1997, 1999) and for the Italian

stock market by Raberto, Scalas, Cuniberti & Riani (1999)21.

2.7 Multiscaling

When Ding et al. (1993) calculated the sample ACF as a function of various powers

q of the absolute daily S&P 500 index returns ACF(|r|q),22 they found that it was
monotonically increasing for q ~ 1 and monotonically decreasing for q � 1 independent
of the time lag considered. This finding has been later confirmed for the same index

by Pasquini & Serva (1999). Nonlinear scaling of the sample ACF in powers of q has

also been reported for the German Dax index by Lux (1996a), for the British FT-SE

19see Beran (1994: Chapter 1) and the discussion in Mikosch (2003b).
20see the discussion in Mantegna & Stanley (2000).
21For evidence of long memory in financial time series of assets other than equities see the references

in the review studies by Farmer (2000); Cont (2001) and Lux & Ausloos (2002).
22see section 2.6.
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index by Mills (1997), and for the Spanish stock market by Grau-Carles (2000).

Such a non-linear scaling of absolute returns with their exponent fits well into the

concept of Multiscaling, which Mandelbrot, Fisher & Calvet (1997) define as follows:

A stochastic process {X(t)} is called multifractal if it has stationary increments and
satisfies:

E(|X(t)|q) = c(q)tτ(q)+1 ∀t ∈ T, q ∈ Q (2.28)

where T and Q are intervals on the real line with positive lengths, 0 ∈ T , [0, 1] ⊆ Q,
and τ(q) and c(q) are functions with domain Q. A multifractal process with nonlinear

scaling function τ(q) is called multiscaling, otherwise the process is called uniscaling

or unifractal (monofractal).

Mandelbrot et al. (1997) show that self-affine processes {X(t), t ≥ 0} satisfying X(t) d
=

tHX(1)23 are unifractal with scaling function τ(q) = Hq− 1. This suggests to define a
generalized Hurst exponent Hq through the relation

τ(q) = qHq − 1. (2.29)

The definition (2.28) above suggests to identify multiscaling by use of the sample

analogon to E(|X(t)|q), the so called height-height correlation function of order q or
q’th order structure function defined by Barabási & Vicsek (1991) as

cq(∆t) =
1

N

N3
i=1

|p(ti +∆t)− p(ti)|q, (2.30)

where p(ti), i = 1, 2, ..., N denote the log-prices taken at N time points with equal

distances ∆t. If the log-prices p follow a multifractal process, the structure function cq

is according to (2.28) and (2.29) expected to scale with ∆t as

cq(∆t) ∝ ∆tτ(q)+1 = ∆tqHq . (2.31)

23The sign
d
= denotes equality in distribution, here: X(t) has the same distribution as tHX(1).
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Multiscaling may then be identified by calculating the structure function cq for various

moments q, checking for power-law scaling in the time scale ∆t to establish multifrac-

tality, and finally checking for non-linearity of the scaling function τ(q) to establish

multiscaling.

The first application of this approach to financial returns has been by Vassilicos, Demos

& Tata (1993) to find multifractality in the DM/$ exchange rate. Since then it has

been applied e.g. to Gold, the DJIA stock index and the BGL/$ exchange rate by

Ivanova & Ausloos (1999), to the German DAX index by Ausloos & Ivanova (2002), to

29 commodities and 2449 US stocks by Matia, Ashkenazy & Stanley (2003), and to 32

international stock indices, 29 foreign exchange rates and 28 fixed income instruments

by Matteo, Aste & Dacorogna (2005), all of which find power-law scaling of the struc-

ture function cq with nonlinear scaling function τ(q), which they interpret as evidence

for multiscaling.

The scaling approach in (2.31) appears however somewhat limited in as much as

monofractal processes may exhibit spurious multiscaling even in large finite data sets.

An early example has been given by Berthelsen, Glazier & Raghavachari (1994), who

show that finite samples of a monofractal random walk may exhibit spurious multi-

scaling over most of their scaling range. Veneziano, Moglen & Bras (1995); Bouchaud,

Potters & Meyer (2000) and LeBaron (2001) provide further examples of spurious

multiscaling. As such we cannot tell from finite data sets, whether the underlying

stochastic process is truly multiscaling or not.24

2.8 Return Volume Relations

The academic treatment of the relationship between trading volume and stock returns

goes back to Osborne (1959), who notes that

volume tends to be larger when the market as a whole (i.e. all stock prices)

24See also the discussion in Lux (2001).
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heaves up or down most rapidly.

(Osborne 1959: page 167).

Ying (1966) compared six years long time series of S&P500 prices and NYSE trading

volume. He concluded among other findings that small (large) trading volumes were

usually accompanied by falling (rising) prices, and that large volume increases were

usually accompanied by either a large rise or a large fall in price. Ying was thus the

first to report a positive correlation between trading volume and price change as well

as its variance.

While Ying’s work has been critized for methodological errors25, the empirical findings

themselves have been confirmed in later studies26. The empirical support appears to

be somewhat stronger for the correlation between trading volume and price variance,

which has also been reported for many time series of financial assets other than equities,

than for the correlation between trading volume and returns themselves, which appears

to have been reported for stocks and bonds only27.

Tauchen & Pitts (1983) delvelope a microscopic model of sequential trading, which

results in a joint mixture of independent normal distributions for both the price change

and trading volume with the unobservable number of daily information events as the

mixing variable, known as the bivariate mixture of distributions hypothesis (MDH).

The MDH is attractive in as much as it has an economically meaningful interpretation

of news affecting both prices and volume. It is furthermore consistent with a positive

relationship between trading volume and return variance, as well as the empirically

observed leptokurtosis of returns and positive skewness in the distribution of trading

volume itself28.

The MDH by Tauchen & Pitts (1983) has however not gone unchallenged. Richard-

son & Smith (1994) use the Generalized Methods of Moments (GMM) procedure by

25see e.g. Epps (1975); Karpoff (1987).
26see e.g. Epps & Epps (1976); Morgan (1976); Westerfield (1977); Rogalski (1978); Schwert (1989);

Gallant, Rossi & Tauchen (1992) and other studies surveyed in Karpoff (1987).
27see Karpoff (1987).
28see Harris (1986).
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Hansen (1982) to check whether the unconditional moments of price changes and trad-

ing volume conform with those of the mixture of distributions hypothesis. They reject

MDH for all tested distributions of information flow basd upon the returns and trading

volume of the 30 DJIA constituents in 1982—86. Jung & Liesenfeld (1996) arrive at

similar conclusions based upon German stock market data in the time period 1990—94.

Andersen (1996) however, suggests a modified version of MDH based on a heteroge-

neous agent setting with asymmetrical information, resulting in Poisson-distributed

trading volume conditional on the unobservable number of information events, which

is not rejected by GMM. Liesenfeld (1998) generalizes the MDH setup by allowing for

serial correlation in the mixing information variable, which had been assumed indepen-

dent in both Tauchen & Pitts (1983) and Andersen (1996), but finds this insufficient

to fully account for the empirically observed persistence in stock return variances.

A debate followed discussing in how much the MDH can account for long memory

in the variance of the return process. Bollerslev & Jubinski (1999) find the same

order of fractional integration from the hyperbolic decay in the ACF’s of both trading

volume and absolute returns of the S&P100 constituents in the time period 1962—

95. They interpret this as evidence for a bivariate MDH specification, in which the

latent information-arrival process has long memory. Also Lobato & Velasco (2000) find

identical long-memory parameters in the returns and trading volume for most of the

30 DJIA constituents, but no evidence that both the return and the volume process

are driven by the same long-memory component. Regúlez & Zarraga (2002) on the

contrary, find evidence for a common latent factor driving both returns and trading

volume in the Spanish stock market.

In judging these and similar studies one should keep in mind that trading volume,

after all, might not be the best dimension to measure the impact of the unobservable

information flow. For example Easley & O’Hara (1992) build a microstructure model,

in which the time between trades rather than trading volume itself provides the most

valuable information to market participants; and Ané & Geman (2000) show empiri-

cally that in order to recover a normal distribution for the high frequency returns of

two technology stocks, time has to be rescaled with the the number of transactions
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rather than the volume of trading. Their view has however been recently challenged

by Farmer et al. (2004) and Gillemot, Farmer & Lillo (2006) who find the price impact

of individual market orders to be essentially independent of both trading volume and

transaction frequency. Instead, they attribute both heavy tails, volatility clustering,

and long memory to microstructure liquidity effects as measured by the distribution of

gaps in the limit order book.

2.9 Asymmetric Effects

The positive return volume relationship discussed in section 2.8 in the sense that a

time series responds differently to positive and negative shocks in the same or a related

time series. Further examples of asymmetric effects in equity time series include the

so called leverage effect and correlation breakdown, shortly to be discussed below.

2.9.1 Leverage Effect

A number of studies starting with Black (1976) report a negative contemporaneous

relationship between volatility changes and returns at both stock and index level29,

commonly denoted as Leverage Effect. The term refers to a hypothesis by Black, that

the volatility increase after price declines is due to the increased risk of the firm’s equity

as a result of its lower equity-to-debt ratio following negative returns.

Christie (1982) and Schwert (1989) test the leverage hypothesis and find qualitative

support for it, although the elasticity of volatility changes with respect to financial

levarge appears to be too small to take full account of the empirical observation. The

latter finding has been recently confirmed by Figlewski & Wang (2000).

29see for example the studies by Christie (1982); French et al. (1987); Schwert (1989); Haugen et al.
(1991); Campbell & Hentschel (1992); Cheung & Ng (1992); Gallant, Rossi & Tauchen (1993); Glosten,
Jaganathan & Runkle (1993); Braun, Nelson & Sunier (1995); Duffee (1995); Tauchen, Zhang & Liu
(1996) and Figlewski & Wang (2000).



30 ACTA WASAENSIA

The leverage hypothesis seems also an unlikely explanation since Engle & Lee (1993)

found the asymmetric volatility response to stock price changes to be a transitory

effect only. For example, Gallant et al. (1993) find that the leverage effect becomes

insignificant after 5—6 days at index level and Tauchen et al. (1996) find a similar decline

at individual stock level already after 2—3 days30. But firms are unlikely to adjust their

capital structure that fast to the original level of financial leverage31. Also, if financial

leverage was the true explanation for volatility asymmetry, then issue of debt and stock

should be associated with a corresponding leverage effect as well; this has however not

been found32.

A competing explanation for the leverage effect is the so called Volatility Feedback hy-

pothesis, according to which an increase in stock market volatility raises required stock

returns, and thus lowers stock prices. It has also originally been proposed by Black

(1976)33 and termed such and empirically tested by Campbell & Hentschel (1992), who

however find that volatility feedback has only little effect on returns.

Volatility feedback is also rejected in the studies by Bouchaud & Potters (2001) and

Bouchaud et al. (2001) on high frequency returns, which find a negative correlation

only between past returns and future volatility, but not the other way round. Bouchaud

et al. (2001) manage to explain the leverage effect for individual stocks within a “re-

tarded volatility” model in which price innovations at intraday frequency are assumed

to be proportional to a moving average of past prices rather than the most recent price;

but the explanation of the leverage effect at the index level requires the ad-hoc intro-

duction of an additional “market panic” factor, whose existence remains theoretically

unmotivated in their study.

As such, the economic mechanism behind the leverage effect remains an unsolved issue.

30Exponential dampening of the leverage effect with slower decay for indexes than for individual
stocks has been recently confirmed even for high frequency data, see Bouchaud & Potters (2001);
Bouchaud, Matacz & Potters (2001); Litvinova (2003). They also confirm a finding originally noted
by Braun et al. (1995), that the magnitude of the leverage effect appears to be stronger at market
than at individual stock level.
31For related findings regarding adjustment of the capital structure to earnings-induced leverage

variations, see Ball, Lev & Watts (1976).
32see Figlewski & Wang (2000).
33similar ideas are expressed e.g. in Malkiel (1979) and Pindyck (1984).
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One should keep in mind, however, that the leverage effect appears to be small in size

despite its statistical significance34. Furthermore it appears for the most extreme price

movements only and is further attenuated by conditioning on trading volume35. In

the light of such findings one might well be tempted to ask, whether there is much

economical significance to the leverage effect at all36.

2.9.2 Correlation Breakdown

Several studies find an increase of cross-correlations between equity returns in bear

markets, which is commonly refered to as Correlation Breakdown. For example, King &

Wadhwani (1990) and Lee & Kim (1993) find a significant increase in cross-correlations

between the returns of several major stock indices after the October 1987 stock market

crash. Erb, Harvey & Viskanta (1994) report higher correlations between the stock

market returns of the G7-countries during recessions than in growth periods. A related

effect is the increase of cross-market correlations during periods of high volatility as

originally noted by Erb et al. (1994) and Longin & Solnik (1995) and recently confirmed

by Ang & Bekaert (2002) and Das & Uppal (2004)37.

Early studies suffered, however, from a flawed interpretation of correlation matrices

conditioned on large versus small absolute ex post returns: Boyer, Gibson & Loretan

(1999) show that correlations conditioned on threshold returns in only one of the series

are biased upwards. Forbes & Rigobon (2002) use this insight to show that correlation

breakdowns observed during the 1987 Stock Market Crash and other crises were only

spurious, that is consistent with a constant unconditional correlation matrix between

stock market returns. Loretan & English (2000) arrive at similar conclusions after in-

vestigating among others correlation breakdowns between the British FTSE-100 index

and the German DAX index in the time period 1991—99.

34see Tauchen et al. (1996) and Andersen, Bollerslev, Diebold & Ebens (2001).
35see Gallant et al. (1992, 1993).
36For example, Bouchaud et al. (2001) deny such significance.
37The correlation increases during bear and volatilte markets are linked by the leverage effect, since

the largest market moves tend to be declines, see e.g. Chen, Hong & Stein (2001).
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In order to aviod spurious relationships between correlations and volatility or market

trend, Longin & Solnik (2001) introduce the exceedence correlation function ρ±ij(θ)

between normalized centered returns ri, rj above/below threshold θ as

ρ±ij(θ) =
rirj≷θ − ri≷θrj≷θ5p

r2i ≷θ − ri≷θ 2
Qp
r2j≷θ − rj≷θ 2

Q (2.32)

where the subscript ≷ θ means that both returns are larger than θ (resp. smaller than

θ) for positive exceedence correlations ρ+ij(θ) (resp. negative exceedence correlations

ρ−ij(θ)) and the bar indicates the corresponding sample averages.

If asset returns were normal, the exceedence correlation function should asymptoti-

cally approach zero for both positive and negative thresholds. Longin & Solnik (2001)

plot the exceedence correlation function for the monthly returns of several major stock

indices in 1959—96 and find a decrease for positive θ only, but an increase with the ab-

solute threshold for negative returns, indicating that cross-market correlations increase

in bear markets, but not in bull markets. Similar results have been found by Ang &

Bekaert (2002).

Turning to subportfolios and individual stocks, Ang & Chen (2002) find higher ex-

ceedence correlations between the aggregate US stock market and several style sorted

subportfolios in bear than in bull markets for daily returns in 1963—98, and Bouchaud

& Potters (2001) find the same pattern for daily returns for 437 S&P500 index con-

stituents in 1990—200038.

Das & Uppal (2004) model correlation breakdown within a multivariate jump-diffusion

process, where jumps occur simultaneously but their size is allowed to vary across

assets. The idea is related to the non-Gaussian one-factor model by Bouchaud &

Potters (2001)39, where the individual stock return is modelled as a product of the

retarded price and the sum of both market and ideosyncratic shocks. Ang & Bekaert

(2002) however, claim the superiority of regime-switching models in explaining the

observed difference between positive and negative exceedence correlations over both

38Cizeau, Potters & Bouchaud (2001) report similiar results for the daily returns of 450 US stocks
in 1993—99.
39see section 2.9.1.
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asymmetric GARCH and multivariate jump-diffusion processes.

2.10 Anomalies

2.10.1 Cross-Sectional Predictability

Although stock returns are sereially close to uncorrelated,40 it appears cross-sectionally

that stocks with certain characteristics offer higher returns than others even after

controlling for risk. Such effects are called anomalies because investors should be

indifferent about any characteristic of their investment other than its return and the

risk associated with it. In how much the term “anomaly” is justified, depends then

upon the quality of risk adjustment.

The predominant form of risk-adjusting stock returns is the deduction of expected

returns from the Capital Asset Pricing Model (CAPM) by Sharpe (1964) and Lintner

(1965a,b), which accounts for covariance risk with the market portfolio of all stocks,

but ignores all other sources of risk; in particular intertemporal effects such as risk

differentials in different stages of the business cycle or microstructure effects such as

liquidity. Characteristics giving rise to a cross-sectional anomaly may also often be

argued to be a proxy for expected returns.

The first cross-sectional anomaly was discovered by Nicholson (1968), who found that

stocks with a low price earnings (P/E) ratio tend to outperform high P/E stocks.

Basu (1977) showed on 1400 stocks traded on the New York Stock Exchange (NYSE),

that the P/E effect survives risk adjustment by the CAPM: Buying the lowest P/E

quintile and short-selling the highest P/E quintile would have generated 6.75% average

abnormal return before trading costs in the period 1957—71.

Banz (1981) found that the 50 smallest NYSE stocks, measured in terms of market

capitalization, outperformed the largest 50 NYSE stocks in 1931—75 by 1% per month

40see section 2.2.
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on a risk-adjusted basis. Rosenberg, Reid & Lanstein (1985) found that stocks with a

low price-to-book (P/B) ratio outperform high P/B stocks in a universe of 1400 highly

capitalized stocks in the period 1973—84. All three effects (P/E, Size and P/B) have

since then be confirmed by numerous further studies41.

Fama and French argue in a series of papers 42, that size, price ratios such as price-to-

book, price-to-earnings, dividend yield, price-to-cashflow and past sales growth rates

may be subsumed in two additional risk factors to the CAPM for size and value. In

how much the value effect is indeed a compensation for risk, or rather the result of

psychologically biased, irrational investment decisions, is still a matter of intense debate

between the above mentioned authors43 and protagonists from the Behavioral Finance

literature on the other side44.

Another cross-sectional anomaly is the momentum effect discovered by Jegadeesh &

Titman (1993), who find that stocks with above average returns over the last half year

tend to outerperform over the following 3 to 12 months as well, consistent with delayed

price reaction to firm specific news. The momentum effect has been confirmed e.g. by

Chan, Jegadeesh & Lakonishok (1996); Brennan, Chordia & Subrahmanyam (1998);

Fama (1998).

Cross-sectional anomalies have been aspersed of data-snooping e.g. by Lo & MacKinlay

(1990); Black (1993); Breen & Korajczyk (1995); Kothari, Shanken & Sloan (1995);

MacKinlay (1995). However, this appears to be an unlikely explanation, since the

anomalies mentioned above have been frequently confirmed out of sample45.

Brennan et al. (1998) argue that the size effect is indeed a liquidity effect, as the size

factor in explaining abnormal returns is not robust to the inclusion of trading volume as

an additional explanatory variable. Anyway there appears to be a consensus that the

41see e.g. the survey studies by Ziemba (1994) and Hawanini & Keim (1995).
42see Fama & French (1992, 1993, 1996).
43see also Fama & French (1995, 1998) and Fama (1998).
44see e.g. De Bondt & Thaler (1985); Chopra, Lakonishok & Ritter (1992); Lakonishok, Shleifer &

Vishny (1994); Haugen & Baker (1996).
45see e.g. Hawanini & Keim (1995); Haugen & Baker (1996); Fama & French (1998); Rouwenhorst

(1998); Davis, Fama & French (2000); Martikainen (2000).
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size effect has largely disappeared since its publication in 1981, whereas the momentum

effect seems to persist46. The persistence of the value effect is less clear. Schwert

(2003) argues that the value effect has attenuated as well, whereas Hogan et al. (2004)

demonstrates the profitability of several value-based strategies up until 2000, extending

the sample period 1963—1990 originally used by Lakonishok et al. (1994)47.

The most recent cross-sectional anomaly concerns the investment recommendations

from brokerage analysts. Womack (1996) and Barber, Lehavy, McNichols & Trueman

(2001) find that stocks with fresh buy recommendations outperform stocks with fresh

sell recommendations, most probably reflecting finite reaction time to firm specific

information. They report however excess returns, which are not sufficient to cover

transaction costs.

2.10.2 Seasonal Anomalies

Seasonal Anomalies or Calendar Effects denote the empirical finding that stock returns

appear not to be uniformly distributed over the year. The best known calendar effects

include the Weekend, the January, the Turn-of-Month and the Holiday Effect.

Cross (1973) and French (1980) find unusually low returns on Fridays and extraordinary

large returns on Mondays. Rozeff & Kinney (1976) find above average returns in

January, which Keim (1983) and Reinganum (1983) show to be concentrated on firms

with small market capitalization. Ariel (1987) and Lakonishok & Smidt (1988) find

larger returns around the turn of the month; and Ariel (1990), Lakonishok & Smidt

(1988) as well as Ziemba (1991) find extradordinary large returns on the days preceeding

public hodlidays.

Seasonal anomamlies have been adversed of data-snooping–just like their cross-sectional

counterparts discussed in section 2.10.1–due to the lack of any a priori theoretical ex-

46see Schwert (2003); Hogan, Jarrow, Teo & Warachka (2004).
47Hogan et al. (2004) do however not report isolated performance in the out-of-sample period 1991-

2000.
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planations for them. Calendar effect have been explained by institutional factors such

as cash-flow and policy constraints and individual trading patterns such as tax-loss-

selling and delayed reactions to market information48, but all of these may just as well

be regarded as after the fact rationalizations of empirically observed phenomena.

Seasonal anomalies are not stable through time just like their cross-sectional counter-

parts49 and Sullivan et al. (1998) demonstrate that even the best performing calendar

rules may be attenuated up to insignificance when correcting for data-snooping bias.

Data-snooping alone, however, appears to be an insufficient explanation given their

wide occurence in markets all over the world50.

Schwert (2003) finds the January Effect to be confined to the cheapest and least liquid

stocks, while the Weekend Effect seems to have disappeard since the early 1980’s,

suggesting that the market learns through time. The latter view is consistent with

Bossaerts & Hillion (1999), who confirm in-sample predictability of international stock

returns, but find no out-of-sample predictability even of the best in-sample models

selected by standard statistical model selection criteria; and explain this with model

nonstationarity due to learning by market participants.

48see Ziemba (1994).
49see Ziemba (1994) and Sullivan et al. (1998).
50see Ziemba (1994) and Hawanini & Keim (1995).
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3 The Search for the Return Generating Process:

Statistical Approach

3.1 Random Walk and Martingale Hypothesis

The earliest contribution to the theoretical description of return generating processes

goes back to Bachelier (1900). Bachelier showed that an asset subject to independent

price shocks must follow a Wiener process, which implies that a stock price measured

at discrete time steps must follow a Random Walk :

Pt = Pt−1 + 6t (3.1)

with independently and identically distributed increments 6t, which–according to

Bacheliers analysis–should follow a normal distribution with zero mean and constant

variance. We shall follow the most common usage of the term “Random Walk” in the

literature by denoting with it any process following (3.1) with iid increments, thereby

allowing the error term to follow other distributions as well.

Osborne (1959) uses psychological considerations to argue that the assumption of in-

dependence should apply to the logreturns defined in equation (2.2) of page 13, rather

than to arithmetic price changes as in (3.1). The result has become known as Geomet-

ric Brownian Motion (GBM), in which logreturns are normally distributed, whereas

gross returns Pt+τ/Pt = 1 + Rt(τ) become lognormally distributed with probability

density

f(x) =
1√

2πσ2τx
exp

}
− 1

2σ2τ
(lnx− μτ)2

]
, (3.2)

where μτ and σ2τ are the mean and variance of the normally distributed logreturns

rt(τ) over the investment period τ up to time t.

The random walk model squares well with absence of serial correlation in stock prices

but is incompatible with heteroscedasticity and volatility clustering, since the price

increments 6t in (3.1) are assumed to be identically distributed, in particular, they have

constant variance. This led Mandelbrot (1966) to introduce the Martingale Model of
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speculative prices, which assumes only E(6t) = 0 rather than requiring 6t to be drawn

from a fixed distribution.

Samuelson (1965, 1973) shows that the martingale model for stock prices discounted

at the risk-free rate is consistent with an arbitrage-free market, which prices the stock

at Fundamental Value, that is the expected present value of all future dividends. The

latter hypothesis, that prices evolve as if market participants used the true probability

distribution of events in making their predictions, has first been advanced by Muth

(1961) and denoted by him as Rational Expectations.

3.2 Modelling the Unconditional Return Distribution

3.2.1 Infinite Variance Hypothesis

Significant excess kurtosis as well as strong time variation in variance of returns led

Mandelbrot (1963) to argue for the use of Lévy Stable Distributions in the description

of financial returns. The general class of Lévy stable distributions introduced by Lévy

(1925) lacks any closed form solution, but may be describted by its characteristic

function ϕX(u) = E(e
iXu) as:

lnϕX(u) =

⎧⎨⎩iδu− γ|u|αS
�
1− iβ u

|u| tan
D
π
2
αS
i=

if αS W= 1,
iδu− γ|u|

�
1 + iβ 2

π
u
|u| ln |u|

=
if αS = 1,

(3.3)

with location parameter δ ∈ (−∞,∞), skewness index β ∈ (−∞,∞), scale parameter
γ ∈ (0,∞) determining the width, and characteristic exponent αS ∈ (0, 2] determining
the shape of the distribution. The normal distribution corresponds to the special case

αS = 2. In most other cases, the distribution function and density of X can only be

obtained by numerically evaluating the inverse Fourier transform of (3.3).

All non-normal Lévy stable distributions are leptokurtic and have hyperbolically declin-

ing tails with tail index α identical to their characteristic exponent αS, which implies

that they have infinite variance (see section 2.4). Apparent variation in the variance
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of returns would then not imply true variation in the distribution of 6t through time,

but instead be a mere result of sampling error, as the law of large numbers would then

be no longer applicable to 2nd nor any higher moments.

The stable distribution hypothesis explains also leptokurtosis at varying time hori-

zons, since application of the central limit theorem–used in the derivation of normally

distributed multiperiod returns–requires finite variance of the single period returns.

Sums of independent increments with infinite variance, on the other hand, converge in

distribtution to the non-normal members of the stable distribtution family.

As such, Lévy stable distributions are the only possible limiting distributions of inde-

pendenly and identically distributed random variables51. Regarding long-term logre-

turns as sums of iid short-term logreturns, this would imply that Lévy stable distri-

butions are the only candidates for describing long-term returns. DuMouchel (1973)

showed, however, that the rate of convergence to the Lévy stable limit can be extremely

slow in the case of infinite variances, requiring numbers of observations of order 103

before convergence to a stable limit could be observed. Furthermore, if returns are

not identically distributed, then every infinitely divisible distribution, that is every

distribution whose characteristic function ϕ may be expressed as the k’th power of

some characteristic function ϕk: ϕ(u) = [ϕk(u)]
k, k ∈ N, is permissable as a limit

distribution for the sum of independent random variables52.

Sums of iid stable random variables are themselves Lévy stable distributed with rescaled

location and scale parameters, but identical skewness index β and characteristic expo-

nent αS as the individual summands. Regarding long-term logreturns as sums of iid

short-term logreturns would then imply that long-term returns should have the same

tail index α as their subperiod returns.

Some researchers53 accepted Mandelbrot’s infinite variance hypothesis merely upon in-

dication of α < 2 in their datasets without further testing of fit. Stability of the tail

51see Lévy (1925) and the discussions e.g. in Mandelbrot (1963) and Fama (1963).
52The result is due to Khintchine (1937). See also the discussion in Mantegna & Stanley (2000: page

30—33).
53see e.g. the studies by Fama (1965); Teichmoeller (1971); Simkowitz & Beedles (1980).
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index α is however overwhelmingly rejected in a large number of studies starting with

Officer (1972)54, which find nonstationarity of α at different levels of time aggregation;

in particular convergence to the normal distribution for longer time horizons, which

implies the applicability of the central limit theorem, and thus finite variance. Fur-

ther evidence against the infinite variance hypothesis is provided by numerous studies

finding a tail index significantly larger than 2 55, the empirically observed convergence

of sample variance to finite values56, and slower divergence of higher moments, than

would be expected in the non-normal Lévy stable regime57.

3.2.2 Combinations of Jump and Diffusion Processes

One possible avenue to generate leptokurtic returns without having to introduce in-

finite variance is to combine jump and diffusion processes. Press (1967) pioneered

this approach by suggesting a compound Poisson process of normally distributed price

increments as follows:

Z(t) ≡ lnPt = lnP0 +
N(t)3
k=1

Yk +X(t), (3.4)

where N(t) denotes a Poisson counting process representing the random number of

information events, Yk, k = 1, . . . N(t), are normally distributed random variables

representing the price reaction to such events, and X(t) is an additional Wiener process

to represent random price variation unrelated to information. All processes, N(t), Yk,

and X(t) are assumed to be mutually independent. Leptokurtosis is then introduced

into this Compound Events Model by the Poisson mixture of normals.

Merton (1976) adds an extra drift term to (3.4)58 and reinterprets the noise term

X(t) as ordinary price movements and the information induced price reaction Yk as

extraordinary jumps in order to obtain for the logreturn rτ (t) defined in (2.2) on page

54further examples include Barnea & Downes (1973); Blattberg & Gonedes (1974); Hsu, Miller &
Wichern (1974); Hagerman (1978); Upton & Shannon (1979); Fielitz & Rozelle (1983); Perry (1983).
55see section 2.4.
56see Cont (2001) and reference [22] therein.
57see Lau, Lau & Wingender (1990).
58Both the price reactions Yk and the Wiener process X(t) in Press’ compound events model have

zero mean.
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13:

rτ (t) =

w
μ− σ2

2

W
τ + σ (B(t+ τ)−B(t)) +

N(t+τ)3
n=N(t+1)

Jn (3.5)

where B(·) denotes standard Brownian Motion and N(·) denotes a Poisson counting
process with parameter λ; μ and σ denote drift and variance from the Brownian motion

part of the process, respectively; and Jn ∼ N (μJ ,σ2J) represent the price change at the
n’th jump. In this interpretation the model is commonly denoted as Mixed Diffusion

Jump or simply Jump Diffusion process. Its probability density is given by

f(x) =
∞3
n=0

e−λτ
λτn

n!
φ
D
μτ + nμJ , (στ)

2 + nσ2J
i

(3.6)

where φ(μ,σ2) denotes the probability density function of the normal distribution with

mean μ and variance σ2. As is apparent from the density function above, the jump

diffusion process may just as well be regarded as a mixture of normals with infinitely

many addends, leading to the denotation Compound Normal, although some authors

reserve this term for discrete mixtures of normals with finitely many addends only (see

below).

Oldfield, Rogalski & Jarrow (1977) and Oldfield & Rogalski (1980) extend the jump

diffusion model to allow for several possibly autocorrelated process. Friedman & Laib-

son (1989) use Press’ model to argue in favour of the financial instability hypothesis

by Minsky (1977), according to which market participants destabilize the economy by

excessive debt-financing of increasingly risky projects in boom economies.

Ball & Torous (1983) suggest a simplified version of Press’ model (3.4) to model or-

dinary and extraordinary price movements, in which they dispend the diffusion term

and replace the Poisson mixture of normals with a Bernoulli mixture of normals; that

is they allow for only one information event per time interval. The result is a discrete

mixture of 2 normals with probability density:

f(x) = (1− λ)φ(μ, σ21) + λφ(μ, σ22) (3.7)

where λ denotes the probability of an extraordinary price movement, μ denotes the

common drift, and σ21 and σ
2
2 denote the variance of ordinary and extraordinary price

shifts, respectively.
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This approach has been generalized by Kon (1984) to allow for a discrete mixture

of an arbitrary number of normals, where variation in the mean generates skewness,

whereas variation in the variance of the components generates excess kurtosis in the

resulting probability distribution. Kon motivates the varying parameters in the mixture

of distributions by changing regimes in the underlying economy, rather than ordinary

and extraordinary information events.

3.2.3 Subordinated Normal Model and
Time Changed Brownian Motion

Mandelbrot & Taylor (1967) motivate the use of the Lévy stable distribution for de-

scribing the increments in the random walk of logarithmic prices Z(t) ≡ lnPt with

a non-uniform distribution of trading activity over calendar time t. In order to take

this irregularity of transactions into account, they suggest to introduce a randomized

operational time T (t) measuring the volume or number of transactions up to physi-

cal time t. If T (t) is assumed to follow a Lévy stable distribution with characteristic

exponent αS < 1, and increments in X(v), representing price reactions measured in

numbers of transactions, are assumed assumed to be iid normal distributed; then it

can be shown that the price reaction in calendar time t measured as increments of the

process Z(t) = X(T (t)) are Lévy stable distributed with αS < 1 despite the normal

distribtution of the price reaction conditional on trading volume.

This is a special case of the Subordinated Normal Model for logarithmic stock prices,

in which transformed calendar time T (t) is subordinated to Brownian motion.59 A sto-

chastic process {X(T (t))} is called Subordinated to the process {X(t)}, if the Directing
Process T (t) is strincly increasing and has stationary independent increments.60.

Subordinated Brownian Motion is particularly interesting for modelling stock prices

since any arbitrage-free price process may be written as time-changed Brownian motion

B(T (t)). 61 The chronometer T (t) need however not necessarily be a subordinator, that

59see Westerfield (1977).
60see e.g. Feller (1966: pp. 333—336).
61see e.g. Ané & Geman (2000).
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is, it does not need to have stationary independent increments, and T (t) does not need

to be independent of the Brownian motion which it is subordinated to62.

Subordination of Brownian motion implies that the variance of the unconditional return

process B(T (t)) evolves stochastically, whenever mean or variance of the directing

process T (t) are not constant in time63. On the other hand, it has been shown e.g. by

Barndorff-Nielsen & Shepard (2001) that stochastic volatility models (to be discussed

in section 3.3.1) may be written as time-changed Brownian motion with the integrated

variance Vt =
$ t
0
σ2(u) du as independent subordinator. This implies that stochastic

variation may be embedded into Brownian motion equivalently by means of a stochastic

time change or by stochastic volatility64.

Clark (1973) shows that whenever the directing process T (t) has finite mean and is

subordinated to a process X(t) with finite variance, then the resulting process X(T (t))

will also have a finite variance and at the same time exhibit a larger kurtosis than

the subordinated process X(t). This provides another avenue to model leptokurto-

sis in financial returns, without having to resort to infinite variance as suggested by

Mandelbrot (1963) and Mandelbrot & Taylor (1967).

There are many possible choices for the directing process T (t).65 Clark himself sug-

gested T to be lognormally distributed. Praetz (1972) and Blattberg & Gonedes (1974)

suggested an inverted gamma distribution and showed that this leads to a scaled Stu-

dent t distribution with probability density function:

f(x) =
Γ
D
1+ν
2

i
Γ
D
1
2

i
Γ
D
ν
2

iνν/2√H[ν +H(x−m)2]−(ν+1)/2 (3.8)

where Γ(·) denotes the gamma function, m ∈ (−∞,∞) is the location parameter,
H ∈ (0,∞) is the scale parameter and ν ∈ N is the degrees of freedom parameter. The
crucial degrees of freedom parameter ν determines the shape of the distribution. The

tails of the symmetric Student t distribution decay hyperbolically with exponent ν if it

is finite. As ν approaches infinity, the Student t distribution approaches the Gaussian,

62see Monroe (1978); Delbaen & Schachermayer (1994); Geman, Madan & Yor (2001).
63see Ané & Geman (2000).
64see also Barndorff-Nielsen, Nicolato & Shepard (2002) and Barndorff-Nielsen & Shepard (2003).
65see Westerfield (1977).
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implying exponential decay of the tails.

Hsu (1979b) shows that subordinating Brownian motion to a directing process with

exponentially distributed increments, results in a process with increments following

the double exponential distribution. This approach may be generalized 66 to yield the

Exponential Power Distributions (EPD) by Box & Tiao (1973) with probability density

f(x) = kβφ
−1 exp

X
−1
2

eeeex− μ

φ

eeee2/(1+β)
~

(3.9)

where kβ is a normalizing constant, φ ∈ (0,∞) is a scale parameter, μ ∈ R is a location
parameter, and β ∈ (−1, 1] is a parameter affecting the shape of the distribution. The
EPD are leptokurtic for 0 < β ≤ 1, but have tails with either finite endpoints or

exponential decline67.

Madan & Senata (1990) model the variance in driftless Brownian motion to follow a

gamma distribution, and call the resulting process Variance Gamma (VG). There is

no analytical expression available for the probability density of the VG distribution,

but it has a very simple characteristic function for the unit period return

ϕX(u) =

w
1 +

1

2
υσ2u2

W−1/υ
(3.10)

with scale parameter σ2 ∈ (0,∞) determining the variance, and shape parameter
υ ∈ (0,∞) determining the kurtosis of the returns. One attractive feature of the VG
model is that, unlike the Student t distribution, it is closed under convolution, thereby

allowing returns measured at varying time intervals to be described by members of the

same family of distributions. The VG model has later been generalized by Madan,

Carr & Chang (1998) in order to allow for skewness in returns. It has finite moments

of all orders and exponentially declining tails despite its leptokurtosis.

Unlike Brownian motion, which is a continuous process of unbounded variation, VG

is a pure jump process of bounded variation68. Carr, Geman, Madan & Yor (2002)

66see Hsu (1980, 1982).
67see Hsu (1980) and Box & Tiao (1973: pages 156—160).
68A function f : [0, T ] → R is of bounded variation if

�n
i=1 |f(ti) − f(ti−1)| < ∞ for all possible

partitions 0 = t0 < t1 < t2 < . . . < tn = T .
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generalize the VG process by Madan et al. (1998) further in order to allow for both

finite and infinite variation. After ruling out continous processes a priori from the

discrete nature of trading, they conclude that equity index returns are better described

by jump processes of bounded, than of unbounded variation.

Eberlein & Keller (1995) suggest the Hyperbolic Distribution and Barndorff-Nielsen

(1997, 1998) the Normal Inverse Gaussian (NIG) distribution to model stock returns,

both of which are members of the Generalized Hyperbolic Distribution family, intro-

duced by Barndorff-Nielsen (1977, 1978) with probability density function

f(x) = aλ(α, β, δ)
0
δ2 + (x− μ)2

λ−1/2
Kλ−1/2

p
α
0
δ2 + (x− μ)2

Q
eβ(x−μ) (3.11)

where Kν(·) denotes the modified Bessel function of the third kind with index ν;

aλ(α,β, δ) is a normalizing constant, α and β are shape parameters in the range

(0 ≤ |β| < α < ∞), δ ∈ (0,∞) is a scale parameter, and μ ∈ R is a location pa-

rameter. The parameter λ ∈ R determines the type of the distribution; the special
cases λ = 1 and λ = −1/2 correspond to the hyperbolic and normal inverse Gaussian
distributions, respectively.

Barndorff-Nielsen (1977, 1978) showed that the generalized hyperbolic distributions

may be regarded as variance-mean mixtures of normal distributions, making them

candidates for the description of arbitrage-free price processes as well. The normal

inverse Gaussian model is particularly appealing, as it is the only subclass of generalized

hyperbolic distributions that is closed under convolution. The NIG has, unlike the

hyperbolic distribution, a log-density that is concave in the center and convex in the

tails, in harmony with empirically observed returns. The tails of the NIG, like those of

all generalized hyperbolic distributions, decline however exponentially, just like those

of all models described in this subsection except the Student t for finite degrees of

freedom parameter ν.
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3.2.4 Descriptive Models

While the distributions and processes discussed in the preceeding paragraph have been

motivated by economical considerations, such as consistency with arbitrage-free pricing,

price response to information flow, or changing regimes in the economy, there have

additionally been suggested a large number of data driven models, that came into life

solely due to the quality of their fit to empirically observerd return data.

Smith (1981) suggests the Logistic Distribution with probability density

f(x) =
exp[(x− μ)/α]

α(1 + exp[(x− μ)/α])2
(3.12)

where μ ∈ R and α ∈ (0,∞) are location and scale parameters, respectively. The
logistic distribution is symmetric and leptokurtic with exponentially declining tails.

Bookstaber & McDonald (1987) suggest the Generalized Beta of the second kind (GB2)

as unconditional distribution of financial returns. The 4 parameter family of distrib-

utions contains among others the lognormal, the log-Student t, and the log-logistic

distributions as special cases. Higher moments may or may not exist, depending upon

the values of the shape parameters. The GB2 distributions have been generalized by

McDonald & Xu (1995) to the 5 parameter family of Generalized Beta (GB) distribu-

tions, then containing also the generalized beta of the first kind (GB1), which include

among others the Lévy stable distributions as a special case. Exponentiating the GB

distributions yields the Exponential Generalized Beta (EGB) distributions, which con-

tain among others the exponential power distributions by Box & Tiao (1973).

McDonald & Newey (1988)69 introduce the 3 parameter family of symmetric General-

ized T (GT) distributions nesting both the Student t and the exponential power dis-

tributions. Theodossiou (1998) generalized GT into the 4 parameter family of Skewed

Generalized T (SGT) distributions in order to allow for skewness. As said above, nei-

ther the EGB nor the SGT family of distributions, like any other distribution discussed

in this section, have a foundation in economic theory. Their usefulness is rather due

69see also the discussion in Butler, McDonald, Nelson & White (1990).
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to the fact that by nesting many different kind of well known distributions, they al-

low for statistical discrimination between these alternatives for example by means of

likelihood-ratio tests.

Badrinath & Chatterjee (1988) suggest to use the so called (g × h) Distributions first
introduced by Tukey (1977), for the description of equity returns. One obtains a

(g×h) distributed random variable X by transforming a standard normally distributed

random variable Z as

X = A+B
exp(gZ)− 1

g
exp

w
hZ2

2

W
(3.13)

where A is a location and B is a scale parameter, and g and h are shape paramaters

determining the skewness and kurtosis of the distribution, respectively. The authors

apply the (g × h) distribution to both daily and monthly returns of several US equity
indexes70. The (g × h) distribution has also been applied to British stock indices by
Mills (1995).

Mantegna & Stanley (1994, 1995) suggest the Truncated Lévy Flight (TLF) as a model

for arithmetic one minute price changes in the S&P500 index. The truncated Lévy

flight is a stochastic process with increments following a rescaled symmetric stable

distribution71 within a finite interval [−l, l], where l denotes the cutoff length, beyond
which the density of the increments is set to zero. As such, the TLF looks like a Lévy

stable distribution in the center, but has a finite variance due to the cutoff beyond a

finite interval. This implies the applicability of the central limit theorem. The authors

show, however, that the rate of convergence of the TLF to the Gaussian is about 3

orders of magnitude slower than for most common distributions.

While the VG and generalized hyperbolic distributions are infinitely divisible, TLF is

not. This implies by the Khintchine theorem72 that it may not be thought of as a sum

of infinitely many independent, though not necessarily identically distributed, random

variables, as would be desirable from an economical point of view73. An infinitely

70see Badrinath & Chatterjee (1988, 1991).
71that is, the location and skewness parameters δ and β in the characteristic function (3.3) are set

to zero.
72see section 3.2.1 and footnote 52 therein.
73see section 3.2.1.
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divisible version of the TLF has been given by Koponen (1995), who considers an

exponential decay rather than a discontinuous cutoff of the Lévy stable distributed

price increments. This Exponentially Truncated Lévy Flight is also contained as a

special case of the generalization of the VG process by Carr et al. (2002) discussed in

section 3.2.3.

3.2.5 Comparison and Evaluation

The comparison of the suggested return distributions in the empirical finance literature

yields no coherent picture of superiority for any of the numerous candidates. This may

be partly due to the complication arising from the fact that–ecxept for the members of

the EGB and SGT families discussed in section 3.2.4–the different distributions are not

nested, making statistical inference by means of likelihood ratio tests impossible. Most

studies resort then to χ2 goodness-of-fit tests after arranging the empirically observed

return frequencies into class intervals and regarding the values within each interval

as a dummy class, and/or use information criteria such as the Schwartz criterion to

discriminate between the different candidates.

Praetz (1972) compares the Student t with the Gaussian, Compound Events, and

symmetric stable distributions on weekly returns of Australian stocks in 1956—66 and

finds the Student t distribution to perform best in χ2 goodness-of-fit tests. Similarly,

Blattberg & Gonedes (1974) find that the Student t distribution fits daily returns better

than the symmetric stable distribution for 30 DJI stocks in the period 1957—62; and

Kim & Kon (1994) find that the Student t distribution dominates both the discrete

mixture of normals and the compound events model in describing daily returns of 30

DJI stocks and 3 stock indexes in the time period 1962—90.

On the contrary, Kon (1984) claimed superiority of the discrete mixture of normals

when comparing it to the Student t distribution on similar data, but within the shorter

time interval 1962—80, and upon comparing values of their respective likelihood func-

tions. Similarly, Gillemot, Töli, Kertesz & Kaski (2000) compare the Gaussian, the

discrete mixture of normals, jump diffusion, Student t, the stable distribution, and
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TLF on daily returns of both the Finnish HEX-index and the S&P500. They find

the best fit for the discrete mixture of normals, closely followed by jump diffusion and

Student t in χ2 goodness-of-fit tests, whereas the normal and the stable distribution

emerge as the worst candidates from their study.

Akgiray & Booth (1987), on the other hand, compare Merton’s jump diffusion and

Kon’s mixture of normals on weekly returns of 200 American stocks and 3 US stock

indices and find the former to fit best. Gray & French (1990) compare the normal,

Student t, logistic and exponential power distributions on daily returns of the S&P500

and claim superiority of the EPD.

Tucker (1992) compares the likelihood functions of the Student t and general stable

distributions, the jump diffusion model, and the discrete mixture of normals on 200 US

stocks and 3 stock indices. He finds that the best fit is usually obtained by using either

jump diffusion or Kon’s mixture of normals. In his study, the Student t distribution

is consistently the worst fitting model, due to its inability to model skewness. Peiró

(1994), on the other hand, reinforces the case for the Student t distribution, as it obtains

the highest scores on the log-likelihood function compared to the general stable, the

logistic, the EPD, and the discrete mixture of normals, when applied to 6 international

stock market indices.

Barndorff-Nielsen (1997) references a number of studies according to which the normal

inverse Gaussian member of the generalized hyperbolic distribution family, discussed

in section 3.2.3, fits financial returns better than the hyperbolic distribution suggested

by Eberlein & Keller (1995).

Harris & Küçüközmen (2001) fit members of the EGB and SGT distribution families

discussed in section 3.2.4 to daily, weekly and monthly returns of both the British

FT-SE and the US S&P500 indices in the time period 1979—99. They prefer members

of the SGT family for daily and weekly returns, and members of the EGB family for

monthly returns of both countries. The fact that the most commonly used distributions

are nested within these families74 allows them to apply likelihood ratio tests in order

74see section 3.2.4 above.
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to check their adequacy for modelling financial returns. In their study it turns out that

many common distributions, such as the Student t, EPD, and the logistic distribution

are strongly rejected for daily returns, whereas at least the Student t and the logistic

distributions appear acceptable for the description of weekly and monthly returns.

I am not aware of any study that would compare Tukey’s (g×h) distribution to any of
the above mentioned distributions, nor any study comparing the best fitting model of

the EGB and SGT families with generalized hyperbolic distributions or distributions

of the VG type. As said above, there appears no coherent picture from the empirical

finance literature regarding the superiority of any one model, except that both the

normal and the stable model appear to be inappropriate.

However, it has been pointed out e.g. by Lux & Ausloos (2002), that there is an efficient

way to sort out uneligible models by simply considering the behavior of their tails75.

Discrete mixutes of normals, including the compound events and the jump diffusion

model, the VG and the generalized hyperbolic families, Tukey’s (g × h) distribution,
as well as TLF have all exponentially declining tails and do thus not qualify as models

for stock prices, when a correct description of extremal returns is required.

Ruling out Lévy stable distributions, as they imply infinite variance76, points to contin-

uous mixtures of normals, such as the Student t distribution and its skewed gerneral-

izations within the SGT family. This provides, however, only a statistical description,

but no economic explanation beyond the mixture interpretation as reaction to incoming

news77. As such, the success of the statistical approach in identifying an appropriate

description of stock returns, even when confined to the unconditional distribution only,

appears to be quite limited despite about half a century of intensive research.

75see section 2.4.
76see section 3.2.1.
77see secton 3.2.3.
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3.3 Modelling Time-Serial Dependence of Returns

3.3.1 Stochastic Volatility Models

The Geometric Brownian Motion introduced in section 3.1 may be written in differential

form equivalently as:

dPt = μPt dt+ σPt dWt (3.14)

d lnPt =

w
μ− σ2

2

W
dt+ σ dWt (3.15)

where μ and σ denote the instantaneous drift and (constant) volatility, and Wt stands

for standard Brownian motion. GBM has become a very popular model of asset returns

due to its analytical tractability. The famous option pricing theory by Black & Scholes

(1973) for example, assumes stock prices to follow geometric Brownian motion.

Allowing the volatility parameter σ to become a random variable, one obtaines so called

Stochastic Volatility (SV) models. A discrete time formulation (ignoring drift) is then

given by

rt = σt · 6t, 6t ∼ N (0, 1) (3.16)

where rt denotes the logreturn over one period, and the instantaneous volatility σt is

a strictly stationary process–often assumed but not necessarily– independent of the

iid symmetric noise process 6t.
78

The first stochastic volatility model has been introduced by Taylor (1986), who assumed

lnσt to follow an AR(1) process. The earliest continuous time formulation of stochastic

volatility is due to Hull & White (1987), who choose the following stochastic processes

for the stock price Pt and its instantaneous variance Vt = σ2t :

dPt = φ(Pt,σt, t)Pt dt+ σtPt dW
(1)
t (3.17)

dVt = μ(σt, t)Vt dt+ ξ(σt, t)Vt dW
(2)
t (3.18)

where W
(1)
t and W

(2)
t denote (possibly correlated) Wiener processes. The fact, that

the parameter μ is allowed to depend upon σt, allows the inclusion of mean-reverting

78see Taylor (1994) and Mikosch (2003b).
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volatility into the model. Other SV setups which model volatility clustering more

explicitely by introducing mean reversion into the stochastic differential equation for

σt, include Heston (1993) and Stein & Stein (1991).

Stochastic volatility models in general have the potential to model both skewness,

excess kurtosis, and aggregate Gaussianity; since they may just as well be regarded

as continuous mixtures of normals with the time dependent integrated variance Vt =$ t
0
σ2(u) du serving as the mixing variable79. Skewness and kurtosis are then introduced

by changing drift and variance, respectively80, while aggregate Gaussianity is due to

ergodicity, as the time averaged integrated variance approaches a constant value for

increasing time horizons81.

Stochastic volatility need not necessarily be embedded in Brownian motion. E.g. Ge-

man et al. (2001) argue that if random time changes (that is stochastic volatility)

are related to unforecastable information events, then the time change (or stochastic

volatility) should also be purely discountinous, ruling out continous Brownian motion

as a model for the resulting price processes as well82. This motivated Carr, Geman,

Madan & Yor (2003) to suggest several models in which SV is embedded in general Lévy

processes83, as Lévy processes other than Brownian motion are pure jump processes84.

Long memory has been introduced into stochastic volatiltiy models e.g. by Breidt,

Crato & de Lima (1998), who assumes instantaneous volatility to be governed by frac-

tionally integrated Gausssian noise. Barndorff-Nielsen & Shepard (2001) introduce

long range dependence by assuming σ2t to be a superposition of Ornstein-Uhlenbeck

processes. The unconditional returns follow then a normal inverse Gaussian distribu-

tion with exponentially declining tails. Another way to introduce long memory into

stochastic volatility is to allow the noise term in (3.1) to be non-normally distributed

79see e.g. Barndorff-Nielsen & Shepard (2001) and the discussion in section 3.2.3.
80see also section 3.2.2
81see Barndorff-Nielsen & Shepard (2003: page 170).
82see e.g. Geman et al. (2001: page 82) and Geman (2002: page 1304).
83A stochastic process is called a Lévy process if it starts at 0 and has stationary and independent

increments.
84see e.g. Geman (2002).
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and to impose a suitable tail-behavior on 6t
85.

As such, stochastic volatility models exhibit considerable flexibility to model stylized

facts of financial returns. Their success has however been hampered by difficulties in

estimating the parameters of such models, since volatility is modeled as an unobservable

latent process. In particular, SV models in general lack analytical expressions for the

one-step-ahead forecasts, which makes estimation by maximum likelihood estimation

infeasible86.

3.3.2 GARCH Models

The specification of Generalized AutoRegressive Heteroskedasticity (GARCH) models

differs from the stochastic volatility models discussed in section 3.3.1, in as much as the

stochastic volatility is fully determined by past realizations of the returns alone. That

is, volatility becomes random only through the randomness in the realization of past

returns, as there is no extra diffusion term or other source of randomness involved.

Bollerslev (1986) generalized Engle’s ARCH(p) specification (2.15) on page 20 into

GARCH(p, q) by incorporating the q most recent forecasts for the conditional variance

into the current forecast as well:

σ2t = α0 +

p3
j=1

αjr
2
t−j +

q3
k=1

βkσ
2
t−k ≡ α0 + α(L)r2t + β(L)σ2t (3.19)

where again the αj’s and βk’s are non-negative parameters, L is the back-shift operator,

α(L) and β(L) are the corresponding polynomials in L with coefficients αj and βk, and

rt denotes the one-period logreturn defined in (3.16).

Since then there have been many extensions to the GARCH model, most notably the

EGARCH model by Nelson (1991) for modelling asymmetric impact of positive and

negative shocks, and the ARCH-M model by Engle, Lilien & Robins (1987) to allow for

85see Mikosch (2003b).
86see e.g. Ghysels, Harvey & Renault (1996) and Shepard (1996).
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feedback of the conditional variance into the conditional mean87. The most commonly

used specification is however GARCH(1,1), as in general it is not outperformed by any

of the more sophisticated generalizations88.

The main advantage of GARCH models is that their parameters–in contrast to those

of the stochastic volatility models discussed in section 3.3.1–may be easily estimated

by means of conditional maximum likelihood theory, which gives consistent and as-

ymptotically normal parameter estimates, even if the 6t’s in (3.16) are not iid normally

distributed89.

Unconditional returns of GARCH processes are leptokurtic and have power-law tails

despite their normal building blocks90, which is at least in qualitatively accordance with

empirical evidence. However, residuals from GARCH estimation on financial return

series remain usually leptokurtic91, and maximum likelihood estimation of GARCH

parameters imply lighter tails then what is empirically observed92. As a solution to the

former problem it has been suggested e.g. by Hsieh (1989) and Lye & Martin (1991)

to model the distribution of 6t in (3.16) as leptokurtic rather than standard normal.

But Pagan (1996) has noted that the potential of this approach may be quite limited,

as it may hamper the models very ability to account for dependence in volatility.

Another disadvantage of the GARCH model is that the autocorrelation functions of

both absolute and squared returns decline exponentially, which implies that GARCH

cannot model long range dependence93.

The GARCH(p, q) model (3.19) has a strictly stationary solution and finite variance if

α0 > 0 and

p3
j=1

αj +

q3
k=1

βk < 1. (3.20)

Empirically, however, the sum of the parameters above is usually found to be very close

87For surveys on other extensions of the GARCH model, see e.g. the review studies by Bollerslev
et al. (1992); Bera & Higgins (1993); Shepard (1996); Gouriéroux (1997).
88see e.g. Bollerslev et al. (1992) and Bera & Higgins (1993).
89see e.g. Gouriéroux (1997) and Mikosch (2003a).
90see de Haan, Resnick, Rootzen & de Vries (1989).
91see e.g. Pagan96.
92see Stǎricǎ & Pictet (1997).
93see e.g. Mikosch (2003a) and Mikosch (2003b).
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to one in financial data.

Engle & Bollerslev (1986) define a GARCH process as Integrated in Variance (IGARCH),

if α(L) + β(L) = 1. Such a specification implies Persistence in Variance defined as94

lim sup
t→∞

|E(r2t |r0, r−1, . . .)−E(r2t |r1, r0, . . .)| > 0 a.s. (3.21)

such that shocks to the conditional variance persist indefinitely, which stands in con-

trast to their exponential decay in the conventional GARCH model. The IGARCH

model has a strictly stationary solution, but implies infinite variance, which makes

the use of the sample autocorellation function for parameter estimation impossible95.

Furthermore, as has been discussed already in sections 2.4 and 3.2.1, models implying

infinite variance of returns may be safely ruled out based upon tail index values, which

for financial returns have been found to be significantly larger than two.

Both conventional GARCH and IGARCH models may be written as ARMA processes

in r2t :
96

{1− α(L)− β(L)}r2t = α0 + {1− β(L)}νt (3.22)

with νt = r
2
t − σ2t denoting shocks in the conditional variance process. The polynomial

{1− α(L)− β(L)} has zeros outside the unit circle, unless it is integrated in variance,
in which case it contains a unit root. This implies that the IGARCH may equivalently

be written as

φ(L)(1− L)r2t = α0 + {1− β(L)}νt (3.23)

with zeros of the polynomial φ(L) = {1−α(L)−β(L)}(1−L)−1 outside the unit circle.

Baillie et al. (1996) introduce the class of Fractionally Integrated Generalized Au-

toRegressive Conditionally Heteroskedasticity (FIGARCH) models as an intermediate

model between conventional GARCH and IGARCH by replacing the first difference

operator (1−L) in (3.23) with the fractional differencing operator (1−L)d defined as

(1− L)d ≡ {1− dL+ d(d− 1)L
2

2!
− d(d− 1)(d− 2)L

3

3!
+ · · · }, d ∈ [0, 1] (3.24)

94see Bollerslev & Engle (1993).
95see Mikosch (2003a).
96see e.g. Baillie (1996) and Baillie, Bollerslev & Mikkelsen (1996).
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arriving at the following definition of FIGARCH:

φ(L)(1− L)dr2t = α0 + {1− β(L)}νt, νt = r
2
t − σ2t (3.25)

with α0 > 0 and zeros of both φ(L) = {1 − α(L) − β(L)}(1 − L)−1 and 1 − β(L)

outside the unit circle. The aim of this model is to replace the exponential decay in

the autocorrelation function of conventional GARCH models with hyperbolic decay as

empirically oberved in financial markets97.

The practical relevance of FIGARCH for financial modelling is however still unclear,

as the model has been aspersed for not being properly specified98. A possible cor-

rection has been suggested by Chung (1999). Baillie et al. (1996) claim furthermore

that returns following a FIGARCH process have infinite variance and can thus not be

covariance stationary. This would however invalidate classical estimation and inference

techniques for the same reasons as for the IGARCH model99.

Similarly, Ding & Granger (1996) aim to introduce long memory into GARCH by

modelling the conditional variance as a weighted sum of infinitely many GARCH type

variances, which they call Long Memory (LM) ARCH. The authors claim a hyper-

bolic decline of the autocorrelation function, provided that the returns have a finite

4th moment. This statement has however been disproved by Giraitis, Kokoszka &

Leipus (2000) for parameter values ensuring stationarity of the model, while for other

parameter values it is not yet known whether LM-ARCH has a stationary solution at

all100.

Other recent attempts to include long memory into the GARCH framework include

Maheu (2005) and Zumbach (2004). Overall it appears from the discussion above

that the GARCH subclass of stochastic volatility models might be less well suited for

modeling the stylized facts of financial returns, than what their popularity suggests.

97see section 2.6.
98see e.g. Chung (1999) and Mikosch (2003a).
99see Mikosch (2003a).
100see Mikosch (2003a).
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3.4 Multifractal Models

Mandelbrot et al. (1997) and Calvet & Fisher (2002) define the Multifractal Model

of Asset Returns (MMAR) as Brownian motion subordinated to multifractal trading

time. That is, they define the log-price process

X(t) ≡ lnP (t)− lnP (0) = rt(0) (3.26)

on a bounded interval [0, T ] and call it MMAR if it adheres to the following assump-

tions101:

1. X(t) is a compound process

X(t) ≡ B[θ(t)],
where B(t) is a Brownian motion, and θ(t) is a stochastic trading time.

2. The trading time θ(t) is a multifractal process102 with continuous, non-decreasing

paths, and stationary increments.

3. The processes {B(t)} and {θ(t)} are independent.

Calvet & Fisher (2002) show that if the log-price process X(t) is MMAR, then it is

itself multifractal as defined in (2.28). Furthermore it is a martingale, which implies

that the discounted price process is arbitrage-free103.

Multifractality of the trading time θ(t) is achieved in an iterative process called Mul-

tiplicative Cascade. The cascade subdivides the interval upon which the multifractal

is defined, into smaller and smaller subintervals according to a predefined algorithm,

while at the same time distributing probability mass between these subintervals accord-

ing to another predefined algorithm. The fraction of probability mass in a subinterval

101Both studies contain also a more general definition of MMAR as fractional Brownian motion
subordinated to multifractal trading time. The limitation to subordinated Brownian motion appears
however justified in our context, given the (approximate) martingale property of equity returns (see
sections 2.2 and 3.1) and its consistency with arbitrage-free pricing (see section 3.2.3).
102see definition (2.28) in section 2.7.
103see section 3.2.3.
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at iteration k compared to its motherinterval at iteration k − 1 is called Multiplier,
resulting in a product of k multipliers for the probability mass in each subinterval,

hence the name “Multiplicative Cascade”.104

The MMAR has finite variance and may or may not have finite higher moments, de-

pending upon the scaling function τ of the multifractal trading time. Despite its finite

variance, it cannot have long memory in the sense defined in section 2.6, since it is only

defined on a bounded interval. However, its autocovariance in levels, defined as

Cq(t) ≡ Cov(|r∆t(t0 + t)|q, |r∆t(t0)|q) (3.27)

decays hyperbolically in t when t/∆t → ∞, a property denoted as Long Memory in
the Size of Increments. As this is observationally equivalent to long range dependence

of |r∆t|q as defined in section 2.6, the MMAR appears to be the first model for an

arbitrage-free price process, which is consistent with both fat tails, multiscaling, and

long memory. Furhtermore, it is scale consistent, that is, in accordance with empirical

observations, it describes volatility clustering irrespective of the time scale considered.

This property stands in contrast to e.g. GARCH models, which are not closed under

temporal aggregation and approach white noise in the limit of infinitely long observa-

tion intervals105.

However, the construction of the MMAR on bounded (though arbitrarily large) in-

tervals implies that price processes defined on an infinite length of time can obey the

MMAR only for bounded ranges of time, beyond which they will contain crossovers,

that is transitions in their scaling properties. Furthermore, the combinatorial con-

struction of multifractal behaviour is somewhat at odds with the notion of a causal

evolvement of prices through time.

This potential drawback is however overcome by its equivalent formulation as a sto-

chastic volatility model106 with the multipliers interpreted as renewing factors in a so

called Information Cascade107. Müller et al. (1997) show for various exchange rates

104For an introduction into the construction of multifractal measures, see e.g. Evertsz & Mandelbrot
(1992).
105see Diebold (1988), Drost & Nijman (1993), and the discussion in Mandelbrot et al. (1997).
106see sections 3.2.3, 3.3.1 and the discussion in Muzy, Delour & Bacry (2000).
107The term has been invented by Ghashghaie et al. (1996) as an anology to the Kolmogorov energy
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that volatility defined on coarser time scales Granger-causes volatility defined on finer

time scales, but not the other way round from fine scaled to longer term volatility. They

interpret this as evidence for dissipation of information from long-term to short-term

investors through prices. Such a view is confirmed for stock market data by Arnéodo,

Muzy & Sornette (1998), who use wavelet analysis to show that coarse-grained volatil-

ity predicts fine-scaled volatility of S&P500 index returns, in accordance with the

information cascade hypothesis by Ghashghaie et al. (1996) and Müller et al. (1997).

Muzy et al. (2000) provide an example of a multifractal stochastic volatility model

based upon the Multifractal Random Walk (MRW) introduced by Bacry, Delour &

Muzy (2001) and recently generalized by Bacry & Muzy (2003). The MRW generates

multifractal behaviour of stock prices within a bounded time interval T by imposing a

corresponding correlation structure upon the lognormally distributed stochastic volatil-

ities, while for time scales ( T the process converges to geometric Brownian motion.

Such a model is consistent with the interpretation of T being the information horizon

of the longest term investors in the market.

Breymann, Ghashghaie & Talkner (2000) provide the first model, which gives an ex-

plicit expression for the k’th Renewal Probabilities a
(k)
t in the stochastic volatility model

(3.16) with108

σt = σ0

m�
k=1

a
(k)
t , (3.28)

thereby allowing for simulations of multifractal processes with explicit reference to

the past only, which stands in contrast to the combinatorial construction originally

advocated in Mandelbrot et al. (1997).

However, both in the combinatorial and in the stochastic volatility framework, the

multipliers or renewal probabilities get updated at fixed points in time, thereby contra-

dicting the notion of randomly arriving information. Calvet & Fisher (2001) randomize

this deterministic scheme by assuming an exponential waiting time for the updating of

cascade in thermodynamics, which describes the dissipation of energy injections into turbulent flows
from larger to smaller scales.
108σt denotes the volatility at the shortest time horizon after m renewals of the renewal probabilities

a
(k)
t at different cascade levels k = 1, . . . ,m, and σ0 denotes the constant volatility at time scales
beyond the largest horizon at the top of the cascade.
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multipliers in the combinatorial framework, which may then be interpreted as a latent

state vector in a Markovian stochastic volatility process. Such Markovian chains allow

for volatility forecasting by Bayesian updating. The Markov-Switching Multifractal in-

troduced by Calvet & Fisher (2003) allows even for maximum likelihood estimation by

interpreting the multipliers in the combinatorial framework as latent volatility state

variables in a regime-switching model with identical marginal distribution, but different

transition probabilities for each factor.
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4 Behavioral Explanations

4.1 Efficient Markets versus Endogeneous Market Dynamics

The efficient market hypothesis (EMH) asserts that the prices of financial assets im-

mediately reflect all publicly available information. It is generally credited to Fama

(1965, 1970), but has been mentioned at least as early as 1889 in a book by George

Gibson. Formally, it is an application of Muth’s earlier mentioned rational expecta-

tion hypothesis, which due to the homogeneous expectations of investors results in the

so-called rational valuation formula

pt =
∞3
i=1

δiE[dt+i|It], (4.1)

where pt denotes the stock price at time t, dt+i is the dividend to be paid in period t+i,

and δ < 1 is a discount factor. The essentail point is, that the probability measure

used in the expectation operator E conditional on the information It available at time

t, is the same for all investors and coincides with the true probability measure of prices.

One may therefore think of (4.1) as linking financial asset prices with the expectations

of a single representative agent. The rational valuation formula leads trivially to the

martingale property of cum dividend discounted stock prices, which explains much of

the popularity of the EMH in the 70th and early 80th.

A central weakness of the EMH is however the lack of any explanation how the price pt

in (4.1) is actually generated by demand and supply, as the immediate incorporation of

all value relevant information explicitely excludes any finite price adjustment process.

It has even been shown that in a market where all agents are rational and this is

commonly known there will be no trade, no matter whether there are information

costs involved or not109. Trade is however arguably a central feature of any financial

market which no model of it should easily dismiss. For example Farmer (2002) notes

that trading volume in the foreign exchange markets is at least 50 times larger than

world GNP.

109see e.g. Rubinstein (1975); Grossman & Stiglitz (1980); Hakansson, Kunkel & Ohleson (1982);
Milgrom & Stokey (1982); Geanakoplos (1992).
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Lux & Ausloos (2002) note that validity of (4.1) would imply similiar statistical prop-

erties of the news arrival process as compared to those of financial returns themselves.

This hypothesis appears hardly testable, given the vast ocean of information which

might be possibly valuation relevant, but at least there appears to be no evidence of

news arriving for example in clusters of high and low volatility.

On the contrary, a number of studies show that the link between publicly available

information and financial returns may be weaker than what the EMH suggests. For

example, Niederhoffer (1971) investigate 432 significant world event days in the period

1950—66 and find them to be only slightly more likely to show large price movements

than other days. Cutler, Poterba & Summers (1989) select 49 major news events in the

period 1941—87 and find only a marginal increase in both absolute returns and daily

volatility compared to other days. When listing the 50 largest price changes of the S&P

500 stock index they find rarely important news associated with them. Regressions of

stock returns upon macroeconomic factors confirm the findings by Fama (1981) and

Roll (1988) that it is difficult to account for more than one third of the monthly

variation in stock returns on the basis of systematic economic influences.

The key assumption leading to market efficiency is that intense competition between

market participants will eliminate irrational speculators and has been mentioned alredy

by Kaldor (1939). The logic is neatly summarized in Cootner:

If any group of investors was consistently better than average in forecasting

stock prices, they would accumulate wealth and give their forecasts greater

and greater weight. In the process they would bring the present price closer

to the true value. Conversely, investors who were worse than average in

forecasting ability would carry less and less weight. If this process worked

well enough, the present price would reflect the best information about the

future in the sense that the present price, plus normal profits, would be the

best estimate of the future price. (Cootner 1964: page 80.)

The theoretical argument for this is given by Friedman, who claims that destabilizing
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speculation (trades which move prices away from fundamental value) is on average

accompanied by a loss:

I am very dubious that in fact speculation in foreign exchange markets

would be destabilizing... People who argue that speculation is generally

destabilizing seldom realize that this is largely equivalent to saying that

speculators lose money, since speculation can be destabilizing in general

only if speculators on the average sell when the currency is low in price and

buy when it is high. (Friedman 1953: page 175.)

The popularity of the EMH over several decades documents the strong intuitive appeal

of Friedmans hypothesis, as it was widely accepted even though the first counterex-

ample of profitable destabilizing speculation was presented just a few years later by

Baumol (1957). Just when the EMH became the main paradigm due to the work of

Fama (1965, 1970), Schimmler (1973) showed building on the work of Farrel (1966) that

Friedmans hypothesis holds only for the special case when non-speculative demand is

a linear function of current mispricing alone. That is, speculation may in general very

well drive prices away from fundamental value and yet be profitable. Informationally

efficient markets would therefore require price stabilizing arbitrage to be generally more

profitable than destabilizing speculation.

A number of studies point however at the limits of arbitrage due to their riskiness

and capital constraints of the arbitrageur. For example DeLong, Shleifer, Summers &

Waldman (1990) present a model with a risky and a riskless asset in which uncertainty

about future opinions of noise traders limits readiness of rational traders to arbitrage

and creates “noise trader risk” which drives the price of the risky asset down, and thus

its expected return up. If noise traders are bullish on average, they are ready to hold

more of the risky asset and earn thus higher returns than the rational arbitrageur. Risk

aversion may therefore prevent rational traders from taking over the price dynamics in

this model. Further studies which demonstrate and discuss the limits of arbitrage in-

clude Russel & Thaler (1985); Black (1986); LeRoy (1989); Shleifer & Summers (1990);

Shleifer & Vishny (1997) and Thaler (1999). This opens up the possibility of financial
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markets dominated by short term rather than long term investors, a point which has

been made much earlier by Keynes:

It might have been supposed that competition between expert profession-

als, possessing judgement and knowledge beyond that of the average private

investor, would correct the vagaries of the ignorant individual left to him-

self. It happens, however, that the energies and skill of the professional

investor and speculator are mainly occupied otherwise. For most of these

persons are, in fact, largely concerned, not with making superior long-term

forecasts for the probable yield of an investment over its whole life, but

with foreseeing changes in the conventional basis of valuation a short time

ahead of the general public. (Keynes 1936: page 154.)

Even when arbitrageurs dominate the market, they are more likely to adapt a set

of simple strategies than to agree on true values of investments or true probability

distributions of stock prices. This point was made already by Alchian (1950) who

stresses the importance of positive ex-post profits in contrast to rationally maximized

ex-ante profits in the evolutionary struggle for survival. Contrary to the EMH, full

knowledge of the economy is not necessary to survive, as

positive profits accrue to those who are better than their actual competitors,

even if the participants are ignorant, intelligent, skilful, etc. The crucial

element is one’s aggregate position relative to actual competitors, not some

hypothetically perfect competitors. (Alchian 1950: page 213.)

Uncertainty created by a highly complex environment favors then adaptive, simple

rules of thumb rather than rationally maximizing behaviour (Alchian 1950: p. 218).

The latter point was extensively elaborated by Simon (1957), who showed that decision

makers in a variety of context act what he termed “boundedly rational” in the sense

that they systematically restrict the use and acquisition of information compared to

that potentially available.



ACTA WASAENSIA 65

Their view was supported by evidence from psychology laboratory experiments such

as Kahneman & Tversky (1973) and Tversky & Kahneman (1974, 1981) showing that

human beings do not behave rational under uncertainty but use simple heuristics which

may lead to significant biases even in simple decision problems110. A possible reason

for this has been worked out by Heiner (1983), who establishes formally in a general

evolutionary context, that awareness to a specific kind of information will not be bene-

ficial for survival unless its reliability exceeds a given threshold. Increasing complexity

of the environment diminishes in general the reliability of most specific pieces of infor-

mation and reduces thus the flexibility of the evolutionary surviving agents, as they

take less information into account than they potentially could. All this points towards

an ecology of agents with simple heuristic strategies rather than a single representa-

tive agent with unlimited capacity to immediately assess all relevant publicly available

information in a correct way.

Proponents of the EMH such as Lucas (1986) and Rubinstein (2001) have frequently

defended their position by claiming that while all investors need not be rational, prices

were still set as if all investors had rational expectations:

Each investor, using the market to serve his or her own self-interest, un-

wittingly makes prices reflect that investor’s information and analysis. It is

as if the market were a huge, relatively low-cost continuous polling mecha-

nism that records the updated votes of millions of investors in continuously

changing prices. In light of this mechanism, for a single investor (in the ab-

sence of inside information) to believe that prices are significantly in error

is almost always folly. (Rubinstein 2001: page 19.)

Despite its intuitive appeal, for a proper evaluation of such arguments it appears nec-

essary to take the diversity of traders expectations and investment strategies explicitly

into account. Kirman (1992) writes about this topic:

110see also the discussions in Simon (1979); Arrow (1982); Kahneman (2003). For evidence of non
rational behaviour in experimental asset markets see e.g. Smith, Suchanek & Williams (1988) and
Sunder (1995).
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The “representative” is used to provide the stability and uniqueness of

equilibria which are not guaranteed by the underlying model. This applies

to the standard suggestions that well-informed individuals are constantly

doing the necessary arbitrage to bring the economy back to its equilibrium.

If this is the case, individuals must differ, at least in their information.

Once this is so, one has again to prove that the arbitrage activity will lead

back to equilibrium. As Stiglitz (1989) points out, simply to assume this is

wholly unwarranted. (Kirman 1992: page 120.)

As pointed out by Arthur (1995), allowing for heterogenous expectations necessarily

implies that traders form their expectations by inductive reasoning, since rational de-

duction of their expectations would lead them into an infinite loop of forming unbiased

predictions of all other agents expectations in the spirit of Keynes “beauty contest”.

While models of learning may in certain situations converge to rational expectations

equilibriua111, they require a reward for correct forecasts and structural stability of the

learning environment. Given the discussion above, whether those assumptions apply

to real financial markets for assets with intrinsic values depending upon dividends in

the unknown future of a constantly changing environment, remains an open issue.

In reality we know that people engage into all sorts of trading strategies and that the

diversity of opinions regarding investment opportunities is in general large rather than

small.112 It appears then that the representative agent limits rather than enhances

our understanding of financial markets, as it by definition eliminates all interaction, in

particular trade, between market participants. The shortcomings of the representative

agent approach are extensively discussed e.g. in Kirman (1992) and Ramsey (1996),

who both stress that in general one may neither expect a functional nor a parametric

relationship between aggregate behavior and that of the individual agents making up

the aggregate, simply because the description of individuals does not take their inter-

action into account. Ramsey (1996) argues therefore for a mass-statistical description

of the economy, where macrovariables at the aggregate level are defined in terms of

111see e.g. Evans & Honkapohja (2001).
112refer for example to the large trading volume in financial markets or survey studies among financial
specialists such as Allen & Taylor (1990); Frankel & Froot (1987a,b, 1990a,b); Taylor & Allen (1992);
Lui & Mole (1998); Menkhoff (1998) and Cheung, Chinn & Marsh (2000).
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self-contained differential equations, which define “laws of motion” for the economy as

a whole. These are obtained as approximations from a probabilistic description of the

economy in terms of the so called master equation

∂ P (y, t)

∂t
=

8
[W (y|y I)P (y I, t)−W (y I|y)P (y, t)] dy I, (4.2)

where yt is a Markov process describing the evolution of the relevant macro variable

(e.g. the price of a financial asset) in time, P (y, t) is the corresponding time varying

probability function for some sub-process initiated at time t0 at initial condition y0, and

W (y I|y) is the per unit time transition probability function from state y to state y I.

The Master equation is a “gain-loss” equation in which the change in the probability

distribution for yt depends on the transitions of states into y less the transitions out of

state y, each being weighted by the current probability of being in the relevant state.

Interactions at the micro level between individual agents have to be subsumed into the

transition ratesW which, in contrast to the representative agent approach, provide the

core of the dynamics in the macro variabel yt.

The master equation approach has originally been developed as a device in statisti-

cal physics to derive the properties of physico-chemical multi-coponent systems on the

macroscopic level from their constituent components on the elementary microscopic

level. In general, the interaction between microscopic units leads to “emergent” prop-

erties of the macroscopic system in the sense that the properties of the aggregate system

are fundamentally different from those of its constituents. For example, the classical

mechanics law of motion of a particle are all time reversible, whereas the macro re-

lationships derived from them, such as the heat exchange between a hot and a cold

body, are not. Similar situations in which a system composed of many parts or indi-

viduals acquires a new structure on a macroscopic scale, occur also in other fields of

the natural sciences such as chemistry and biology. This led to the introduction of a

new interdisciplinary branch of science called “synergetics”, defined as the science of

collective phenomena in systems with “cooperative” interactions occuring between the

units of the system113.

The field of synergetics has been extended to the social sciences by Weidlich & Haag

113see e.g. Haken (1983).
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(1983)114 motivated from the observation that due to the approximation schemes in-

volved in the master equation approach and the related mean field theory, a proba-

bilistic description of the motion of macrovariables proved to be applicable even when

the details of the microfluctuations of the system are unknown.115 Just like physico-

chemical systems are composed of a large number of particles, each of them existing in

one of several possible states, a society may be regarded as being composed of a large

number of members, who individually adopt different attitudes or “states” of behav-

iour. Therefore a probabilistic description of decision processes in a society might also

prove to be adequate, where the change in attitude of its members are subsumed in

corresponding transition probabilities of the macro variables.

This provides an avenue to approach the statistical properties of financial time series

as the result of an endogeneous dynamics originating from the interaction of individual

traders (denoted as Interacting Agent Hypothesis in Lux & Marchesi (1999)) rather

than to postulate their existence already in the unobservable news arrival process as in

the representative agent approach of the efficient market framework. Support for this

view is given by the fact that statistical properties of stock returns such as absence of

serial correlations, heavy tails with power law decay, volatility clustering, long memory,

multiscaling, and a positive corellation between trading volume and return variance

are common to returns of every actively traded financial asset. This is why they

have become known as so called Stylized Facts, which every viable statistical model of

asset returns should be able to generate116. As noted in Lux & Ausloos (2002), the

interacting agent hypothesis would allow to explain this perplexing similarity of the

statistical characteristics of very different markets by the similiarity of the behaviour

of traders, reminiscent of the occurrence of universal scaling laws in many-particle

systems independent of the microscopic details of the system.117

114see also Weidlich (1991, 2002).
115see Ma (1976) for an introduction to mean field theory and its use in explaining universal scaling.
116see e.g. Pagan (1996); Cont (2001) and Lux & Ausloos (2002). The term itself is due to Kaldor
(1961).
117see e.g. Ma (1976) for an introduction to universal scaling laws in thermodynamics, and Stanley
et al. (1996) for a discussion of their possible connections with economics.
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4.2 Dynamic Models of Fundamentalist Chartist Interaction
and Mimetic Contagion

Survey data on exchange rate expectations of professional traders shows consistently

that financial specialists regard charts of past prices as an important source of infor-

mation beyond the analalysis of economic fundamentals, in particular at short horizons

118. This is even true when traders regard themselves as fundamental investors, as is

evident from the following quotation of a respondant in Taylor & Allen (1992):

Knowledge of chart signals is essential to all operators as they have a bearing

on the action of many market participants . . . This holds true both for

operators who place high priority on technical analysis and for others–like

ourselves–who prefer a more fundamental approach.

(Taylor & Allen 1992: page 311.)

The latter statement highlights that technical analysis or chartism, that is the search

for patterns in the time series of historical prices in order to generate a price forecast,

is intimately connected with herding, that is the imitation of other investors trades

regardless of ones own beliefs and information. Reasons for mimetic contagion among

asset managers include, among others, the desire to infer information from other in-

vestors trades (information based herding), the desire of managers to show quality in

particular in the context of short mandates and frequent performance checks–often

on peer group benchmarkts or capitalization weighted indices (reputation-based and

compensation-based herding), and dynamic hedging in so-called contingent immuniza-

tion or portfolio insurance strategies, which manage portfolios containing risky assets

based upon their recent performance119.

118see the survey studies cited in footnote 112 on page 66. Evidence for profitability of technical
trading is provided e.g. in Brock, Lakonishok & LeBaron (1992); Jegadeesh & Titman (1993); Chan
et al. (1996); Caginalp & Laurent (1998) and Hogan et al. (2004). Critical discussions regarding
out-of-sample performance can be found in Sullivan et al. (1998, 1999) and Schwert (2003).
119see e.g. Bikhchandani & Sharma (2001); Davis (2003) and Hirshleifer & Teoh (2003) for literature
overviews, and Caparrelli, D’Arcangelis & Cassuto (2004); Hwang & Salmon (2004); Sias (2004);
Walter & Weber (2006) for recent evidence.
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In the following we shall take a brief look at some microscopic mdels of heterogenous

interacting agents, which bear some relation to the model to be developed in section

5, in that they aim to explain the statistical properties of financial time series from

some kind of fundamentalist chartist interation or mimetic contagion, and that at least

some qualitative results can be deduced by means of analytical methods. This is only a

small subset of the literature on the dynamically evolving field of heterogenoeus agent

models, which has already grown too large to be comprehensively reviewed here. For

more extensive reviews on such models refer to Tesfatsion & Judd (2006), in particular

chapters 8 and 9.

4.2.1 Fundamentalist Chartist Interaction

The first quantitative model of fundamentalist chartist interaction is due to Zeeman

(1974) in an effort to model bubbles and crashes in a stock market. Zeeman describes

the stock market in terms of a stock index and the excess demand for stocks by fun-

damentalist and chartists. He shows that purely qualitative assumptions about the

interplay of these three variables suffice to explain cycles of bull and bear markets or

market crashes depending upon the proportion of the market held by chartists. The

basic mechanism for generating such dynamic behaviour of the stock market is the

same as in nowadays’ models: A stochastic disturbance of the equilibrium price gener-

ates self-accelerating excess demand by chartists, until the price is sufficiently far away

from equilibrium to be corrected by fundamentalists.

Beja & Goldman (1980) provide the first explicit formalization of trading demand by

chartist and fundamentalists and show that a large excess demand by chartists relative

to fundamentalists may destabilize an otherwise stable price equilibrium. The excess

demand Df
t by fundamentalists is formalized as

Df
t = a(pf (t)− p(t)), a > 0, (4.3)

where pf (t) and p(t) denote the exogenously generated fundamental price and the

endogeneously determined trading price, respectively, and the coefficient a measures

the relative impact of fundamental demand upon price movements.
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Chartists use a technical indicator of the prevailing price trend ψ(t), which they com-

pare to the exogenously given return on an alternative security g(t). Their excess

demand Dc
t is assumed to depend linearly on the return differential between both se-

curities, that is,

Dc
t = b(ψ(t)− g(t)), b > 0, (4.4)

where the coefficient b measures the relative impact of chartist demand upon price

movements. The trend estimator ψ is adaptively adjusted to the real price trend

according to the differential equation

ψ̇(t) = c[ṗ(t)− ψ(t)], c > 0, (4.5)

where the dots denote derivates with respect to time and c is the adaption speed.

In an equilibrium setting with equal demand and supply of shares the trading demands

by chartists and fundamentalists would have to add up to zero. But Beja & Goldman

allow explicitly for disequilibrium trading by assuming a finite adjustment speed of the

trading price in the direction of net asset demand

ṗ(t) ∝ Df
t +D

c
t , (4.6)

such that

ṗ(t) = a(pf (t)− p(t)) + b(ψ(t)− g(t)) + e(t), (4.7)

where the speed of price adjustment has been absorbed into the parameters a and b and

e(t) denotes an additional noise term. It is then shown that the system of differential

equations consisting of (4.5) and (4.7) is stable with p converging to pf if and only if

a > c(b− 1) (4.8)

and becomes unstable with exploding price oscillations otherwise. That is, a large

impact of fundamental demand a acts in a stabilizing manner, whereas both a large

impact of chartist demand b and a high price trend adaption speed c of the speculators

tends to destabilize the market. Chiarella (1992) povides a nonlinear generalization

of the chartist excess demand Dc
t , for which the exploding price oscillations in Beja &

Goldman in the unstable case are replaced by a stable limit cycle along which prices

fluctuate without ever converging to fundamental value.
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Sethi (1996) extends that model further by introducing information costs for funda-

mentalists and explicitely considering the fluctuations in wealth and inventories of the

two trader types. While chartists would loose their money to fundamentalists under

absence of information costs, this is no longer the case when information about fun-

damentals is costly to obtain. The relative profitability of the two trading strategies

depends then upon whether the market is within the stable or the oscillatory regime.

In the oscillatory regime with large deviations between market and fundamental price

the fundamentalist approach remains the more profitable investment style, whereas

in the stable regime with prices near fundamental value profits are not sufficient to

cover their information costs and chartism becomes more profitable. Chartists and

fundamentalists entertain a symbiotic relationship in the sense that increasing wealth

of chartists pushes the market into the oscillatory regime which fundamentalsits need

in order to make their profits by driving the market back into the stable regime. As a

result, the market alternates continously between periods of stability and instability.

This is similiar to the exchange rate model by DeGrauwe, Dewachter & Embrechts

(1993), in which endogenously changing weigths of chartists and fundamentalists may

generate periodic and even chaotic fluctuations of the exchange rate. Like in Sethi, the

fraction of chartists increases endogenously with the mispricing of the foreign currency.

This is however not motivated by wealth shares as in Sethi, but with offsetting trades

of fundamentalists near the fundamental equilibrium exchange rate.

Chaotic price fluctuations are also generated in a non-linear variant of the Beja & Gold-

man model in discrete time by Day & Huang (1990). They provide also a justification

of the price adjustment rule (4.6) in terms of a market maker. The market maker

supplies stocks out of his inventory and raises the price if there is excess demand, while

he accumulates stock to his inventory and lowers the price when there is excess supply.

Even though Day & Huang do not explicitely model the market makers inventory, they

do stress the importance of keeping the latter in balance in order to ensure successful

operation of the market pricing mechanism.

Farmer (2002) and Farmer & Joshi (2002) provide the following derivation of an ap-

proximately linear relationship between asset returns and net asset demand Dt from
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all traders, which they call the market impact function. Farmer & Joshi assume that

the relative increase of the price p from period t to period t+1 is an increasing function

φ of current demand alone:

pt+1/pt = φ(Dt) with φI > 0, φ(0) = 1. (4.9)

Taking logarithms and expanding in a Taylor series yields

ln(pt+1)− ln(pt) ≈ Dt/λ, (4.10)

where λ := 1/φI(0) measures the market depth or liquidity. Note that (4.10) is the

discrete time analogue to the price adjustment mechanism (4.6) by Beja & Goldman,

except that it holds for logarithmic rather than raw price changes. However, Farmer &

Joshi point also at the following weakness of demand functions such as (4.3) in Beja &

Goldman. If traders continously issue new trades as long as a mispricing exists, they

are at risk of building up unbounded inventories, because in general their position is

not forced to go to zero, even when mispricing goes to zero. The notion of traders

having a non-zero or even unbounded exposure to market risk when they believe the

market is fair priced, is however both counterintuitive and unacceptable from a risk

management point of view.

Brock & Hommes (1998) introduce Adaptive Belief Systems as a mechanism of en-

dogenous predictor choice in a market with heterogeneous expectations, which does

not depend on disequilibrium trading with prices set by a market maker. Instead they

assume that each investor type h is a myopic mean variance maximizer, such that her

demand for shares zht is given by

zht =
Eht(pt+1 + dt+1 − (1 + r)pt)
γVht(pt+1 + dt+1 − (1 + r)pt) , (4.11)

where pt+1 and dt+1 denote the stochastic price and dividend of the next period, r

and pt are the risk free rate and the current price, γ is a risk aversion parameter,

and Eht and Vht denote the subjective beliefs of investor type h about the conditional

expectation and conditional variance using her indiviudal information set at time t.

Note that zht, in contrast to the demand functions Dt in Beja & Goldman and Farmer

& Joshi above, denotes target holdings rather than trading demand, as it is derived

from maximization of absolute utility. This will coincide with trading demand only if

the trader has no prior position.
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Summation over all trader types yields for the aggregate market demand zt

zt =
H3
h=1

nht
Eht(pt+1 + dt+1 − (1 + r)pt)
γVht(pt+1 + dt+1 − (1 + r)pt) , (4.12)

where nht denotes the fraction of agents using predictor h andH is the number of trader

types. Each predictor gets assigned a fitness function Uht, which is a performance

measure of past realized profits from using predictor h. Brock & Hommes introduce an

endogenous selection mechanism of forecasting rules by updating the fractions of type

h agents nht using the multinomial logit model of discrete choice
120

nht = exp(βUht)/Zt, (4.13)

where β is the intensity of choice measuring how fast agents switch between different

prediction strategies, and Zt is a normalization factor. Brock & Hommes provide several

examples in which rational traders fail to drive noise traders out of the market, even

when there are no information costs for fundamentalists. Chiarella, Dieci & He (2001)

and Gaunersdorfer (2001) present adaptive belief systems in which switching between

multiple price equilibria leads to leptokurtic price series with volatility clustering. The

latter is extended in Gaunersdorfer & Hommes (2007) to produce also long memory in

volatility.

Chiarella, Dieci & He (2003) allow for disequilibrium trading by introducing a market

maker, who adjusts the trading price proportional to the aggregate market demand in

(4.12) according to

pt+1 = pt + μzt, (4.14)

where μ denotes the speed of price adjustment. Chiarella et al. do not model the

market makers’ inventories, but given that their price adjustment is proportional to

target holdings rather than trading demand as generated from the adjustment of such

holdings, it is to be expected that the criticism by Farmer & Joshi (2002) applies to

their model as well. In a later paper (Chiarella, Dieci & He 2006), they extend their

model to the case of two risky assets. The focus in both papers is on establishing some

necessary and/or sufficient conditions for the stability of the “fundamental” equilibrium

120see Manski & McFadden (1981) for an extensive overview of discrete choice models and Brock
& Hommes (1997) for a motivation of discrete choice models as endogemous coupling mechanisms
between market equilibrium dynamics and predictor selection.
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rather than generating time series properties in accordance with the stylized facts of

financial returns.

Westerhoff (2004) presents the only study of a multiasset market I am aware of, which

produces return series in accordance with the main stylized facts, uncorrelated returns

with volatility clustering, fat tails of the return distribution with power law scaling,

and long memory in volatility. He assigns a fitness function to each traded asset, that

measures the attractiveness for chartists to trade in that asset, in a similar spirit as the

chartist weight was determined in the exchange rate model by DeGrauwe et al. (1993).

The further the asset price deviates from its intrinsic value, the less attractive trading

in that asset becomes to the chartist, as the risk of being caught in a bursting bubble

increases. Westerhoff uses a discrete-choice model of the form (4.13) to determine

endogenously the weights of chartists in trading the different assets in the market. He

does not discuss correlation between asset returns, but shows that dispersion between

prices of assets with identical intrinsic value decreases, when traders condition on the

same information. Westerhoff applies the market maker approach using the loglinear

price impact function (4.10) of Farmer & Joshi (2002) in an order-based setup of the

same spirit as Beja & Goldman (1980), without modelling market makers’ inventories.

That is, traders issue continuously new orders as long as their target price is not

reached.

4.2.2 Mimetic Contagion

The first formal model of herding in economics which I am aware of has been pre-

sented by Föllmer (1974), who uses the Ising model from statistical physics in order

to describe the choice of agents between two commodities. The Ising model explains

so called critical phenomena or phase transitions–sudden changes of macroscopic sys-

tems as the result of arbitrary small changes in a thermodynamic variable–in terms

of the energy difference between identical and opposing states of neighbouring micro-

scopic units placed upon a lattice. Examples of critical phenomena include spontaneous

magnetization and transitions between the solid, liquid, and gaseous phases or their

coexistence as a function of temperature. Föllmer identifies the two possible states of
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the microscopic units with a preference of economic agents for either the first or the

second good in an exchange economy, and the energy difference with their propensity

to go with or against the trend as reflected in the states of their neighbours. Critical

phenomena reappear then as the breakdown of price equilibria for strong and complex

enough interaction between the economic agents. Furthermore, information about the

microscopic states may not be suffiecient to determine the macroeconomic phase, that

is the probability laws of individual agents may in general differ from the global prob-

ability law governing the joint behaviour of all economic agents.121

Similiar lattice based models have been employed e.g. by Cont & Bouchaud (2000) and

Iori (2002) in order to explain some of the statistical properties of financial returns.

Both consider three-state models, in which agents may either buy, sell or choose not

to trade. Denoting the demand of agent i out of N agents with φi ∈ {−1, 0,+1} for
sell/inactive/buy, applicaton of the log-linear price impact function (4.10) yields for

the logreturn r(t)

r(t) =
1

λ

N3
i=1

φi(t), (4.15)

where λ is a measure of liquidity, as before. Cont & Bouchaud (2000) consider the

bond percolation model122, in which bonds between nearest neighbours are occupied

with probability p. This model is characterized by a percolation threshold pc, such

that for p < pc the system decomposes into disconnected clusters of the same state,

whereas for p > pc an infinite cluster occurs. It is known that the number of clusters

ns containing s units decreases near the percolation threshold p = pc as a power-law:

ns ∝ s−τ , (4.16)

with an exponent τ between 2 and 2.5 depending upon the dimensions of the lattice.

Interpreting the units as traders and keeping in mind that the sum of identically behav-

ing agents in (4.15) is just the sum of the corresponding clusters times their respective

size s, yields for the market return a power law with exponent −(τ − 1). While such
an exponent appears somewhat too low to be consistent with real financial market

returns, Sornette, Stauffer & Takayasu (2002) discuss several extensions of the basic

model, which bring its value closer to the commonly observed tail index α ≈ 3.
121see the discussion of the representative agent approach in section 4.1.
122see e.g. Sahimi (1994)
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Iori (2002) comes even closer to a replication of the stylized facts of financial returns

by considering a superposition of a lattice based communication structure and idio-

syncratic signals, where the sum of both has to exceed an agent-specific threshold in

order to generate a trading order, with thresholds periodically adjusted proportional to

price changes. Iori’s model simultaneously generates uncorrelated returns with volatil-

ity clustering, long memory in volatility, a positive cross-correlation between volatility

and trading volume, and power-law distributed returns with a realistic tail index.

Kirman (1991) provides an exchange rate model, which combines an infection process

inspired from the communication behaviour of tandem recruiting ants (Kirman 1993)

with chartist-fundamentalist interaction of utility maximizing agents. Traders hold

either a chartist or a fundamentalist view of the exchange rate and meet at random

in discrete time. When two agents meet, the first is converted to the seconds view

with a given probability (1 − δ). There is also a small probability 6 of spontaneous

change in opinion in order to avoid absorbing states with all agents holding the same

view. Such an infection process may be described as an ergodic Markov chain with a

symmetric bimodal limit distribution for small enough spontanoues conversion prob-

ability 6 compared to the infection probability (1-δ), with maxima near the extremes

of identical opinion of all agents. That is, the investment community spends most of

the time holding either a chartist or a fundamentalist view of the exchange rate, with

only occasional shifts between both regimes. With chartists extrapolating the recent

price trend, fundamentalists expecting reversion to the fundamental price, and a price

equilibrium equiation derived from mean-variance utility maximization of both agents,

prices are close to fundamental value when fundamentalists dominate, but follow bub-

ble paths under the chartist regime. The endogenous switching between both regimes

induced by the infection process above implies then a near unit-root process with clus-

tered volatility. In a later extension (Kirman & Teyssière 2002), the model generates

also long memory in volatility.

It is an important advantage of formulating agent-based models as ergodic Markov

chains with explicit limit distributions, that it allows for estimation of the underlying

parameters by comparison of the model implied return distribution with the returns

observed in financial markets. This has been done for Kirman’s original model by Gilli
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& Winker (2003) and for an extended version with asymmetric transition probabilities

by Alfarano, Lux & Wagner (2005). Another advantage is that it may help to dis-

cern true scaling, that is, the emergence of power laws over all orders of magnitude,

from spurious multiscaling only in the pre-asymptotic regime. Alfarano & Lux (2006)

consider a simplified variant of the noise trader infection model by Lux & Marchesi

(2000) to be discussed in the next section, simple enough to be formulated as an ergodic

Markov chain with an analytical accessible limit distribution. While the true process is

a stationary stochastic volatility process with finite third and fourth moments and ex-

ponentially declining autocorrelation in volatility, the authors are able to demonstrate

apparent power law scaling in volatility and tail indices near 3 in the pre-asymptotic

regime of a few thousand observations, a common sample size in empirical investi-

gations of financial returns. The authors attribute this apparent scaling reminiscent

of a stochastic volatility model with apparent multiscaling by LeBaron (2001) and a

short memory model with apparent long memory by Granger & Teräsvirta (1999), to

switches between high and low volatility regimes as suggested e.g. by Stǎricǎ & Mikosch

(2000); Diebold & Inoue (2001) and Mikosch & Stǎricǎ (2004), here due to temporary

dominance of either chartists or fundamentalists in the market.

Consider finally the herding model by Lux (1995) as an introduction to the next section.

He considers an investment community of n++n− = 2N speculators with n+ optimists

(buyers) and n− pessimists (sellers). The configuration of the investment community

is then uniquely specified in terms of the state variable

n :=
1

2
(n+ − n−) with −N ≤ n ≤ N. (4.17)

Lux models the population dynamics as a Markov process, in which P (n; t) denotes

the probability of finding the investment community in state n at time t, applying the

master equation approach. Because n is a discrete variable, the master equation (4.2)

reduces to
dP (n; t)

dt
=
3
nI
[w(n|nI)P (nI; t)− w(nI|n)P (n; t)] , (4.18)

where w(nI|n) denotes the per unit time transition probability from state n to nI.

Changes in the configuration of the investment community are governed by switches

of individual agents between the optimist and pessimist subgroups. Denote the state
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dependent probability of a single pessimist to become an optimist per unit time with

p−+(n), such that the event of a pessimist becoming an optimist within the time interval

∆t is Bernoulli distributed with probability p−+(n)∆t. The total number of pessimists

changing to an optimistic view of the market within that time interval is then binomially

distributed with parameters n− and p−+(n)∆t, which in the limit of a large population

and a small time interval becomes Poisson distributed with parameter n−p−+(n)∆t.

The probability of an integer increase ∆n = 1, 2, . . . of the state variable n over the

time interval ∆t is therefore given by

P (n+∆n; t+∆t|n; t) = (n−p−+(n)∆t)∆n

∆n!
e(n−p−+(n)∆t), (4.19)

such that defining the per unit time transition probability from state n to state n+∆n

as

w(n+∆n|n) := lim
∆t→0

P (n+∆n; t+∆t|n; t)
∆t

, (4.20)

one obtains for the transition rate from state n to n+∆n:

w(n+∆n|n) = n−p−+(n)δ∆n,1, ∆n = 1, 2, . . . , (4.21)

where δ denotes the Kronecker delta function

δx,xI :=

l
1, if xI = x;

0, otherwise.
(4.22)

In a similar way it can be shown that the transition rate from state n to state n−∆n
is given by

w(n−∆n|n) = n+p+−(n)δ∆n,1, ∆n = 1, 2, . . . , (4.23)

where p+−(n) denotes the state dependent transition probability per unit time of an

individual agent to move from the optimist to the pessimist subgroup. The master

equation contains therefore only transitions between nearest neighbour states n and

nI = n± 1. Abbreviating

w−+(n) := n−p−+(n), w+−(n) := n+p+1(n), (4.24)

the master equation (4.18) reduces to

dP (n; t)

dt
= w−+(n− 1)P (n− 1; t) + w+−(n+ 1)P (n+ 1; t)

− w−+(n)P (n; t)− w+−(n)P (n; t). (4.25)
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We wish to obtain information about the dynamics of the average market opinion

<n>t :=
N3

n=−N
nP (n; t), (4.26)

whose evolution through time is due to (4.25):

<ṅ>t : =
d

dt
<n>t =

N3
n=−N

n
dP (n; t)

dt

=
N3

n=−N+1
nw−+(n− 1)P (n− 1; t) +

N−13
n=−N

nw+−(n+ 1)P (n+ 1; t)

−
N−13
n=−N

nw−+(n)P (n; t) −
N3

n=−N+1
nw+−(n)P (n; t)

=
N3

n=−N
[w−+(n)− w+−(n)]P (n; t), (4.27)

where we have shifted the summation index in the first two terms by −/+ 1 and made
use of the boundary conditions

w−+(N) = w+−(−N) = 0. (4.28)

Solving (4.27) requires knowledge of the full probability distribution of n. It is however

desirable to have an equation for the average market opinion that depends on mean

values only. For that purpose an opinion index x,

x := n/N, −1 ≤ x ≤ 1, (4.29)

is introduced, which in the limit N → ∞ may be regarded as a continuous random

variable with associated probability measure P (x; t) normalized as8 1

−1
P (x; t) dx ≈

13
x=−1

P (x; t)∆x = 1, ∆x =
∆n

N
=
1

N
. (4.30)

Abbreviating

K(x) := w−+(x)− w+−(x), (4.31)

(4.27) may be reexpressed as

<ẋ>t :=
d

dt

8 1

−1
P (x; t) dx =

8 1

−1
K(x)P (x; t) dx = <K(x)>t. (4.32)
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If K is at least two times differentiable, it may be expanded in a Taylors series up to

second order around x = <x>t:

K(x) = K(<x>t) +K
I(<x>t)(x−<x>t) + 1

2
K II(<x>t)(x−<x>t)2 + . . . , (4.33)

which defining

σ2(t) := <(x−<x>t)2>t = <x2>t −<x>2t ≥ 0 (4.34)

yields for the mean opinion index the approximate equation

<ẋ>t = K(<x>t) +
1

2
K II(<x>t)σ2(t) + . . .

≈ K(<x>t), (4.35)

which is valid only for

|K(<x>t)|( 1

2
|K II(<x>t)σ2(t)|. (4.36)

Lux assumes therefore the probability distribution P (x; t) to remain sharply peaked

around its expected value x = <x>t at all times. If that is the case, the so called

quasi-meanvalue equation (4.35) provides a tool to describe the dynamics of the mean

opinion index in terms of a self-contained differential equation. That is, the change in

the expected opinion index is a function of the expected opinion index alone, rather

than its full probability distribution.123

Note that the closed self-contained dynamics of the mean opinion index <x>t hinges

upon σ2(t) being small, i.e. single trajectories of x may not deviate substantially from

their expected value. If such substantial deviations occur, the dynamics of <x>t is no

longer correctly described by the quasi-meanvalue equation (4.35), nor is <x>t rep-

resentative of individual trajectories of x.124 However, it has been shown by Weidlich

(2002: Chapter 12), that quasi-meanvalue equations such as (4.35) still characterize

the mean evolution of any localized cluster of stochastic systems, even if that evolu-

tion belongs to a multimodal probability distribution. As such, the quasi-meanvalue

equation (4.35) is even more appropriate to describe the mean evolution behaviour of

123Appendix A7 contains a derivation of quasi-meanvalue equations for the general case of arbitrarily
many investment styles.
124For example, if the opinion index bifurcates into a multimodal probability distribution, its evo-
lution is no longer meaningfully described by its unconditional expected value, as it lies somewhere
between the states of maximal probability.
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individual markets than the exact mean value equation (4.32), because it retains its

interpretability as the equation of motion of a typical trajectory of x no matter whether

P (x; t) remains unimodal or not.

In order to capture the spirit of mimetic contagion, Lux models the individual transition

probabilities p∓± as

p−+(x) = v exp(αx), p+−(x) = v exp(−αx), (4.37)

where α measures the strength of infection and v measures the speed of the infection

process. Such a setup has the properties that i) both transition rates are positive

definite, ii) p−+ and p+− are symmetric with dp∓±/p∓± = ±α dx, and iii) K(x) is
infinitely differentiable. Note that v depends upon the time unit chosen in order to

describe the dynamics of the opinion index x. Lux inserts these transition rates into

the quasi-meanvalue equation (4.35) and provides a stability analysis of the resulting

differential equation for the mean opinion index <x>t. It turns out that the market

has a unique stable equilibrium at <x>t = 0 only for α ≤ 1. If the strength of infection
parameter α becomes larger than that, the equilibrium of balanced opinions <x>t = 0

becomes unstable and two symmetric stable bubble equilibria with a majority of either

optimistic or pessimistic traders emerge.

In the next step the contagion process is linked with the price dynamics using the

order based approach by Beja & Goldman (1980) and Day & Huang (1990). Each

optimist/pessimist is assumed to demand ±tN shares, such that the aggregate demand
DN of these noise traders becomes, making use of the definitions (4.17) and (4.29):

DN = n+tN − n−tN = xTN , TN := 2NtN . (4.38)

Lux introduces then as a third trader group fundamentalists with aggregate excess

demand DF ,

DF = TF (pf − p), TF > 0, (4.39)

where pf and p denote the fundamental value and the trading price respectively, and TF

stands for aggregate excess demand by fundamentalists per unit mispricing. A market

maker adjusts the price proportional to the aggregate net asset demand of both trader
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types as in Beja & Goldman (1980):

ṗ :=
d p

dt
= β(DN +DF ) = β[xTN + TF (pf − p)], (4.40)

where β denotes the speed of price adjustment by the market maker. In order to

allow for trend following (chartism) by the noise traders, Lux extends the individual

transition probabilities p∓± in (4.37) as

p−+(x) = v exp(α1x+ α2ṗ/v), p+−(x) = v exp(−α1x− α2ṗ/v), (4.41)

where v denotes the speed of opinion changes as before, but α has been split up into two

parts: only α1 describes the strength of contagion of other traders opinion, whereas α2

constains the weight traders give to the current price trend when forming their opinion.

The factor 1/v must be included with the current price trend ṗ in order to make the

transition rates independent of arbitrary changes in the time unit. Inserting these into

the quasi-meanvalue equation (4.35) yields together with (4.40) a system of coupled

differential equations for the mean opinion index <x>t and the trading price p, which

as in the pure contagion case with transition rates (4.37) have a unique equilibrium at

<x>t = 0 and p = pf for α1 ≤ 1, but two additional symmetric bubble equilibria at
p W= pf otherwise. These additional bubble equilibria become the further displaced from
the fundamental price the larger the noise trader demand paramer TN is relative to the

fundamentalist demand parameter TF , and with increasing infection parameter α1. The

fundamental equilibrium at p = pf is no longer necessary stable for α1 ≤ 1, but requires
both infection parameters α1 and α2, the speed of the infection process v, and the noise

trader demand parameter TN to be sufficiently small compared to the fundamental

demand parameter TF . If the fundamental equilibrium is unique but repelling, then

at least one stable limit cycle exists such that all trajectories of the system converge

to a periodic orbit in the (<x>t, p) space. The model therefore explains periodic

switching between over- and undervaluation by means of an endogenous process of

mimetic contagion and trend chasing by noise traders.

4.3 The Model by Lux and Marchesi

In this section I shall not only review but also replicate the results of a simulation

study by Lux & Marchesi (2000) which replicated the main stylized facts of financial
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return series. I lay so much emphasis on this model, because the model to be devel-

oped in chapter 5 may well be regarded as a multivariate extension of the univariate

setup by Lux & Marchesi. Because the modelling technique of the setup by Lux &

Marchesi and my own is very similar, replicating their results serves as a valuable tool

for cross checking the robustness of the computer program designed for modelling my

own specification.

Furthermore, the simulation study by Lux & Marchesi (2000) will serve as an example

to demonstrate the before mentioned inherent weakness of the order-based setup by

Beja & Goldman (1980) of producing integrated trader inventories. As it turns out

the model is extremely successful in replicating the main stylized facts of financial

returns, that is uncorrelated returns with clustered, long range dependent volatility and

heavy tails with a realistic tail index, however at the unacceptable cost of generating

unbounded traders holdings, which have not been explored in the original simulation

study by Lux & Marchesi.

As a minor point it will be noted that the simulated price series in Lux & Marchesi

(2000) do not have the unit root property as claimed by the authors, but were probably

the result of an incorrect application of the Dickey-Fuller test.125 This is only of minor

importance because the failure of the simulations to produce integrated price series is

only due to the simplifying assumption of a constant fundamental value, which is easily

healed by letting the fundamental price follow an integrated process. Lux & Marchesi

(1999) show that assuming the intrinsic value to follow geometric Brownian motion

leads to integrated prices with just as realistic return properties as those in Lux &

Marchesi (2000). As such, the simulated time series in Lux & Marchesi (2000) should

be thought of as deviations from the fundamental price rather than prices themselves,

illustrating the essential content of the interacting agent hypothesis: that many of

the stylized facts may be explained from the interaction of market participants alone,

without resorting into some unobservable news generating process. The unit root

property of financial prices would be exempt from such a behavioral explanation and

instead be regarded as a natural consequence of the unit root property of intrinsic

values.

125Thomas Lux agrees with this interpretation (personal communication).
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4.3.1 The Model

The simulation studies by Lux & Marchesi (1999, 2000) are based upon a model by

Lux (1998), which we in the following briefly sketch. The basic setup is similar to

Lux (1995) with the additional feature that this time agents are allowed to switch

also between the fundamentalist and noise trader (in the following denoted as chartist)

subgroup.

In the market there are N speculators which may be subdivided into charists nc and

fundamentalists nf according to

nc + nf = N. (4.42)

As before, the chartists may be further subdivided into n+ optimists and n− pessimists:

n+ + n− = nc. (4.43)

An opinion index x is introduced similar to (4.29):

x :=
n+ − n−
nc

, −1 ≤ x ≤ 1. (4.44)

The fraction of chartists in the market is denoted by z:

z :=
nc
N
, 0 ≤ x ≤ 1. (4.45)

The opinion formation process within the chartist subgroup is modelled using the tran-

sition rates (4.41) reinterpreted as being conditional upon an interaction with another

chartist taking place, which is assumed to happen with an unconditional probability

given by the relative frequency of chartists in the market z = nc/N . The unconditional

transition rates of an individual chartist to move from the pessimist to the optimist

subgroup p−+ and vice versa p+− are therefore given by

p∓± = v1
pnc
N
exp(±U1)

Q
, U1 = α1x+ α2

ṗ

v1
(4.46)

using the same notation as in (4.41) except that the speed of opinion revaluation

parameter v has been renamed into v1 in order to distinguish it from the speed of

contagion between the chartist and fundamentalist subgroup to be discussed below.
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Switches between chartists and fundamentalists are driven by expected or realized

excess profits above the real rate of the economy R, which is assumed to equal the

return of the risky asset in the case of a constant trading price p at fundamental value

pf . That is R = r/pf , where r denotes the dividend of the stock. In that case the

expected excess returns by fundamentalists are given by s|(pf − p)/p|, where s is a
discount factor, since fundamentalists profits will first occur in the future when the

trading price will have returned to its fundamental value.

Bullish chartists, who invest into the risky security, receive its nominal dividend r and

the price change ṗ/v2, but forego the average rate of return of the economy R, such that

their excess return is (r+ ṗ/v2)/p−R. The utilities of moving from the fundamentalist
to the optimist subgroup U2,+ and vice versa −U2,+ are therefore given by

U2,+ = α3

ww
r + ṗ/v2

p
−R
W
− s
eeeepf − pp

eeeeW , (4.47a)

where α3 measures the sensitivity of traders to differences in profits. Bearish chartists

on the other hand, who short the risky asset in order to invest into the overall economy

receiveR−(r+ṗ/v2)/p. The utilities of moving from the fundamentalist to the pessimist
subgroup U2,− and to move from the pessimist to the fundamentalist subgroup −U2,−
are therefore

U2,− = α3

ww
R− r + ṗ/v2

p

W
− s
eeeepf − pp

eeeeW . (4.47b)

Taking into account the probability of interaction of the relevant trader subgroups as

measured by their relative frequency yields for the transition rates from fundamentalists

to the two kind of chartists pf+/− and vice versa p+/−f in analogy to (4.46):

pf+ = v2
n+
N
exp(U2,+), p+f = v2

nf
N
exp(−U2,+), (4.48a)

pf− = v2
n−
N
exp(U2,−), p−f = v2

nf
N
exp(−U2,−). (4.48b)

The quasi-meanvalue equations for n+ and n− read now126

ṅ+ = n−p−+ + nfpf+ − n+(p+− + p+f ), (4.49a)

ṅ− = n+p+− + nfpf− − n−(p−+ + p−f ), (4.49b)

126This is the case of L = 3 investment styles in equation (A7.14).
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where we have dropped the brackets <>t to indicate the expectation operator at time

t for notational convenience. The equations of motion for nc and nf may be inferred

from the defining equations (4.42) and (4.43).

The link with the price dynamics is as in Lux (1995) given by

ṗ = βED = β(EDc + EDf) = β[(n+ − n−)tc + nf tf (pf − p)], (4.50)

where β denotes again the reaction speed of the market maker, ED is the aggregate

excess demand of both fundamentalists (EDf = nf tf(pf − p)) and chartists (EDc =
(n+−n−)tc), and tc and tf denote the number of shares traded by single chartists and
fundamentalists respectively.

Lux shows that the quasi-meanvalue equations (4.49) and the price equation (4.50)

may be transformed into the following system of coupled differential equations for the

state variables x, z and p:

ẋ = 2zv1[tanh(U1)− x] cosh(U1) + (1− z)(1− x2)v2[sinh(U2,+)− sinh(U2,−)],
ż = (1− z)zv2[(1 + x) sinh(U2,+) + (1− x) sinh(U2,−)], (4.51)

ṗ = β[xzTc + (1− z)(pf − p)Tf ], with Tc := Ntc and Tf := Ntf .

It turns out that the only stationary solutions of (4.51) are given by:

(i) x*=0, p*= pf with arbitrary z,

(ii) x*=0, z*=1 with arbitrary p,

(iii) z*=0, p*= pf with arbitrary x.

The last two equilibria describe absorbing states in which either the group of chartists

or fundamentalists has declined to zero. The interest of Lux & Marchesi is in equilibria

of the first type, which are characterized by efficient price formation and balanced dis-

position of opinion among chartists, implying that neither fundamentalists nor chartists

have an advantage due to vanishing utilities U2,+ and U2,− in (4.47).127 Lux derives the

127recall R = r/pf .
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following necessary conditions for stability of equilibria of the first type along the line

(x∗ = 0, p∗ = pf , z∗):

1. 2z∗v1

w
α1 + α2

β

v1
z∗Tc − 1

W
+ 2(1− z∗)α3βz∗Tc

pf
− β(1− z∗)Tf < 0, (4.52a)

2. α1 < 1 + α3
v2TcR

v1Tfpf
. (4.52b)

Given that the second condition is fulfilled, the first condition implies that there is an

upper threshold fraction of chartists in the market zmax beyond which equilibria of the

first kind become unstable. Solving (4.52a) yields

zmax =

�w
b

2a

W2
+
βTf
a
− b

2a
with

a := 2βTc

w
α2 − α3

pf

W
and (4.53)

b := 2v1(α1 − 1) + β

w
2α3

Tc
pf
+ Tf

W
.

In the remainder of this section we shall follow Lux & Marchesi (2000) in simulating

the stochastic system underlying (4.51) around equilibria of the first type with the

fraction of chartists in the market obeying z < zmax.

4.3.2 Simulation Study

The system of differential equations (4.51) describes the coupled population and price

dynamcis as a process in continuous time. As such it can only be approximated in

computer simulations. Lux & Marchesi choose to split each integer time step into 100

microsteps of equal length ∆t = 0.01, at each of which the composition of the trader

population may change according to the transition rates given in (4.46) and (4.48).

Note that because these transition rates describe the probability of a population change

per unit time, in the actual simulations they have to be divided by the number of micro

time steps in order to yield the transition probability during the time interval ∆t. Lux

& Marchesi note that during periods of high volatility it was necessary to increase the

precision of the simulations by a factor 5 to ∆t = 0.002. Because computation speed

is no longer such a serious constraint as it was during the time of the simulation study
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by Lux & Marchesi, I shall use this higher precision of 500 micro steps per unit time

interval throughout.

Furthermore, in the system of differential equations (4.51) the price p is the only

non-stochastic variable in the sense that it does not describe the expected value of a

stochastic process but has been arrived at in a purely deterministic manner according to

equation (4.50) (albeit with inputs derived from a stochastic process). Lux & Marchesi

wish to generate p in an anologous manner to x and z by formulating the following

stochastic process with expected time change <ṗ>t given by (4.50): They split the

price unit (1 dollar, say) into 100 elementary units (cents) and consider the probability

of the price to move from one elementary unit to the next within ∆t. For that purpose,

a small noise term μ ∼ N (0,σ2) is added to the excess demand EDt at time t and
the transition probabilities to move one cent up (πp+) or down (πp−) during the time

interval ∆t are modelled as

πp+ = 100max[0,β(EDt + μ)]∆t, πp− = −100min[0,β(EDt + μ)]∆t, (4.54)

such that the expected price change <∆p>t between t and t+∆t becomes

<∆p>t = 0.01<πp+>t − 0.01<πp−>t = βEDt∆t (4.55)

and (4.50) may be interpreted as

<ṗ>t = βEDt. (4.56)

The binary price adjustment rule (4.54) leaves only the possibilities∆p = −0.01, 0, and
+0.01 as possible inputs for ṗ ≈ ∆p/∆t as an approximation for the time derivative of

p in the equations of motion (4.51) from the simulated prices between t and t−∆t. I

follow Lux & Marchesi in calculating ṗ from the longer time interval [t−0.2, t) in order
to allow for a broader set of values. I also follow them in setting a lower bound of 4

out of N = 500 agents in any trader subpopulation in order to avoid occurence of the

absorbing states z = 0 and z = 1 in the simulations, that is the stationary equilibria

of type (ii) and (iii) in the differential equation system (4.51).

The simulations run then as follows. Initially, the trading price is set to its fundamental

value p = pf , and the traders are randomly distributed over the subpopulations n+,
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Table 1. Parameter sets used by Lux & Marchesi (2000) and in the replicating simu-
lations of this section.

Parameter set I Parameter set II Parameter set III Parameter set IV

N 500 500 500 500
pf 10 10 10 10
r 0.004 0.004 0.004 0.004
v1 3 4 0.5 2
v2 2 1 0.5 0.6
β 6 4 2 4
Tc 10 7.5 10 5
Tf 5 5 10 5
α1 0.6 0.9 0.75 0.8
α2 0.2 0.25 0.25 0.2
α3 0.5 1 0.75 1
s 0.75 0.75 0.8 0.75
σ 0.05 0.1 0.1 0.05

n− and nf in such a manner that the stability condition z < zmax holds. Traders are

then allowed to change their strategy according to the transition probabilities (4.46)

and (4.48) and subsequently the trading price is adjusted according to the transition

probabilities (4.54), using the parameters given in table 1. The matlab code for running

the simulations can be found in section A1 of the appendix.

Lux & Marchesi implement the strategy switches of the traders by drawing for each

trader a uniform random number on the interval [0,1] and comparing it with the relevant

transition probability. That is, they generate binomially distributed numbers of ran-

domly switching agents as sums of independent Bernoulli distributed random variables

with the relevant transition probability. The statistics toolbox for use with matlab con-

tains a generator of binomially distributed pseudo-random numbers based upon sum-

mation of independent Bernoulli distributed random variates (command: binornd),

which is unfortunately quite slow due to its inefficient coding. A much faster way to

generate a pseudo-random number k from a binomial distribution with parameters n

and p based upon the same idea is given by the following simple command:

k = sum(repmat(p,n,1)>rand(n,1)),

which fills a n×1 column vector with p, compares it element wise to a n×1 column
vector filled with U [0, 1] distributed pseudo-random numbers, and sums up the number
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of occurences of p exceeding its associated random number.

The execution speed is further improved by generating random variates of agents leav-

ing from the same subpopulation within the same matrix. The binomial draws of agents

leaving their strategy in lines 170 to 173 of appendix A1 were therefore originally coded

as

170 %(1*2) binomial draws of agents leaving their strategy
171 npout = sum(repmat([ppm(2) pcf(1,2)],np,1)>rand(np,2));
172 nmout = sum(repmat([ppm(1) pcf(2,2)],nm,1)>rand(nm,2));
173 nfout = sum(repmat([pcf(1,1) pcf(2,1)],nf,1)>rand(nf,2));

which does the same as before on two-columned matrices with the number of rows

given by the number of agents in the relevant subpopulation and the columns filled

with the relevant transition probabilities.

Generating binomially distributed random variates from summing up Bernoulli random

numbers is however inefficient in our case of large n and small p due to the many calls

of the random number generator. An algorithm for producing binomially distributed

random variates with only a single call of the uniform random number generator and

n*p expected loops is given by the BINV algorithm described in Kachitvichyanukul

& Schmeiser (1988) and implemented under the name fastbin in lines 288 to 312 of

appendix A1. The BINV algorithm uses the inversion method for transforming U [0, 1]
distributed random variates into a random number with distribution function F . That

is, defining the generalized inverse of a function F on [0,1], F−, as

F−(u) := inf{x; F (x) ≥ u},

then F−(U) will have the distribution F , if U ∼ U [0, 1]. The BINV algorithms exploits
the recursive formula

fB(k) = fB(k − 1)n− k + 1
k

p

1− p for k = 1, 2, . . . , n (4.57)

of the binomial distribution

fB(k) =

w
n

k

W
pk(1− p)n−k, k = 0, 1, 2, . . . , n (4.58)
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in stepwise searching for the generalized inverse of a U [0, 1] distributed pseudo-random
number starting from k = 0. Because the expected value of k is n · p, there will on
average only n · p steps be needed in determination of k.

Having a fast binomial random number generator is important because the program

spends most of its execution time on calculating the number of agents changing their

strategy. I found the BINV algorithm first in the literature after I had already imple-

mented a preliminary version of the algorithm in appendix A1 based upon summation

of independent Bernoulli random variables. This provides us with two independent sets

of simulations at least for Lux’ state variables p, x and z, in the following referred to

as Simulation I (Bernoulli rv’s) and Simulation II (BINV algorithm), where applicable.

In the remainder of this section I shall follow Lux & Marchesi in generating 20,000

observation points for each of the four parameter sets and apply the same battery of

tests to them as they did.

Consider first the simulated return series over 20,000 observations in figures 1 and 2. All

time series exhibit sudden outbreaks of volatility similar to what is empirically observed

in financial markets.128 Comparison with the plots of the chartist index z in figures

3 and 4 reveals that the volatility outbursts are related to the number of chartists.

Volatility clusters are always accompanied by above average presence of chartists in

the market. Lux & Marchesi attribute this to self-reinforcing trends under dominance

of chartists, which become quickly reversed once large enough price deviations from

fundamental value create sufficient profit opportunities for fundamentalists to act as a

counterforce against excessive mispricing. Note the occasional occurence of z > zmax,

where the market is expected to loose its stability, in parameter sets I and III of

simulation I (first and third panel in figure 3). The same does not happen in simulation

II, because there occurence of z > zmax has been artificially prevented in the block from

line 194 to 201 of the code in appendix A1, which had not yet been implemented in

the preliminary version used in simulation I. Originally z was allowed to exceed zmax in

the simulation runs II as well, but this lead to simulation breakdowns due to exploding

price oscillations in accordance with the stability condition z < zmax. The occasional

violation of this stability condition, which may or may not lead to market instability,

128see section 2.5.
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Figure 1. Logreturns over 20,000 integer time steps (Simulation I).
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Figure 2. Logreturns over 20,000 integer time steps (Simulation II).



ACTA WASAENSIA 95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8
Chartist Index Parameter Set I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8
Chartist Index Parameter Set II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8
Chartist Index Parameter Set III

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8
Chartist Index Parameter Set IV

Figure 3. Chartist index z over 20,000 integer time steps (Simulation I). The horizon-
tal lines indicate the threshold zmax, beyond which the first type equilibrium
of (4.51) is expected to loose its stability.
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Figure 4. Chartist index z over 20,000 integer time steps (Simulation II). The horizon-
tal lines indicate the threshold zmax, beyond which the first type equilibrium
of (4.51) is expected to loose its stability.
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Table 2. Median estimates of the tail index over ten samples of 2,000 observations
each and the range of estimates for common choices of the tail region.

Parameter 2.5%tail 5%tail 10%tail
Set I min median max min median max min median max

Simulation I 1.86 3.34 4.80 1.60 2.57 3.15 1.58 2.27 2.66
Simulation II 2.12 3.23 3.59 1.97 2.51 3.56 1.73 2.17 2.65
Lux&Marchesi 1.61 2.04 4.50 1.51 2.11 2.64 1.26 1.93 2.44

Parameter 2.5%tail 5%tail 10%tail
Set II min median max min median max min median max

Simulation I 2.18 2.61 4.44 2.21 2.32 3.09 1.76 2.19 2.67
Simulation II 2.34 3.43 4.08 2.12 2.96 3.46 2.11 2.35 2.95
Lux&Marchesi 2.28 2.82 3.73 2.00 2.52 3.17 1.55 2.18 2.36

Parameter 2.5%tail 5%tail 10%tail
Set III min median max min median max min median max

Simulation I 2.02 3.34 4.58 1.81 2.93 4.43 1.46 2.28 5.09
Simulation II 1.58 3.21 4.81 1.25 2.81 4.12 1.72 2.67 3.33
Lux&Marchesi 2.41 4.63 6.82 2.33 3.48 8.60 1.80 2.86 4.84

Parameter 2.5%tail 5%tail 10%tail
Set IV min median max min median max min median max

Simulation I 2.92 3.70 7.75 1.97 2.90 4.13 1.94 2.83 3.85
Simulation II 2.07 3.25 5.06 1.95 2.98 3.74 1.65 2.33 3.24
Lux&Marchesi 2.11 3.08 4.06 2.13 2.46 7.68 1.65 1.97 3.18

illustrates the difference between the stochastic dynamics of the state variables x, p and

z, and the dynamics of their expected values <x>t, <p>t and <z>t, whose dynamics is

described by the deterministic differential equations (4.51). If (4.51) would describe the

dynamics of the state variables themselves, the case z > zmax could not occur as long as

z was initialized below this threshold. On the other hand, occurence of z > zmax would

necessarily lead to market instability. Occasional violation of the stability condition

z < zmax with spontaneous return to stability is only possible because the state variables

x, p and z fluctuate stochastically around their expected values <x>t, <p>t and <z>t.

I shall now turn to the statistical analysis of the simulated return series starting with

the fat-tailedness of the unconditional return distribution. Consider for that purpose

the Hill estimates of the tail index α129 in table 2 generated with the matlab code

129see section 2.4.
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Table 3. Kurtosis estimates over the full sample of 20,000 observations.

Simulation I Simulation II Lux&Marchesi

Parameter Set I 147.47 27.59 135.73
Parameter Set II 43.61 23.46 16.10
Parameter Set III 147.95 34.65 27.11
Parameter Set IV 22.51 96.44 37.74

presented in appendix A2. Making use of the symmetry of returns, the positive and

negative tails have been merged into absolute returns in order to provide a better

statistical basis for the estimation by means of a larger sample size. All return series

have been seperated into 10 subsamples of 2,000 observations each, in order to facilitate

comparison with the simulation results by Lux & Marchesi (2000). The table reports

the smallest, median, and highest tail index estimate within the ten subsamples for the

commonly chosen tail regions of the largest 2.5%, 5%, and 10% absolute returns. The

results agree both with Lux & Marchesi and the empirical findings in financial markets

in that the median estimates hoover around in the range 2 to 4 with decreasing α-

estimate for increasing tail size.

A less precise measure of fat-tailedness is given by the sample kurtosis,130 presented in

table 3. Here the agreement within the simulations and with Lux & Marchesi is only

qualitative in that all simulations generate at least double digit estimates, indicating

strong fat-tailedness. The numerical differences of the estimates between the different

simulation runs are however often large. This is not surprising, given that tail indices

below 4 imply that the kurtosis of the process is not defined.131 We may therefore

not expect the sample kurtosis to converge to any specific number in such processes.

This is illustrated in figure 5, which shows the kurtosis estimate of the unconditional

return distribution as a function of increasing sample size. It is seen that the kurtosis

estimate contains sudden jumps after which–even though initially leveling off–it does

not converge to any stationary level. This finding is in harmony with the behaviour of

the kurtosis estimator in empirical financial data.132 Comparison with the return series

in figures 1 and 2 reveals that the sudden jumps in the kurtosis estimate are caused by

130see section 2.3.
131see section 2.4.
132see e.g. Cont (2001).



ACTA WASAENSIA 99

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set I (Simulation I)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set II (Simulation I)

0 0.5 1 1.5 2

x 10
4

0

100

200

300

400

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set III (Simulation I)

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25

30

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set IV (Simulation I)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set I (Simulation II)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set II (Simulation II)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set III (Simulation II)

0 0.5 1 1.5 2

x 10
4

0

50

100

150

sample size

sa
m

pl
e 

ku
rt

os
is

Parameter Set IV (Simulation II)

Figure 5. Sample kurtosis estimates for increasing sample size.
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the most extreme return observations relative to their history, as is to be expected from

the definition of kurtosis (2.4). This estimate initially levels off, as more observations

accumulate, but for tail indices smaller than 4, even more extreme observations are

generated before the estimator reaches a staionary value.

Consider next the issue of long range dependence in volatility. Figure 6 shows the

autocorrelation functions of raw, squared, and absolute returns for up to 300 lags. The

autocorrelations for raw returns fluctuate around zero in accordance with the empiri-

cal findings discussed in section 2.2. The slowly decaying autocorrelation functions of

absolute returns however, point at the possibility of long memory in volatility, in par-

ticular for parameter sets III and IV. The autocorrelation function of squared returns

remains also positive for a large number of lags in most simulations, but decays some-

what faster than for absolute returns, in harmony with empirical findings.133 On the

other hand, the autocorrelation function of squared returns appears to decay somewhat

too fast to be supportive of long range dependent volatility, in particular in parameter

sets I and II. Lux & Marchesi provide autocorrelation diagrams only for parameter set

IV, which look similar to those presented here for parameter sets III and IV with slowly

decaying autocorrelation function for squared and particularly absolute returns.

In order to test formally for long range dependence in volatility, tables 4 to 7 contain

the results of logperiodogram regressions for estimation of the long memory parameter

d in squared and absolute returns using the algorithm presented in appendix A3. Lux

& Marchesi divide the full sample of 20,000 observations into 10 subsamples of 2,000

observations, estimate d in each of these subsamples, and report the median of these

estimates together with its range and the number of significantly positive d-estimates

at 5% level. I have additionally included the d-estimate over the full sample. Looking

at these first, it turns out that evidence for long memory in absolute returns with sig-

nificantly positive d̂ is provided only for parameter sets III and IV in harmony with the

autocorrelation diagrams in figure 6. Furthermore, only in simulation II of parameter

set III the decay in the autocorrelation of squared returns is slow enough to provide

evidence of long memory. All other estimates of d for squared and absolute returns over

the full sample are positive, but insignificantly so. Turning to the estimation results in

133see e.g. Ding et al. (1993) and the discussion in section 2.7.
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Figure 6. Autocorrelation diagrams of absolute (upper solid line), squared (middle
dashed line) and raw returns (lower dashed line) over 300 lags.
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Table 4. Estimates of the long memory parameter d for squared returns (upper panel)
and absolute returns (lower panel) over the full sample of 20,000 observa-
tions and over 10 subsamples of 2,000 observations each for parameter set I.
The last column contains the number of significantly positive estimated long
memory parameters within the ten subsamples at a significance level of 5%.
Significantly positive estimates of d over the full sample are marked with an
asterix (*).

Squared d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.07 -0.01 0.31 0.50 2
Simulation II 0.09 0.08 0.24 0.52 2
Lux&Marchesi 0.06 0.17 0.56 4

Absolute d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.15 0.21 0.39 0.49 3
Simulation II 0.13 0.22 0.39 0.54 4
Lux&Marchesi 0.21 0.38 0.64 8

Table 5. Estimates of the long memory parameter d for squared returns (upper panel)
and absolute returns (lower panel) over the full sample of 20,000 observa-
tions and over 10 subsamples of 2,000 observations each for parameter set II.
The last column contains the number of significantly positive estimated long
memory parameters within the ten subsamples at a significance level of 5%.
Significantly positive estimates of d over the full sample are marked with an
asterix (*).

Squared d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.12 0.13 0.32 0.65 1
Simulation II 0.06 0.06 0.39 0.55 3
Lux&Marchesi 0.37 0.54 0.86 10

Absolute d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.23 0.33 0.55 0.84 6
Simulation II 0.15 0.27 0.52 0.70 7
Lux&Marchesi 0.43 0.63 0.75 10
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Table 6. Estimates of the long memory parameter d for squared returns (upper panel)
and absolute returns (lower panel) over the full sample of 20,000 observations
and over 10 subsamples of 2,000 observations each for parameter set III.
The last column contains the number of significantly positive estimated long
memory parameters within the ten subsamples at a significance level of 5%.
Significantly positive estimates of d over the full sample are marked with an
asterix (*).

Squared d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.07 0.12 0.47 0.73 6
Simulation II 0.35* 0.25 0.53 0.72 7
Lux&Marchesi 0.29 0.50 0.80 10

Absolute d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.36* 0.31 0.56 0.86 8
Simulation II 0.47* 0.41 0.62 0.81 9
Lux&Marchesi 0.26 0.64 0.81 10

Table 7. Estimates of the long memory parameter d for squared returns (upper panel)
and absolute returns (lower panel) over the full sample of 20,000 observations
and over 10 subsamples of 2,000 observations each for parameter set IV.
The last column contains the number of significantly positive estimated long
memory parameters within the ten subsamples at a significance level of 5%.
Significantly positive estimates of d over the full sample are marked with an
asterix (*).

Squared d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.22 0.26 0.47 0.64 6
Simulation II 0.19 0.15 0.40 0.77 4
Lux&Marchesi 0.20 0.52 0.70 9

Absolute d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Simulation I 0.32* 0.35 0.61 0.81 8
Simulation II 0.37* 0.47 0.58 0.73 10
Lux&Marchesi 0.17 0.64 0.88 9
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Table 8. Results of unit root tests as reported in Lux & Marchesi (2000: table 1) upon 40
subsamples of 500 observations for each of the four parameter sets. ρ̂ < 1 and
ρ̂ > 1 stand shorthand for the number of rejections of ρ = 1 in favour of ρ < 1
in one-sided tests at 95% level, and the number of rejections of ρ = 1 in favour of
ρ > 1 in two-sided tests at 95% level, respectively.

Parameters range of ρ̂ ρ̂ < 1 ρ̂ > 1

Parameter Set I 0.999819 — 1.000022 0 0
Parameter Set II 0.999977 — 1.000021 0 0
Parameter Set III 0.999959 — 1.000030 0 3
Parameter Set IV 0.999972 — 1.000014 0 2

the subsamples, a majority of d-estimates point at long range dependence in absolute

returns for all parameter sets except I, but in squared returns only for parameter set III

and simulation I of parameter set IV. Overall it appears that while volatility clustering

and heavy tails of the unconditional return distribution are a robust result, the finding

of long memory in volatility depends somewhat stronger on the choice of the model

parameters. This contrasts with the findings presented by Lux & Marchesi (2000),

who report a clear majority of significantly positive d-estimates for both squared and

absolute returns in all parameter sets, except for squared returns in parameter set I.

The difference might be due to the choice of the highest Fourier frequency λm considered

in the logperiodogram regressions (2.26) of section 2.6, which is somewhat arbitrary

in a similar way as the choice of the tail region in the Hill estimator of the tail index.

Beran (1994: chapter 4.6) shows that different choices of m may have considerable

effects upon the values and confidence intervals of d̂. I have chosen m as the largest

integer smaller than the square root of available observations in accordance with Lux

(1996a). If Lux & Marchesi (2000) have chosen a different value in their study, the

results regarding the significance of d̂ may well differ. In any case, it is evident from

the simulations above that the model is capable of generating long memory in volatility

for at least some parameters.

As documented in table 8, Lux & Marchesi claimed originally that their simulated

price series contain a unit root. All slope parameters ρ in 160 regressions of prices pt

upon their lagged values pt−1 are confined to a narrow range around 1, with the only
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Figure 7. Price series over the full sample of 20,000 observations.
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Table 9. Results of Dickey Fuller tests including a constant using the algorithm in appendix
A4 upon 40 subsamples of 500 observations each. ρ̂ < 1 and ρ̂ > 1 stand shorthand
for the number of rejections of ρ = 1 in favour of ρ < 1 in one-sided tests at 95%
level, and the number of rejections of ρ = 1 in favour of ρ > 1 in two-sided tests
at 95% level, respectively.

Simulation I: Simulation II:
range of ρ̂ ρ̂<1 ρ̂>1 range of ρ̂ ρ̂<1 ρ̂>1

Param. Set I −0.37305— 0.786101 40 0 −0.04483— 0.660879 40 0
Param. Set II 0.397902 — 0.838886 40 0 0.448746 — 0.828751 40 0
Param. Set III 0.688496 — 0.095410 40 0 0.713593 — 0.949288 40 0
Param. Set IV 0.600552 — 0.871400 40 0 0.357124 — 0.848559 40 0

rejections of H0 : ρ = 1 occuring in favour of explosive roots in a handful of tests for

parameter sets III and IV, which they attribute to temporary instability in periods

when the fraction of chartists z is close to its critical value zmax.

Visual inspection of the simulated prices in figure 7 does not support their conjecture.

All price series look clearly mean reverting around their fundamental value pf = 10,

instead of ever increasingly deviating from it as would be the case for integrated time

series. The results of Dickey Fuller tests of the form ∆pt = (ρ − 1)pt−1 + const. + 6t

reported in table 9 confirm this picture. As expected, even when using subsamples of

only 500 observations each as in Lux & Marchesi (2000), application of the Dickey-

Fuller test using the algorithm presented in appendix A4 rejects the null of a unit

root in favour of a mean reverting process with ρ < 1 for all of the 320 subsamples

considered. The results do not change under replacement of the critical values by Fuller

(1976) with the more recent ones by MacKinnon (1994).

In an attempt to spot the reason for the difference between my results and those by

Lux & Marchesi, I performed also Dickey-Fuller tests of the form ∆pt = (ρ−1)pt−1+6t
without constant using the algorithm in appendix A5, with results reported in panel

a) of table 10. The estimates ρ̂ do now indeed confine to a narrow range around ρ = 1

and there is no rejection of the null, neither in favour of a mean reverting process nor of

an explosive root. The only way I found to additionally produce a handful significantly

positive ρ estimates as in Lux & Marchesi was replacing the applicable first panel of
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Table 10. Results of Dickey Fuller tests without constant using the algorithm in appendix
A5 upon 40 subsamples of 500 observations each. Panel a) uses the applicable
first panel of table 8.5.2 in Fuller (1976) for regressions without a constant as
critical values. Panel b) applies the inapplicable second panel of the same table,
as if the regression had been performed including a constant. ρ̂ < 1 and ρ̂ > 1
stand shorthand for the number of rejections of ρ = 1 in favour of ρ < 1 in
one-sided tests at 95% level, and the number of rejections of ρ = 1 in favour of
ρ > 1 in two-sided tests at 95% level, respectively.

a) correct Simulation I: Simulation II:
table range of ρ̂ ρ̂<1 ρ̂>1 range of ρ̂ ρ̂<1 ρ̂>1

Param. Set I 0.999438 — 1.000058 0 0 0.999690 — 1.000003 0 0
Param. Set II 0.999882 — 1.000026 0 0 0.999886 — 1.000022 0 0
Param. Set III 0.999867 — 1.000067 0 0 0.999956 — 1.000067 0 0
Param. Set IV 0.999895 — 1.000036 0 0 0.999901 — 1.000038 0 0

b) wrong Simulation I: Simulation II:

table range of ρ̂ ρ̂<1 ρ̂>1 range of ρ̂ ρ̂<1 ρ̂>1

Param. Set I 0.999438 — 1.000058 0 0 0.999690 — 1.000003 0 0
Param. Set II 0.999882 — 1.000026 0 0 0.999886 — 1.000022 0 0
Param. Set III 0.999867 — 1.000067 0 5 0.999956 — 1.000067 0 5
Param. Set IV 0.999895 — 1.000036 0 1 0.999901 — 1.000038 0 1

table 8.5.2 in Fuller (1976), containing the critical values for regressions without a

constant, with the inapplicable second panel of the same table for regressions including

a constant, the results of which are reported in panel b) of table 10.

While Lux & Marchesi do not state which equation and critical values they used in

performing regressions of the Dickey-Fuller type, the results reported above suggest that

they have performed the tests without a constant but possibly used critical values as if

the regressions had been performed including a constant, unless the differences between

table 8 and panel a) of table 10 are due to the different samples. The main concern here

is not so much the possible use of incorrect critical values but rather the applicability of

the Dickey-Fuller test without a constant, when a constant is in fact suggested by price

fluctuations around the non-zero fundamental price pf = 10 in figure 7. Also, if the

constant could indeed be omitted, one would not expect such large differences between

the estimated AR(1) coefficients in the Dickey Fuller tests including a constant of table

9 on one hand, and their values in regressions without a constant in tables 8 and 10

on the other hand. The results in table 11, which contains the parameter estimates in
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Table 11. Parameter estimates in Dickey Fuller tests of the form ∆pt = (ρ− 1)pt−1+
const. + 6t upon the full samples of 20,000 observations with t-statistics in
parantheses. The 1% critical values are -3.43 for ρ —1 (one-sided), and 2.58
for the constant (two-sided), implying significantly positive constants and
rejection of a unit root in all tests.

Simulation I: Simulation II:
(ρ̂− 1) const. (ρ̂− 1) const.

Parameter Set I -0.7281 7.2803 -0.6125 6.1261
(-107.00) (106.99) (-93.97) (93.96)

Parameter Set II -0.3421 3.4203 -0.3140 3.1405
(-64.25) (64.25) (-61.04) (61.03)

Parameter Set III -0.1435 1.4355 -0.1208 1.2075
(-39.36) (39.36) (-35.89) (35.88)

Parameter Set IV -0.2489 2.4888 -0.3543 3.5430
(-53.34) (53.34) (-65.65) (65.65)

Dickey Fuller tests of the form ∆pt = (ρ− 1)pt−1+const. + 6t upon the full samples of

20,000 observations, demonstrates that the constant may indeed not be omitted, as it

is significantly non-zero at 99% level in all tests. Furthermore, all tests produce test-

statistics for ρ−1 far below the 1% critical value for rejection of a unit root, confirming
our conjecture from figure 7 that the price series are in fact level stationary. We can

therefore not confirm the claim brought forward by Lux & Marchesi, that the model

with quasi-meanvalue dynamics (4.51) would generate integrated price series under the

assumption of a constant fundamental price pf , but attribute it to a flawed application

of the Dickey-Fuller test in their study.

As has been mentioned earlier in the introduction of section 4.3, this should not be

regarded as a criticism of the model, since the failure of the simulations to produce

integrated prices as in real financial data is only due to the unrealistic assumption of a

constant fundamental value. Lux & Marchesi (1999) show that assuming pf to follow

geometric Brownian motion does indeed lead to integrated price series with otherwise

similar statistical properties as presented here.

We shall now turn to traders holdings and cash, an issue which has not been inves-

tigated by Lux & Marchesi. I have several times mentioned the criticism by Farmer
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& Joshi (2002) of the order based setup by Beja & Goldman (1980) which was also

applied in their study,134 as the uncoupling of orders and acquired positions may lead

to unbounded inventories. The underlying reason not explained by Farmer & Joshi

is the following: Orders, if filled, are derivatives of traders holdings with respect to

time; or stated the other way round, traders holdings are the integral of filled orders

over time. Now if orders, rather than holdings, are assumed to follow a level station-

ary process, such as the stationary levels of mispricing and the number of chartists in

equation (4.50), then integrating over these orders in order to obtain traders invento-

ries will generate integrated and therefore unbounded holdings, unless the stationary

series which the trading decisions were based upon were already over-differenced. This

will now be exemplified using the faster executing code of simulations II presented in

appendix A1 with binomial random variate generation using the BINV algorithm.

Since individual traders may change their strategy at any time, we shall look at aggre-

gate holdings and cash of the entire fundamentalist and chartist subpopulations, rather

than those of single traders. As the model allows for unlimited buying and short sell-

ing of stocks, each group is initialized to hold neither stocks nor cash (lines 143—146 in

the code presented in appendix A1). Once the excess demand ED in equation (4.50)

is determined, chartists inventories are increased by EDc = (n+ − n−)tc (line 209)
and fundamentalist inventories by EDf = nf tf (pf − p) (line 210). The corresponding
amounts of cash, p·EDc/f , are subtracted from their wealth in lines 217—218 following

the price adjustment in lines 212—214. The aggregate wealth of the two trader sub-

populations equal their aggregate inventories evaluated at market price plus their cash

(lines 254—255). Since the market maker has to supply the shares demanded by the

fundamentalist and chartist trader populations starting with zero inventories and cash,

her holdings and cash equal the traders aggregate inventories and cash, however with

opposite signs (lines 277—278).

Consider first the aggregate holdings of chartists and fundamentalists over 20,000 ob-

servations in figure 8. During that time, traders accumulate inventories of the same

order of magnitude as the number of observations, with close to symmetric portfolio

holdings for chartists and fundamentalists. With the possible exception of parame-

134see equation (4.50)
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Figure 8. Aggregate holdings of the chartist (dark solid line) and the fundamentalist
subgroup (light dotted line) over 20,000 observations.
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Table 12. Results of augmented Dickey Fuller tests with automatic lag length selection
based upon SIC on aggregate chartist and fundamentalist holdings over the
full sample of 20,000 observations. p-values denote the probability of falsely
rejecting H0 : ρ ≥ 1 using the one-sided critical values by MacKinnon
(1996).

Parameters ρ̂ Chartists ρ̂ Fundam. p-value Chartists p-value Fundam.

Parameter Set I 0.999841 0.999841 0.3585 0.3552
Parameter Set II 0.999946 0.999847 0.8365 0.8413
Parameter Set III 0.999978 0.999971 0.5293 0.5362
Parameter Set IV 0.999838 0.999837 0.2034 0.1961

Table 13. Results of augmented Dickey Fuller tests with automatic lag length selection
based upon SIC on market maker holdings over the full sample of 20,000
observations. p-values denote the probability of falsely rejecting a unit root
or a non zero trend.

Parameters ρ̂ (p-value) trend (p-value)

Parameter Set I 0.99859 (0.228) -0.000022 (0.1957)
Parameter Set II 0.99833 (0.0411) -0.000187 (0.0009)
Parameter Set III 0.998992 (0.0661) -0.000191 (0.0011)
Parameter Set IV 0.999719 (0.856) -0.00002 (0.2616)

ter set IV, inventories appear to follow rather random walk like than mean reverting

processes. This view is confirmed by insepecting the results of augmented Dickey-Fuller

tests upon traders inventories in table 12. None of the tests led to a rejection of a unit

root in inventories even in these very large samples. The only sample which comes

somewhat close to a rejection of a unit root is parameter set IV with p-values around

0.2 for both the holdings of chartists and fundamentalists. Also, the holdings do not

visually appear unbounded in this sample. One might therefore argue, that even longer

data sets would finally lead to a rejection of a unit root at least for parameter set IV.

However, the closeness to level-stationary holdings in this parameter set could well be

due to the periodicity of the random number generator. The generation of 20,000 data

points required 8× 107 calls of the random number generator. This is only by a factor
of 25 below the largest positive value representable by signed 32-bit integers of 2×109,
which is an upper limit for the period of any random number generator of the form

Xn+1 = f(Xn) on 32-bit computers
135.

135See for example Robert & Casella (2004).
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Figure 9. Aggregate inventories of the market maker over 20,000 observations.
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Consider next the market maker inventories in figure 9. The results of the augmented

Dickey-Fuller tests together with the deterministic trend parameters are depicted in

table 13. None of the series are bounded, as they contain either a unit root (Parameter

sets I, IV) or have a significant deterministic trend (Parameter sets II, III), consistent

with the before mentioned possibility of building up unbounded inventories.

Consider finally the wealth dynamics for the different kind of traders. Figure 10 plots

the aggregate wealth of the chartist and fundamentalist subpopulations over time.

It is immediately evident that chartists loose their money to fundamentalists for all

parameter sets considered. While one may be tempted to conclude that this will cause

chartists to die out in course of time, this need not necessarily be so for at least three

reasons:

1. Since traders are constantly changing between a chartist and a fundamentalist

strategy, traders may well recover losses experienced while using a chartist strat-

egy from the profits made when trading as fundamentalists.

2. It is reasonable to assume that fundamentalism is costlier then chartism in the

sense that figuring out the true value of an asset requires more resources than

just following a trend. These costs might just offset the profits fundamentalists

make relative to the losses of chartists.

3. If the costs of market entry are lower for chartists than for fundamentalists, it

is reasonable to assume that bankrupt chartists are replaced by new chartists

entering the market.

The wealth dynamics of the marketmaker is depicted in figure 11. In all four cases

market makers incur losses at close to constant rates, which appear harder to justify

than those of the chartists because market makers don’t change strategy. However,

the market maker could well charge a fee from his trading partners in order to repair

his losses, for example in form of a bid-ask spread as is common practice in financial

markets.
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Figure 10. Aggregate wealth of the chartist (dark solid line) and the fundamentalist
subgroup (light dotted line) over 20,000 observations.
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Figure 11. Aggregate wealth of the market maker over 20,000 observations.
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Overall, we can at least not reject the concerns brought forward by Farmer and Joshi,

that order based strategies violate fundamental risk management constraints by their

implicit tendency to build up infinite holdings over time. In the model by Lux &

Marchesi (2000) the problems of order based trading became particularly evident for

the inventories of the market maker. This may be not so surprising, given that the

market makers inventories provide the loophole for the modeller to replace equilibrium

with disequilibrium trading.

Obviously, it would require considerable additional effort to include market makers

wealth and positions into a consistent model of the price discovery process. One may

also ask whether the disequilibrium trading provided by the market maker is really

such an important feature of financial markets to model for return periods of a full

trading day and above, as was the intention in Lux’ model. In markets without 24

hours trading such as stock markets closing prices must be quite close to equilibrium

prices, since otherwise market participants wouldn’t be prepared to sleep with them

until next morning.

I shall therefore drop the marketmaker in a simplified version of Lux’ model with

position-based trading in the next chapter. Because the model is position based, it is

easy to generalize to multiple assets, avoiding the inconsistencies of order based trading

discussed in the introduction and demonstrated in this section. In order to add further

realism to the model, I will also include a riskless bond (cash), and separate the security

selection decision between different stocks from the asset allocation decision between

equity and bonds.
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5 Asset Allocation and Position Based Trading

5.1 The Model

In this section we shall develope a model for the price discovery process of multiple

assets in position based trading without a market maker. Consider for that purpose

an investment community of N portfolio managers or traders. They hold individually

only one of three assets, either one of two risky stock issues or a bond issue in infinite

supply (cash). The logarithmic trading prices of the stocks are denoted by p1 and

p2, and the logarithm of their fundamental values by pf1 and pf2. Portfolio managers

holding stocks may choose one of two investment strategies, fundamentalist or chartist.

Fundamentalists hold long (short) positions in a stock because its trading price is below

(above) its fundamental price, to which they expect the trading price to converge in the

long run. Chartists wish to hold a stock because most market participants already own

it (herding). This simplifies Lux’ original setup by not explicitly including the trend of

the stock price itself as a motive for holding stocks, and is done here in order to keep

the mathematical formulation of the multivariate setup concise. Herding, rather than

riding a price trend, was also the numerically dominant trading motive for chartists in

Lux’ parameter sets.136

Denote the number of chartists invested in stock 1 or 2 with nc1 resp. nc2 and the number

of fundamentalists invested in stock 1 or 2 with nf1 resp. nf2. Each chartist wishes to

hold tc issues of her favourite stock, whereas the desired holdings of fundamentalists are

proportional to the mispricing of the stock they wish to hold. Denoting fundamentalists

target holdings per unit mispricing with tf , the aggregate target holding in either stock

is

Ei = ncitc + nfitf (pfi − pi), i = 1, 2, (5.1)

where the first and second term denote aggregate target exposure in stock i by chartists

and fundamentalists, respectively. This equation may be seen as a multivariate gener-

alization of the net excess demand ED = EDc +EDf in equation (4.50) of the model

136The contributions of α1x to U1 in equation (4.46), page 85, were about one order of magnitude
larger than those of α2ṗ/v1 in the simulations of section 4.3.2.
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by Lux (1998). The key difference is that Lux follows the order-based literature in

using this expression to describe stocks to trade rather than target positions in stocks

to hold, as is the case here. We do therefore expect traders holdings–unlike those in

the simulations of Lux & Marchesi (2000)–to remain bounded due to level stationarity

of the number of chartists nci and the mispricing pi − pfi. This claim will be verified

in section 5.2.

I assume the target holding parameters tc and tf and the fundamental prices pf1 and

pf2 to be constant over the time period considered. Trading demand for the stocks is

generated by changes in desired aggregate holdings due to changes in mispricing or the

composition of traders

EDi =
d

dt
Ei = ṅcitc + ˙nfitf(pfi − pi)− nfitf ṗi, i = 1, 2. (5.2)

Market clearing (EDi = 0) yields for the logarithmic trading prices of the stocks

ṗi =
1

nfi

w
ṅci
tc
tf
+ ˙nfi(pfi − pi)

W
, i = 1, 2. (5.3)

We see from equation (5.3) that fast changes in the composition of traders and large

mispricings speed up price changes, whereas large fundamentalist populations slow

them down. On the chartist side, the speed of price adjustment depends on the target

exposures of chartists relative to fundamentalists. Large chartist exposures speed up

price changes whereas large fundamentalist exposures have the opposite effect. Overall,

we recover the recurrent theme from the interacting agent literature, that fundamen-

talists have a stabilizing effect and that noise traders have a destabilizing effect upon

prices, without having made any specific assumptions yet about how to model changes

in the traders populations.

Another important conclusion from equations (5.1) to (5.3) is that our trading process

conserves the number of shares traded, a feature not necessarily present in order based

models including a market maker, as was demonstrated in section 4.3.2. This may be

seen as follows: Because we assume market clearing, the aggregate target holdings E1

and E2 in equation (5.1) must equal the number of shares issued by companies 1 and 2.
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The condition dEi/dt = 0 for market clearing implies then, that the respective number

of shares remains constant through time.

Let us now turn to the population dynamics of the different trader types. Like Lux &

Marchesi, we follow the synergetics literature in modeling interactions between mem-

bers of the investment community in terms of Markov chains. That is, for each trader

we postulate a transition probability to change her state of behaviour, or equivalently

to move to another subpopulation, which depends only upon the investment commu-

nities current state, as described by the respective numbers of different trader types.

Suppose there are L subpopulations (trader types) n1, . . . , ni, . . . , nj, . . . , nL and de-

note the transition probability to move from subpopulation i to subpopulation j as

pij. The evolution of expected population sizes through time is the described by the

quasi-meanvalue equations137

ṅi =
L3
j=1

(njpji − nipij), i = 1, . . . , L. (5.4)

Intuitively, they state that the expected change in population size per time unit ṅi con-

sists of expected population inflows from all other states
�
njpji minus all expected

population outflows into other states
�
nipij. In our case we have L = 5 subpopula-

tions: two chartist populations of size nc1 and nc2, two fundamentalist populations of

size nf1 and nf2, and one bondholder population of size

nB := N − nE, where nE := nc1 + nc2 + nf1 + nf2 (5.5)

denotes the number of equity investors. Our task is now to specify the transition

probabilities pij according to which traders change from one subgroup to another. As

in Lux, it is assumed that traders change their strategy according to the perceived

profits of the other strategies compared to their own. The perceived profits or utilities

Fi of fundamentalists holding a position in stock i are modeled as

Fi = s|pfi − pi|, i = 1, 2, (5.6)

137see appendix A7 for a derivation. The triangular brackets < . >t to indicate the expectation
operator applied to the process at time t have been dropped for notational convenience.
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where s is a discount factor, since reversals to the fundamental price are expected to

occur only in the future. The fundamentalist utility Fi is thus proportional to the

logarithmic mispricing in stock i, similar to the model by Lux (1998).

The utility of chartists is assumed as

Ci =
nci + nfi − ncj − nfj

N
, i, j = 1, 2, i W= j. (5.7)

This generalizes the opinion index x–defined in (4.44) as an input for herding in Lux’

model–to multiple assets, as it describes the scaled difference between equity investors

in stock i and j. The more traders there are invested in stock i relative to stock j,

the more attractive stock i becomes relative to stock j (herding), and the higher the

chartist utility Ci in stock i will be relative to the chartist utility Cj in stock j.

I follow Lux in assuming that the relative change in probability to switch from one

strategy to another is proportional to the difference between the utilities of the respec-

tive strategies,138 i.e.

dpij/pij = α d(Uj − Ui) with Ui, Uj ∈ {C1, C2, F1, F2}, (5.8)

where α measures the strengh of attraction which apparently more profitable strategies

exert upon the trader. Inserting the utilities (5.6) and (5.7) into (5.8) yields for the

transition probabilities between the trader types

pcicj = ve
α(Cj−Ci), pfifj = veα(Fj−Fi), i, j = 1, 2, i W= j

pcifj = ve
α(Fj−Ci), pficj = veα(Cj−Fi), i, j = 1, 2,

(5.9)

where pcicj and pfifj denote transitions from stock i to stock j within the chartist and

the fundamentalist subgroup respectively, and pcifj and pficj denote transitions from

chartists to fundamentalists and vice versa. The speed of adjustment parameter v

measures the frequency at which equity investors reconsider their investment strategy

and depends therefore upon the time unit chosen in the description of the dynamic

process.

Consider next the transitions between bond and equity investors as illustrated in figure

12. We assume that asset allocation and security selection are performed by separate

138see property ii) in the discussion of (4.37) on page 82.
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nc1

nf1

nc2

nf2

nE equity investors:

nB Bond Investors

Asset Allocation

Figure 12. Security selection and asset allocation are modeled as separate decision
processes. The sponsor decides how many traders to put onto the fixed
income as opposed to the equity side (asset allocation). Portfolio managers
decide about the stock to invest in and the trading strategy to use (security
selection).

entities, as is common practice in financial institutions139. That is, the individual

trader or portfolio manager has no freedom to decide whether to invest in stocks or

bonds, but chooses only specific securities within his asset class. This corresponds to

portfolio managers in the majority of financial institutions, managing either an equity

or a fixed income portfolio.

The decision how to split up traders between the equity and the fixed income side is

done by a separate entity, which we shall call the asset allocator or sponsor. He or

she is often an external client with little market information who wishes to delegate

the investment management to professionals, whereas the before mentioned security

selection is usually done by professional portfolio managers in house. Even when both

asset allocation and security selection decisions are made in the same financial insti-

tution, the former are generally done by upper hierarchy levels. These have usually

more duties than just making asset allocation decisions, which may prevent them from

139An in-depth treatment of the institutional investment process is provided by Davis and Steil Davis
& Steil (2001).
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processing valuation relevant information as efficiently as their portfolio managers at

security selection level do. The utility of equity investments for the sponsor is therefore

modeled in the same spirit as that of the chartists as

E =
nE − nB
N

. (5.10)

That is, the more equity (bond) investors there are already in the market, the more

attractive equity (fixed income) investment becomes for the sponsor.

For the sake of simplicity, the perfectly elastically supplied bond (cash) is assumed to

pay no interest, such that its utility is zero. The resulting transition rates between

equities and bonds read then in analogy to (5.9)

pBE = vBe
αB(nE−nB)/N and pEB = vBe

−αB(nE−nB)/N , (5.11)

where αB is the strength of infection parameter between equity and bonds and vB

denotes the frequency at which asset allocators reconsider their strategy.

In the next step we need to specify, how the transitions between equity and bonds on

asset allocation level translate into transition probabilities between the individual stock

investors and the bondholders. Keeping in mind that institutional investment practice

demands asset allocation and security selection to be modeled as separate processes,

I shall assume here that the asset allocation decision leaves the internal composition

of stock investors unchanged. That is, the transition rates from each individual stock

investor to bondholders equal just the transition rates between equity and bonds

pciB = pfiB = pEB, i = 1, 2, (5.12)

whereas transitions from the bondholders to the equity investors must be weighted by

the relative frequency of the relevant stock investor type

pBci =
nci
nE
pBE, pBfi =

nfi
nE
pBE, i = 1, 2. (5.13)

These may then be inserted into the quasi-meanvalue equations (5.4) in order to obtain
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for the population dynamics:

˙nc1 = vB nc1

w
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

W
+ v
J
nc2e

α(C1−C2) − nc1eα(C2−C1) (5.14a)

+ nf1e
α(C1−F1) − nc1eα(F1−C1)

+nf2e
α(C1−F2) − nc1eα(F2−C1)

o
˙nc2 = vB nc2

w
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

W
+ v
J
nc1e

α(C2−C1) − nc2eα(C1−C2) (5.14b)

+ nf1e
α(C2−F1) − nc2eα(F1−C2)

+nf2e
α(C2−F2) − nc2eα(F2−C2)

o
˙nf1 = vB nf1

w
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

W
+ v
J
nc1e

α(F1−C1) − nf1eα(C1−F1) (5.14c)

+ nc2e
α(F1−C2) − nf1eα(C2−F1)

+nf2e
α(F1−F2) − nf1eα(F2−F1)

o
˙nf2 = vB nf2

w
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

W
+ v
J
nc1e

α(F2−C1) − nf2eα(C1−F2) (5.14d)

+ nc2e
α(F2−C2) − nf2eα(C2−F2)

+nf1e
α(F2−F1) − nf2eα(F1−F2)

o

Combining the time development of the asset prices (5.3) with the population dynamics

(5.14) one obtains a self-contained system of highly non-linear differential equations

with state variables p1, p2, nc1, nc2, nf1 and nf2. It turns out that this system has

a “fundamental”equilibrium, in which the trading prices of both assets equal their

respective fundamental values with balanced disposition among traders as detailed

below.

Proposition 1. Existence of a fundamental equilibrium.

The market with separate asset allocation has a fundamental equilibrium at

nB = nE = N/2, nc1 = nc2 = nf1 = nf2 = nE/4 = N/8.
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Proof. See appendix A8.

Intuitively, the equilibrium conditions follow quite naturally from the structure of the

quasi-meanvalue equations (5.4) as follows. Consider first the subdynamics of the

equity investor populations. At fundamental equilibrium both fundamentalist utilities

equal zero, because all trading prices equal their fundamental values. Also the chartist

utilities equal zero when there are equally many equity investors in stock 1 and 2. All

transition probabilities between equity investments in the quasi-meanvalue equations

equal then v, such that (5.4) simplifies for the subdynamics between equity investors

to

ṅi = v ·
43
j=1

(nj − ni), ni, nj = nc1, nc2, nf1, nf2. (5.15)

It is then immediately clear from (5.15) that zero expected changes for all trader

populations imply that there are equally many investors in each of the equity strategy

subpopulations. The same argument applies for the asset allocation subdynamics,

thereby implying equally many equity and bond investors.

Employment of absolute values in the fundamentalist utilities (5.6) implies that the sys-

tem of differential equations (5.3) and (5.14) contains four subregimes (p1 > pf1, p2 >

pf2), (p1 < pf1, p2 < pf2), (p1 > pf1, p2 < pf2), and (p1 < pf1, p2 > pf2). Necessary

conditions for simultaneous stability of the fundamental equilibrium with respect to

the regime-specific dynamics are detailed in proposition 2 below. Note however, that

stability with respect to the regime-specific dynamics is in general neither a sufficient

nor necessary condition for stability of the overall dynamics. E.g. Honkapohja & Ito

(1983) provide several examples demonstrating that stable regimes may very well be

patched into an unstable system when a trajectory crosses boundaries at a series of

points which become further and further displaced from the equilibrium, or a solu-

tion path slides along a boundary in a direction divergent from the equilibrium point.

Proposition 2 serves therefore only as a general guideline, which factors may have an

impact upon local stability of the fundamental equilibrium within the overall dynamics.

Proposition 2. Local stability with respect to regime-specific dynamics.

The following are necessary conditions for simultaneous local stability of the fundamen-

tal equilibrium with respect to all four subregimes:
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1. αB ≤ 1,

2.
α(1 +

√
1 + 16ls) ≤ 4 for ls ≤ 3/2,
αls ≤ 1 for ls ≥ 3/2,

with l := tc/tf

Proof. See appendix A9.

The above conditions for local stability of the fundamental equilibrium with respect

to the regime-specific dynamics conform with intuition. Large strength of attraction

parameters imply that small deviations from equilibrium trigger fast changes in the

trader populations, leading to fast price changes as well. Large holdings of chartists

relative to fundamentalists speed up price changes as was already mentioned in the

discussion of (5.3). Large discount factors have a similar effect in speeding up popula-

tion changes by their inclusion into the transition rates between equity investors (5.9)

through the fundamentalist utilities (5.6).

5.2 Simulation Study

We shall in the following simulate the artificial market defined by equations (5.3)

and (5.14) along the same lines as in Lux & Marchesi (2000). That is, we consider an

ensemble ofN = 500 traders with asynchronous updating of strategies approximated by

finite time increments of size ∆t = 0.002 in the domain of attraction of the fundamental

equilibrium. In order to initialize the simulations both trading prices are set to their

fundamental value, while the numbers of chartists and fundamentalists in each stock are

set to 62 and 63 respectively, close to their fundamental equilibrium value of 500/8 =

Table 14. Parameter set used in the simulations.

pf1 pf2 v vB α αB l = tc/tf s

0 0 0.001 0.04 0.1 0.4 0.5 0.8
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Figure 13. Logarithmic trading prices p1 (dark solid line) and p2 (light dotted line)
for the two risky stocks over 20,000 observations. The logarithmic intrinsic
values of both stocks remain constant at pf1 = pf2 = 0.

62.5 identified in proposition 1. Similar as in Lux, the parameter set depicted in table

14 has been chosen using the criterion that the bandwidth for returns over unit time

steps should roughly conform to what one usually observes for daily data in financial

markets.

Consider first the plot of logarithmic trading prices in figure 13, where the logarithmic

fundamental prices of both stocks were set to zero. Obviously the model is capable of

generating both severe crashes and long lasting bubbles. At its most extreme obser-

vation, stock 2 trades at almost ten times its intrinsic value. Substantial deviations

between fundamental and trading price may occur for several hundred observations in

a row, corresponding to time spans of a year and above in real markets. As such, the

simulated price series look certainly more realistic than those of the model by Lux &

Marchesi (2000) presented in figure 7, where the crossings with zero mispricing occur

so fast that they cannot even be identified in this scale. However, also the price series

of our new model strongly reject the null hypothesis of a unit root as is demonstrated
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Table 15. Probability values of falsely rejecting H0 : ρ ≥ 1 (and const.= 0) in Dickey
Fuller tests of the form ∆pt = (ρ−1)pt−1+(const.)+ 6t over the full sample
of 20,000 observations.

∆pt = (ρ− 1)pt−1 + const. + 6t : ∆pt = (ρ− 1)pt−1 + 6t :
p-values: ρ const. ρ

p1 1.95 · 10−13 0.7709 2.03 · 10−13
p2 2.63 · 10−11 0.5691 3.08 · 10−11

in table 15, no matter whether an (insignificant) constant is included into the Dickey-

Fuller regressions or not. In that respect our price series look still as unsatisfactory as

those of Lux & Marchesi (2000), but with the hindsight of the simulation study by Lux

& Marchesi (1999) it appears likely that the failure of the simulations to produce inte-

grated prices is again just due to the simplifying assumption of constant fundamental

values. Therefore, as in Lux & Marchesi (2000), figure 13 should be mainly regarded

as a visualization of the behaviourally explained difference between trading prices and

fundamental values rather than trading prices as such.

The two upper panels of figure 14 contain the logreturns of the two stocks calculated

as the difference between the simulated the logarithmic trading prices p1 and p2 over

unit time steps as

ri,t = pi,t − pi,t−1, i = 1, 2. (5.16)

The third panel contains the logreturn of the equal weighted index calculated as

rEW,t = ln

w
1

2
exp(r1,t) +

1

2
exp(r2,t)

W
. (5.17)

Assuming a symmetric setup with equally many stocks issued by both companies, the

returns of a capitalization weighted index may be calculated as

rCW,t = ln

w
exp(p1,t−1)

exp(p1,t−1) + exp(p2,t−1)
exp(r1,t) +

exp(p2,t−1)
exp(p1,t−1) + exp(p2,t−1)

exp(r2,t)

W
,

(5.18)

which are plotted in the last panel of figure 14. All time series are clearly heteroscedastic

with similar intermittent outbreaks of volatility as in figures 1 and 2 of section 4.3.2,

and discussed as stylized facts of real financial returns in section 2.5.

Table 16 contains summary statistics for the above mentioned return series. All time
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Figure 14. Logreturns of the two stocks, the equal weighted index, and the capital-
ization weighted index over 20,000 observations.
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Table 16. Summary statistics for the simulated logreturns of the two stocks r1 and r2,
the equal weighted index rEW , and the capitalization weigthed index rCW .

Asset Avg. raw Avg. absolute Return Return Return
Return×10−3 Return Variance×10−3 Skewness Kurtosis

Stock 1 0.0040 0.0180 0.7071 0.0773 12.07
Stock 2 -0.0231 0.0179 0.7251 -0.1424 25.88
Index (EW) 0.1728 0.0133 0.3514 0.1331 10.47
Index (CW) -0.0077 0.0144 0.4886 -0.3443 37.58

series are close to symmetric, with average daily absolute returns in the range of 1 to

2 percent, and an annual volatility in the range between 30 and 40 percent. Because

the individual stock returns are cross-sectionally close to uncorrelated (ρ = −0.0195),
the variance of the equal weighted index is about half the variance of the individual

stock returns. All time series are heavily leptokurtic with double digit coefficients of

kurtosis. The variance and kurtosis of the capitalization weighted index are somewhat

higher than those of the equal weighted index due to their higher weight on the stock

with the larger mispricing and therefore higher probability of large returns.

Empirically observed stock returns are in general positively correlated, which is not

replicated by the simulations presented here under the simplifying assumption of equal

constant fundamental values for both stocks. If we had assumed their intrinsic values

to follow correlated unit root processes, uncorrelatedness in the current setup would

presumably have translated into identical correlations of fundamental and trading re-

turns. The model may therefore very well be consistent with the positively correlated

returns observed in real equity markets, as far as fundamental values are positively

correlated. The positive cross-sectional correlation between stocks would just drop out

from the list of behaviourally explained stylized facts and instead be attributed to eco-

nomic facts such as exposure to similiar risk factors etc. In any case, I am not aware

of any order-based study, which would have reported cross-sectionally uncorrelated or

even positively correlated return series, as the findings from empirically oberved equity

returns would require.

Figures 15 and 16 demonstrate that the outbreaks of volatility in trading returns are

related to the number of stocks owned by chartists in a similar way as in the simulation
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Figure 15. Logreturns and traders inventories in stock 1 (upper two panels) and stock
2 (lower two panels) for tc = 1. The dark solid lines denote chartist hold-
ings, and the light dotted lines fundamentalist holdings in the respective
stock.
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Figure 16. Index returns and traders inventories for tc = 1. The dark solid lines
denote chartist holdings, and the light dotted lines fundamentalist holdings
aggregated over both stocks.
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Table 17. Probability values of falsely rejecting H0 : ρ ≥ 1 in Dickey-Fuller regres-
sions including a constant for chartist holdings and without a constant for
fundamentalist holdings using the one-sided critical values by MacKinnon
(1996).

p-value Stock 1 Stock 2 Aggregate

Chartist Holdings 7.55 · 10−11 2.86 · 10−10 1.03 · 10−16
Fundamentalist Holdings 1.05 · 10−10 2.88 · 10−10 1.34 · 10−16

study by Lux & Marchesi (2000).140 The figures show chartists and fundamentalists

holdings normalized at tc = 1 (choosing any other value of tc just changes the scale of

the plot) together with the return series of the associated stock and the stock indices,

respectively, for comparison. It can be seen that periods of high volatility tend to

coincide with above average chartist positions. Volatility clusters occur typically for

large chartist holdings because these usually coincide with only a few investors pursuing

a fundamentalist strategy in the relevant stock, which was seen in equation (5.3) to

speed up price changes.

Note that contrary to the simulations of the order-based setup of Lux & Marchesi

discussed in section 4.3.2, the trader holdings are stationary in levels in this model,

because traders holdings rather than orders have been linked to the level stationary

mispricings and trader populations in equation (5.1). As is evident from table 17,

the presence of a unit root is strongly rejected in all tests of any traders positions.

This confirms our original conjecture that the risk of building up infinite inventories

is not present in our model, consistent with the conservation of the number of shares

discussed on page 118.

Consider finally the wealth dynamics for the two types of traders illustrated in figure

17. The upper panel contains the amount of cash aggregated by the chartist and

fundamentalist subpopulations, whereas the lower panel includes also the market value

of the stocks. It is immediately evident from both plots that chartists loose their money

to fundamentalists, as was the case in the simulations of the model by Lux & Marchesi

(2000). While one might again be tempted to conclude that chartist will go bankrupt

and disappear, this need not necessarily be so for the same reasons as mentioned earlier

140see figures 1 to 4 in section 4.3.2.
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Figure 17. Aggregate cash and total wealth for chartists (dark solid line) and funda-
mentalists (light dotted line).
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Table 18. Median estimates of the tail index over ten samples of 2,000 observations
each and the range of estimates for common choices of the tail region.

Asset 2.5%tail 5%tail 10%tail
min median max min median max min median max

Stock 1 2.55 4.49 5.71 2.25 3.68 4.53 1.95 3.15 3.64
Stock 2 2.76 4.28 5.16 2.74 3.70 4.37 2.13 3.15 3.60
Index (EW) 2.68 4.41 5.58 2.89 3.82 4.81 2.27 3.18 3.66
Index (CW) 1.92 4.30 5.62 2.13 3.72 4.34 1.85 2.88 3.55

in the discussion of those simulations on page 113.

In the remainder of this section I shall demonstrate that the model of section 5.1 is

capable of reproducing the stylized facts of financial returns in much the same way

as Lux & Marchesi (2000), applying the same battery of tests to them as they did.

Consider first the fat tail property. The kurtosis for the return series of the returns

series of the individual stocks and the stock indices were already given in table 16. All

of them were double digit numbers consistent with empirical findings.

As regards the tail index of the series, I follow Lux and Marchesi in splitting each of

our datasets into 10 subsamples of 2,000 observations, and applying the Hill estimator

with varying cut-off values to each of them, using again the algorithm of appendix

A2. The results are presented in table 18. We find tail indices somewhere between 2

and 5 with increasing estimates for decreasing tail size, just like in their study and in

harmony with empirical findings.141

Consider next the autocorrelation diagram of raw, squared and absolute returns for

the two stocks and indices in figure 18. Similar to Lux & Marchesi and consistent with

empirical findings, squared and absolute returns show much higher autocorrelations

than raw returns with only minor fluctuations around zero.142 Autocorrelation coeffi-

cients of absolute returns do not even decay to zero when considering 300 lags, which

is consistent with both empirically observed data and long memory in return volatility.

141see table 2 on page 97 and section 2.4.
142see figure 6 on page 101 and section 2.6.
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Figure 18. Autocorrelation diagram of absolute (dark solid line), squared (light
dashed line) and raw returns (dark dashed line) over 300 lags.

Table 19. Estimates of the long memory parameter d for squared returns (upper panel)
and absolute returns (lower panel) for both stocks, the equal weighted in-
dex, and the capitalization weighted index over the full sample of 20,000
observations and over 10 subsamples of 2,000 observations each. The last
column contains the number of significantly positive estimated long mem-
ory parameters at a significance level of 5%. All estimates of d over the full
sample are significantly positive.

Squared d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Stock 1 0.27 0.31 0.56 0.90 8
Stock 2 0.40 0.27 0.56 0.77 9
Index (EW) 0.35 0.21 0.51 0.74 8
Index (CW) 0.37 0.29 0.58 0.69 8

Absolute d̂ full 10 samples # d̂ sign. > 0

Returns sample min(d̂) median(d̂) max(d̂) in 10 samples

Stock 1 0.46 0.40 0.65 0.73 9
Stock 2 0.49 0.41 0.60 0.86 9
Index (EW) 0.48 0.22 0.55 0.74 7
Index (CW) 0.41 0.33 0.61 0.83 7
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In order to test formally for long memory in return volatility, I follow again Lux &

Marchesi in subdividing all datasets into 10 subsamples of 2,000 observations and

applying the Geweke/Porter-Hudak estimator of the fractional differencing parameter d

of a fractionally integrated ARMAmodel to each of them, using the algorithm presented

in appendix A3. Similar to their study, the results presented in table 19 indicate

evidence for long-term dependence with d estimated significantly larger than zero for

most of the tests. Many of the estimates fall even into the region d > 0.5 indicating

explosive volatility processes as in their study.143 However, when using the full datasets,

all estimates remain below 0.5 but significantly positive, as they should for stationary

long memory processes.

143refer to tables 4 to 7 in section 4.3.2.



ACTA WASAENSIA 137

6 Conclusion

I have extended the univariate artificial market by Lux & Marchesi (2000) into a

multivariate setup by including a second risky asset and a risk free bond. The order-

based trading strategies of their model were replaced by corresponding position-based

strategies in order to reconcile it better with the position-concerned trading behaviour

in real markets and to avoid the unrealistic possibility of unlimited traders inventories.

In order to add further realism to the model, asset allocation and security selection were

modeled as two separate decision processes, in line with common practice in financial

institutions.

The simulated return series of this artificial market share most of the stylized facts

of financial returns. Serially uncorrelated returns with volatility clustering, leptokur-

tic return distributions with realistic tail indexes, and long memory in squared and

absolute returns were all observed, both for the individual stocks and for the stock in-

dexes. Assuming constant intrinsic values for both stocks, the individual stock returns

were found to be close to cross-sectionally uncorrelated.

I have argued that the absence of positive cross-sectional correlations in simulated stock

returns and unit-roots in their prices was solely due to the simplifying assumption of

constant intrinsic values. As a side effect it was shown that the original claimed capacity

of the model by Lux & Marchesi (2000) to produce unit-root prices even under the

assumption of constant fundamental values, was probably due to a flawed application

of the Dickey Fuller test. Therefore I have concluded that the unit-root property

of prices like the positive correlation between stock returns should be attributed to

economic fundamentals rather than behavioural effects from the interaction of traders.

Future work will extend the results of this study to multiple stocks, whose intrinsic

values follow unit root processes of varying correlation structure.
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Granger, C. W. J. & T. Teräsvirta (1999). A simple nonlinear time series model with

misleading linear properties. Economics Letters 62, 161—165.

Grau-Carles, P. (2000). Empirical evidence of long-range correlations in stock returns.

Physica A 287, 396—404.



ACTA WASAENSIA 153

Gray, J. B. & D. W. French (1990). Empirical comparison of distributional models for

stock index returns. Journal of Business Finance and Accounting 17:3, 451—459.

Grossman, S. J. & J. E. Stiglitz (1980). On the impossibility of informationally efficient

markets. American Economic Review 70, 393—408.

Hagerman, R. L. (1978). More evidence on the distribution of security returns. Journal

of Finance 33:4, 1213—1221.

Hakansson, N., J. Kunkel & J. Ohleson (1982). Suffient and necessary conditions for

information to have social value in pure exchange. Journal of Finance 37:5, 1169—

1181.

Haken, H. (1983). Synergetics: An Introduction, volume 1 of Springer Series in Syn-

ergetics. Springer, Berlin, 3 edition.

Hansen, L. P. (1982). Large sample properties of generalized method of moments

estimators. Econometrica 50:4, 1029—1054.

Harris, L. (1986). Cross-security tests of the mixture of distributions hypothesis. Jour-

nal of Financial and Quantitative Analysis 21:1, 39—46.
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A Appendix

A1 Matlab code for replication of the simulation study by
Lux & Marchesi

1 function returns = LM2000(T)
2 % LM2000 replicates Lux/Marchesi (2000) IJTAF 3(4), 675-702
3 % SYNTAX: RETURNS = LM2000(T)
4 % INPUT: T = scalar number of return observations to simulate
5 % OUTPUT: RETURNS = (T*1) simulated logreturns
6 %
7 % NOTE: Choice of parameter set by uncommenting (that is,
8 % removing the leading % in front of) the relevant
9 % block titled ’Parameter set I’ to ’Parameter set IV’.
10 %
11 % written by Bernd Pape, University of Vaasa, Finland
12

13 tic; %start clock
14

15 % initialize random variables (Statistics Toolbox User Guide p. 2-11)
16 state = 137;
17 rand(’state’, state);
18 randn(’state’, state);
19

20

21 % Technical parameters
22

23 steps = 500; %number of microsteps per integer time step
24 plag = 100; %number of microsteps in determination of pdot
25

26

27 % Constant model parameters:
28

29 N = 500; %number of agents
30 nmin = 4; %minimum number of agents in each strategy
31 pf = 10; %fundamental price
32 r = 0.004; %nominal dividends of the asset
33 R = 0.0004; %ecomonies’ average rate of return
34

35

36 % Parameter set I:
37

38 v1 = 3; %integer time frequency of optimist/pessimist revaluation
39 v2= 2; %integer time frequency of chartist/fundament. revaluation
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40 beta = 6; %reaction speed of the auctioneer in integer time steps
41 tc = 10/N; %trading volume of average chartist
42 tf = 5/N; %trading volume of avg. fund. on 1 currency unit mispricing
43 a1 = 0.6; %importance of opinion index x for chartist expectation
44 a2 = 0.2; %importance of price change pdot for chartist expectation
45 a3 = 0.5; %importance of profit differentials for c/f switches
46 s = 0.75; %discount factor
47 sigma = 0.05; %imprecision in excess demand perception
48

49

50 % % Parameter set II:
51 %
52 % v1 = 4; %integer time frequency of optimist/pessimist revaluation
53 % v2= 1; %integer time frequency of chartist/fundament. revaluation
54 % beta = 4; %reaction speed of the auctioneer in integer time steps
55 % tc = 7.5/N; %trading volume of average chartist
56 % tf = 5/N; %trading volume of avg. fund. on 1 currency unit mispricing
57 % a1 = 0.9; %importance of opinion index x for chartist expectation
58 % a2 = 0.25; %importance of price change pdot for chartist expectation
59 % a3 = 1; %importance of profit differentials for c/f switches
60 % s = 0.75; %discount factor
61 % sigma = 0.1; %imprecision in excess demand perception
62

63

64 % % Parameter set III:
65 %
66 % v1 = 0.5; %integer time frequency of optimist/pessimist revaluation
67 % v2= 0.5; %integer time frequency of chartist/fundament. revaluation
68 % beta = 2; %reaction speed of the auctioneer in integer time steps
69 % tc = 10/N; %trading volume of average chartist
70 % tf = 10/N; %trading volume of avg. fund. on 1 currency unit mispricing
71 % a1 = 0.75; %importance of opinion index x for chartist expectation
72 % a2 = 0.25; %importance of price change pdot for chartist expectation
73 % a3 = 0.75; %importance of profit differentials for c/f switches
74 % s = 0.8; %discount factor
75 % sigma = 0.1; %imprecision in excess demand perception
76

77

78 % % Parameter set IV:
79 %
80 % v1 = 2; %integer time frequency of optimist/pessimist revaluation
81 % v2= 0.6; %integer time frequency of chartist/fundament. revaluation
82 % beta = 4; %reaction speed of the auctioneer in integer time steps
83 % tc = 5/N; %trading volume of average chartist
84 % tf = 5/N; %trading volume of avg. fund. on 1 currency unit mispricing
85 % a1 = 0.8; %importance of opinion index x for chartist expectation
86 % a2 = 0.2; %importance of price change pdot for chartist expectation
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87 % a3 = 1; %importance of profit differentials for c/f switches
88 % s = 0.75; %discount factor
89 % sigma = 0.05; %imprecision in excess demand perception
90

91

92

93 % Initialization of aggregated trading volume
94

95 Tc = N*tc; %aggregated chartists trading volume
96 Tf = N*tf; %aggreg. fundamentalists trading volume per unit mispricing
97

98

99 % Initialization of vector and matrix dimensions
100

101 precent = repmat(pf,plag,1); %(plag*1) vector of recent prices
102 phist = zeros(T,1); %(T*1) vector of price history at integer time steps
103 xhist = zeros(T,1); %(T*1) vector of opinion index history
104 zhist = zeros(T,1); %(T*1) history of fraction of chartists
105

106 hchist = zeros(T,1); %(T*1) history of chartist holdings
107 hfhist = zeros(T,1); %(T*1) history of fundamentalist holdings
108 cchist = zeros(T,1); %(T*1) history of chartist cash
109 cfhist = zeros(T,1); %(T*1) history of fundamentalist cash
110

111

112 expU = zeros(3,2); %(3*2) potential exponentials and their inverses
113

114

115 % Upper threshold for fraction of chartists for stationary dynamics
116 % from solving quadratic equation (condition 1, page 686) for z
117

118 a = 2*beta*Tc*(a2-a3/pf); %quadratic term in z
119 b = 2*v1*(a1-1)+beta*(2*a3*Tc/pf+Tf); %linear term in z
120 zmax = sqrt((b/(2*a))^2+beta*Tf/a)-b/(2*a); %upper crossing with 0
121

122

123 % Randomly initialize population of trading strategies
124 % with at least nmin agents in every stratgy
125

126 % number of chartists is random number between 0 and zmax*N,
127 % but not less than 2*nmin and not more than N-nmin
128 nc = min([max([fix(rand*zmax*N) 2*nmin]) N-nmin]);
129 nf = N-nc; %number of fundamentalists
130 % number of optimists is random number between 0 and nc,
131 % but not less than nmin and not more than nc-nmin
132 np = min([max([round(rand*nc) nmin]) nc-nmin]);
133 nm = nc-np; %number of pessimistic chartists
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134

135

136 % Initialization of state variables
137

138 p = pf; %(scalar) trading price initialized at fundamental price
139 x = (np-nm)/nc; %(scalar) opinion index [-1,1]
140 z = nc/N; %(scalar) chartist index [0,zmax], zmax<1
141 pdot = 0; %(scalar) approx. derivative of trading price wrt. time
142

143 chold = 0; %(scalar) stocks owned by representative chartist
144 fhold = 0; %(scalar) stocks owned by repr. fundamentalist
145 ccash = 0; %(scalar) cash owned by representative chartist
146 fcash = 0; %(scalar) cash owned by repr. fundamentalist
147

148

149 % Simulation loop with (p,x,z) recording at integer time steps
150

151 for t = 1:T %start outer loop over integer time steps
152

153 for st = 1:steps %start inner loop over micro time steps
154

155 % Calculation of scalar strategy changing potentials
156 U1 = a1*x+a2*pdot/v1; %optimist/pessimist potential (p.682)
157 oprofit = (r+pdot/v2)/p-R; %optimist profit = pessimist loss
158 fprofit = s*abs((pf-p)/p); %fundamentalists profit (p.683)
159 U21 = a3*(oprofit-fprofit); %optimist/fundam. potential (p.683)
160 U22 = -a3*(oprofit+fprofit);%pessim./fundam. potential (p.683)
161

162 % (3*2) exponentials of potentials and of negative potentials
163 expU(:,1) = exp([U1; U21; U22]); %exponentials of potentials
164 expU(:,2) = ones(3,1)./expU(:,1); %their inverses = exp(-U)
165

166 % Calculation of (1*2)/(2*2) population transition probabilities
167 ppm = v1*nc/N*expU(1,:)/steps; %(1*2) [pi_+-, pi_-+] (p.682)
168 pcf = v2/N*[np nf; nm nf].*expU(2:3,:)/steps; %[+f,f+;-f,f-](683)
169

170 %(1*2) binomial draws of agents leaving their strategy
171 npout = [fastbin(np, ppm(2)) fastbin(np, pcf(1,2))]; %[-+,f+]
172 nmout = [fastbin(nm, ppm(1)) fastbin(nm, pcf(2,2))]; %[+-,f-]
173 nfout = [fastbin(nf, pcf(1,1)) fastbin(nf, pcf(2,1))];%[+f,-f]
174

175 % Do not allow less than nmin agents in any strategy
176 if any([np-sum(npout) nm-sum(nmout) nf-sum(nfout)]<nmin)
177 while np-sum(npout)<nmin
178 npout = max([npout-ones(1,2);zeros(1,2)]);
179 end
180 while nm-sum(nmout)<nmin
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181 nmout = max([nmout-ones(1,2);zeros(1,2)]);
182 end
183 while nf-sum(nfout)<nmin
184 nfout = max([nfout-ones(1,2);zeros(1,2)]);
185 end
186 end
187

188 % Update of the strategy populations
189 np = np+nmout(1)+nfout(1)-sum(npout); %inflow m,f - outflow
190 nm = nm+npout(1)+nfout(2)-sum(nmout); %inflow p,f - outflow
191 nf = nf+npout(2)+nmout(2)-sum(nfout); %inflow p,m - outflow
192 nc = np + nm; % number of chartists = optimists + pessimists
193

194 % Keep fraction of chartists below zmax
195 zrel = nc/(N*zmax); %chartist index z as a fraction of zmax
196 if zrel > 1 %if more chartists than allowed
197 np = fix(np/zrel); %reduce number of optimists
198 nm = fix(nm/zrel); %reduce number of pessimists
199 nc = np + nm; %update number of chartists
200 nf = N - nf; %update number of fundamentalists
201 end
202

203 % Calculation of excess demand (Lux p.684)
204 EDc = (np-nm)*tc; %excess demand by chartists
205 EDf = nf*tf*(pf-p); %excess demand by fundamentalists
206 ED = EDc + EDf; %overall excess demand
207

208 % Calculation of new aggregate holdings
209 chold = chold + EDc; %new aggregate chartist holdings
210 fhold = fhold + EDf; %new aggregate fundamentalist holdings
211

212 % Update of the trading price p
213 ppadj = beta*(ED+sigma*randn)*100/steps;%price adjust. probab.
214 p=p+sign(ppadj)*(abs(ppadj)>rand)/100; %adjustment unit 1 cent
215

216 % Update of aggregate traders cash
217 ccash = ccash - EDc*p; %new chartists aggregate chash
218 fcash = fcash - EDf*p; %new fundamentalists aggr. cash
219

220 % Update of pdot and precent
221 pdot = steps*(p-precent(1))/plag; %=dp/dt, dt=plag/steps
222 precent(1:plag-1)=precent(2:plag); %move recent price history
223 precent(plag) = p; %insert current price
224

225 % Update of the remaning state variables x and z
226 x = (np-nm)/nc; %opinion index
227 z = nc/N; %chartist index
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228

229 end % end of inner loop over micro time steps
230

231 % Upadate history of state variables at integer time steps
232 phist(t) = p; %(T*1) trading price history
233 xhist(t) = x; %(T*1) opinion index history
234 zhist(t) = z; %(T*1) chartist index history
235

236 % Upate history of traders’ holdings and cash
237 hchist(t) = chold; %(T*1) chartist holdings history
238 hfhist(t) = fhold; %(T*1) fundamentalist holdings history
239 cchist(t) = ccash; %(T*1) chartist cash history
240 cfhist(t) = fcash; %(T*1) fundamentalist cash history
241

242

243 end % end of outer loop over integer time steps
244

245

246 % Claculate logreturns
247

248 lnp = log([pf; phist]); %((T+1)*1) vector of logarithmic prices
249 rhist = lnp(2:T+1)-lnp(1:T); %(T*1) vector of logreturns
250

251

252 % Calculate history of traders wealth
253

254 cwealth = hchist.*phist + cchist; %(T*1) chartist wealth
255 fwealth = hfhist.*phist + cfhist; %(T*1) fundamentalist wealth
256

257

258 % Plot history of Lux’ state variables
259

260 figure;
261 subplot(4,1,1), plot(phist), title(’Trading Price’);
262 subplot(4,1,2), plot(rhist), title(’Logreturns’);
263 subplot(4,1,3), plot(zhist); title(’Chartist Index’);
264 subplot(4,1,4), plot(xhist); title(’Opinion Index’);
265

266

267 % Plot history of traders holdings and wealth
268

269 figure;
270 subplot(2,1,1), plot([hchist,hfhist]), title(’Traders holdings’);
271 subplot(2,1,2), plot([cwealth,fwealth]), title(’Traders wealth’);
272

273

274 % Plot history of marketmaker holdings and wealth
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275

276 figure;
277 subplot(2,1,1), plot(-(hchist+hfhist)), title(’Market maker holdings’);
278 subplot(2,1,2), plot(-(cwealth+fwealth)), title(’Market maker wealth’);
279

280

281 % Produce function output
282

283 returns = rhist; %(T*1) simulated logreturns
284

285 toc %end clock
286

287

288 function k = fastbin(n,p)
289 %FASTBIN generates binomial random variates optimized for speed
290 %K = FASTBIN(N,P) generates a random number from the
291 %binomial distribution with sample size N and probability P.
292 %Uses the BINV algorithm described in:
293 %Voratas Kachitvichyanukul and Bruce W. Schmeiser (1988):
294 %Binomial Random Variate Generation
295 %Communications of the ACM 31, 216-222
296 %
297 % written by Bernd Pape
298

299 %BINV algorithm starts here
300 %Step 1
301 q = 1-p; s = p/q; a = (n+1)*s; r = q^n;
302

303 %Step 2
304 u = rand; k = 0;
305

306 %Step 3 + 4
307 while u > r
308 u = u - r;
309 k = k + 1;
310 r = ((a/k)-s)*r;
311 end
312 %end of BINV algorithm
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A2 Matlab code for tail index estimation

1 function [k,summary,alpha] = tailtest(ret,nobs)
2 % TAILTEST Hill estimates of tail index and kurtosis
3 %--------------------------------------------------------------
4 % USAGE: [K,SUMMARY,ALPHA] = TAILTEST(RET,NOBS) performs
5 % LENGTH(RET)/NOBS Hill estimates of the tail index upon NOBS
6 % observations of the abolute value of the return series RET.
7 % The length of RET must be an integer multiple of NOBS.
8 % The default value of NOBS is 2000.
9 %--------------------------------------------------------------
10 % OUTPUT:
11 % K is the kurtosis estimate for the full return series RET.
12 % ALPHA is a structure of Hill estimates for the tail index:
13 % ALPHA.P025: tail index based upon upper 2.5% tail of NOBS
14 % ALPHA.P05: tail index based upon upper 5% tail of NOBS
15 % ALPHA.P10: tail index based upon upper 10% tail of NOBS
16 % All fields of ALPHA are ((LENGTH(RET)/NOBS)*1) vectors.
17 % SUMMARY is a (3*4) matrix containing the minimum, median
18 % and maximum tail estimate for each of the three thresholds.
19 %--------------------------------------------------------------
20 % REFERENCE:
21 % Buce M. Hill: A simple general appraoch to inference
22 % about the tail of a distribution (1975),
23 % Annals of Statistics 3(5), 1163-1174
24 %
25 % NOTE: Uses an algorithm taken from the command HILLPLOT
26 % of the open source EVIM software package, developed by
27 % Ramazan Gencay, Faruk Selcuk and Aburrahman Uluglyagci,
28 % available from http://www.bilkent.edu.tr/~faruk.
29 %
30 % written by Bernd Pape
31

32 % Check number of input arguments
33

34 if nargin == 0 or nargin > 2
35 error(’Wrong number of input arguments to TAILTEST.’)
36 elseif nargin == 1
37 nobs = 2000; %default number of observations per test
38 end
39

40

41 % Check whether length of RET is an integer multiple of NOBS
42

43 if mod(length(ret),nobs)
44 error(’The length of RET must be an integer multiple of NOBS.’)
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45 end
46

47

48 % Initialize output variables
49

50 tests = length(ret)/nobs; %# estimates to be produced
51 alpha.p025 = zeros(tests,1); %tail index with 2.5% threshold
52 alpha.p05 = zeros(tests,1); %tail index with 5% threshold
53 alpha.p10 = zeros(tests,1); %tail index with 10% threshold
54

55

56 % Start loop over number of Hill estimates to be produced
57

58 for test = 1:tests
59

60 % Select absolute return window from return series
61 data = abs(ret((test-1)*nobs+1:test*nobs)); %(NOBS*1)
62

63 % Calculate tail index estimates (see code in HILLPLOT)
64 ordered = flipud(sort(data)); %(NOBS*1) upper order stat.
65 ordered = ordered(ordered>0); %restrict to strictly pos.
66 n = length(ordered); %length of restricted data
67 loggs = log(ordered); %(N*1) logarithms of above
68 avesumlog = cumsum(loggs)./(1:n)’; %(N*1) avg.logs
69 diffs = avesumlog-loggs; %(N*1) xi-estimates
70 diffs = [NaN; diffs(2:n)]; %replace 0 with NaN
71 hill = 1./diffs; %(N*1) Hill estimates
72

73 % Read out relevant thresholds
74 alpha.p025(test) = hill(floor(0.025*n)); %2.5% thresh.
75 alpha.p05(test) = hill(floor(0.05*n)); %5% thresh.
76 alpha.p10(test) = hill(floor(0.1*n)); %10% thresh.
77

78 end %End of loop over number of Hill estimates to be produced
79

80 k = kurtosis(ret); %Sample kurtosis of full return series
81

82 % Generate summary matrix
83 alphamat = [alpha.p025 alpha.p05 alpha.p10]; %(tests*3)
84 minalpha = min(alphamat,[],1); %(1*3) smallest alpha found
85 medalpha = median(alphamat,1); %(1*3) median alpha found
86 maxalpha = max(alphamat,[],1); %(1*3) largest alpha found
87 summary = [[0.025; 0.05; 0.1] minalpha’ medalpha’ maxalpha’];
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A3 Matlab code for log-periodogram regression

1 function[summary,rejections,d] = dtest(y,nobs,ci)
2 % DTEST log-periodogram regression (Geweke/Porter-Hudak)
3 %----------------------------------------------------------------
4 % USAGE: [SUMMARY,REJECTIONS,D] = DTEST(Y,NOBS,CI) performs
5 % LENGTH(Y)/NOBS log-periodogram regressions to determine the
6 % fractional differencing parameter d of the time series Y.
7 % The length of Y must be an integer multiple of NOBS.
8 % The default value of NOBS is 2000.
9 %
10 % DTEST performs also LENGTH(Y)/NOBS two-sided tests of the
11 % null hypothesis H0: d=0 with confidence interval CI.
12 % The default value of CI is 0.9, equivalent to two
13 % one-sided tests with rejection probability 5%.
14 %----------------------------------------------------------------
15 % OUTPUT:
16 % SUMMARY (1*3): lowest, median, and highest estimate of d
17 % REJECTIONS(1*2):percentage of rejections indicating d<0, d>0
18 % D(LENGTH(Y)/NOBS): fractional differencing parameter esimates
19 %----------------------------------------------------------------
20 % REFERENCES:
21 % John Geweke and Susan Porter-Hudak: The Estimation
22 % and Application of Long Memory Time Series (1983),
23 % Journal of Time Series Analysis 4 (4) pp. 221-238;
24 % Thomas Lux: Long-term dependence in financial prices,
25 % evidence from the German stock market (1996),
26 % Applied Economic Letters 3 pp. 701-706;
27 % James D. Hamilton: Time Series Analysis (1994) p.158
28 %
29 % NOTE: calls the functions ACF and OLS from the open source
30 % ECONOMETRICS TOOLBOX by James P. LeSage available from
31 % http://www.econ.utoledo.edu.
32 %
33 % written by Bernd Pape
34

35 % Check number of input arguments
36

37 if nargin == 0 or nargin > 3
38 error(’Wrong number of input arguments to DTEST.’)
39 elseif nargin < 3
40 ci = 0.9; %default confidence interval is 90%
41 if nargin < 2
42 nobs = 2000;%default number of observations per test
43 end
44 end
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45

46

47 % Check whether length of Y is integer multiple of NOBS
48

49 if mod(length(y),nobs)
50 error(’The length of Y must be an integer multiple of NOBS.’)
51 end
52

53

54 % Initialize output variables
55

56 tests = length(y)/nobs; %# estimates to be produced
57 d = zeros(tests,1); %(test*1) estimates for d
58 rejections = zeros(1,2); %(1*2) % rejections of H0 vs d<0, d>0
59

60

61 % Generate independent variables for log-periodogramm regressions
62

63 m = floor(sqrt(nobs)); %# lowest Fourier freq. considered
64 j = (1:m)’; %(m*1) Fourier frequency indexes
65 lambda = 2*pi*j/nobs; %(m*1) Fourier frequencies
66 ind = [ones(m,1) log(4*sin(lambda/2).^2)]; %(m*2) indep. var.
67

68

69 % Pre-calculate cosine factors for calculation of periodogram
70

71 cosine = cos(lambda*(1:nobs-1)); %(m*(nobs-1)) Hamilton p.158
72

73

74 % Start loop over # log-periodogram regressions to be performed
75

76 for test = 1:tests
77

78 %Calculate periodogram of sub-sample
79 data = y((test-1)*nobs+1 : test*nobs); %(nobs*1) ts window
80 acfproc = acf(data, nobs-1); %structure from calling acf
81 rho = acfproc.ac; %((nobs-1)*1) autocorrelation coeff.’s
82 I = var(data)/(2*pi)*(1+2*cosine*rho); %(m*1) periodogram
83

84 %Perform log-periodogram regression
85 dep = log(I); %(m*1) dependent variable
86 regression = ols(dep,ind); %structure from calling ols
87 d(test) = -regression.beta(2); %(scalar) slope coefficient
88

89 end %end of loop over # log-periodogram regressions
90

91
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92 % Calculate # rejections of H0: d=0 using Lux (1996) p.704
93

94 sqdev = ind(:,2)-sum(ind(:,2))/m; %(m*1) squared deviations
95 sigma = pi/sqrt(sqdev’*sqdev); %asympt. stdev. of d est.
96 critd = norminv([0.5-ci/2 0.5+ci/2],0,sigma); %critical values
97 rejections(1) = sum(d<critd(1))/tests; %rejections favouring d<0
98 rejections(2) = sum(d>critd(2))/tests; %rejections favouring d>0
99

100 % Calculate summary statistics
101

102 summary = [min(d) median(d) max(d)]; %lowest, median, higest d
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A4 Matlab code for Dickey-Fuller test including a constant

1 function [rho,taustat,pctile_c,tests] = df1976c(y)

2 % DF1976C Dickey Fuller test including a constant

3 %---------------------------------------------------------------

4 % USAGE: [RHO,TAUSTAT,PCTILE_C,TESTS] = DF1976C(Y)

5 % performs TESTS=LENGTH(Y)/500 Dickey Fuller tests including

6 % a constant upon 500 observations of the time series Y

7 % using the critical values from Fuller (1976).

8 % The length of Y must be an integer multiple of 500.

9 % NOTE: It’s also possible to use noninteger multiples of 500

10 % by corresponding modification of the first line of

11 % executable code: nobs = (new # observations in each test),

12 % but the critical values for 500 observations will still

13 % be used, which differ only in the last digit from inf. obs.

14 %---------------------------------------------------------------

15 % OUTPUT:

16 % RHO is a ((LENGTH(Y)/500)*1) vector of estimated values

17 % for rho in the regression y_t = c + rho*y_{t-1} + e_t.

18 % TAUSTAT is a ((LENGTH(Y)/500)*1) vector of DF-statistics.

19 % PCTILE_C is a structure containing the number of tests

20 % resulting in the following percentile of the asymptotic

21 % distribution of RHO under the null hypothesis rho = 1

22 % using the second panel of table 8.5.2 in Fuller (1976)

23 % PCTILE_C.LT025: P(RHO) < 0.025

24 % PCTILE_C.LT05: 0.025 <= P(RHO) < 0.05

25 % PCTILE_C.H0: 0.05 <= P(RHO) <= 0.95

26 % PCTILE_C.GT95: 0.95 < P(RHO) <= 0.975

27 % PCTILE_C.GT975: 0.975 < P(RHO)

28 %---------------------------------------------------------------

29 % REFERENCE:

30 % Wayne A. Fuller (1976): Introduction to statistical time series

31 % Table 8.5.2 (p.373) first/second panel = with/without constant

32 %

33 % NOTE: calls the function OLS from the open source

34 % ECONOMETRICS TOOLBOX by James P. LeSage available from

35 % http://www.econ.utoledo.edu.

36 %

37 % written by Bernd Pape

38

39

40

41 nobs = 500; %Fuller has only 25,50,100,250,500,inf observations

42
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43 %% Check whether length of Y is integer multiple of NOBS

44

45 if mod(length(y),nobs)

46 error(’The length of Y must be an integer multiple of 500.’)

47 end

48

49

50 % Initialize output variables

51

52 tests = length(y)/nobs; %number of tests to be performed

53 rho = zeros(tests,1); %(tests*1) estimated AR(1) coefficients

54 taustat = zeros(tests,1); %(tests*1) t-statistics of rho

55

56

57 % Start loop over number of DF tests to be performed

58

59 for test = 1:tests

60

61 % Generate input for regression

62 if test == 1 % NOBS-1 observations in first test

63 x = y(1:nobs-1); %((nobs-1)*1) lagged time series

64 x = [x, ones(nobs-1,1)]; %include constant

65 dy = y(2:nobs)-x(:,1); %((nobs-1)*1) change in time series

66 else % NOBS observations otherwise

67 x = y((test-1)*nobs : test*nobs-1); %lagged ts

68 x = [x, ones(nobs,1)]; %include constant

69 dy = y((test-1)*nobs+1 : test*nobs)-x(:,1); %change in ts

70 end

71

72 % Perform regression of change in ts upon lagged ts

73 regression = ols(dy,x); %perform regression

74 rho(test) = regression.beta(1) + 1; %estimated AR(1) coeff.

75 taustat(test) = regression.tstat(1);%t-statistics of y_{t-1}

76

77

78 end %end of loop over number of DF tests to be performed

79

80

81 % (TESTS*1) indicator vectors for percentile distribution

82 % with constant from second panel in Table 8.5.2 (p.373)

83

84 ltc025 = (taustat < -3.13); %true if pval < 0.025 (inf: -3.12)

85 ltc05 = (taustat < -2.87); %true if pval < 0.05 (inf: -2.86)

86 ltc95 = (taustat <= -0.07); %true if pval <= 0.95 (inf: -0.07)

87 ltc975 = (taustat <= 0.24); %true if pval <= 0.975 (inf: 0.23)
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88

89

90 % create PCTILE_C output structure (correct table: includes constant)

91

92 pctile_c.lt025 = sum(ltc025); %P(RHO) < 0.025

93 pctile_c.lt05 = sum(ltc05-ltc025); %0.025 <= P(RHO) < 0.05

94 pctile_c.H0 = sum(ltc95-ltc05); %0.05 <= P(RHO) <= 0.95

95 pctile_c.gt95 = sum(ltc975-ltc95); %0.95 < P(RHO) <= 0.975

96 pctile_c.gt975 = tests-sum(ltc975); %0.975 < P(RHO)

97

98

99 % Print range of RHO to command window

100 sprintf(’The range of RHO is %1.6f to %1.6f.’,min(rho),max(rho))
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A5 Matlab code for error detection in unit root tests

1 function [rho,taustat,pctile_nc,pctile_c,tests] = df1976(y)

2 % DF1976 Dickey Fuller test without constant or trend

3 %---------------------------------------------------------------

4 % USAGE: [RHO,TAUSTAT,PCTILE_NC,PCTILE_C,TESTS] = DF1976(Y)

5 % performs TESTS=LENGTH(Y)/500 Dickey Fuller tests without

6 % a constant upon 500 observations of the time series Y

7 % using the critical values from Fuller (1976).

8 % The length of Y must be an integer multiple of 500.

9 %---------------------------------------------------------------

10 % OUTPUT:

11 % RHO is a ((LENGTH(Y)/500)*1) vector of estimated values

12 % for rho in the regression y_t = rho*y_{t-1} + e_t.

13 % TAUSTAT is a ((LENGTH(Y)/500)*1) vector of DF-statistics.

14 % PCTILE_NC is a structure containing the number of tests

15 % resulting in the following percentile of the asymptotic

16 % distribution of RHO under the null hypothesis rho = 1

17 % using the correct table without constant in Fuller (1976):

18 % PCTILE_NC.LT025: P(RHO) < 0.025

19 % PCTILE_NC.LT05: 0.025 <= P(RHO) < 0.05

20 % PCTILE_NC.H0: 0.05 <= P(RHO) <= 0.95

21 % PCTILE_NC.GT95: 0.95 < P(RHO) <= 0.975

22 % PCTILE_NC.GT975: 0.975 < P(RHO)

23 % PCTILE_C is a structure containing the number of tests

24 % resulting in the following percentile of the asymptotic

25 % distribution of RHO under the null hypothesis rho = 1

26 % using the wrong(!) table with constant in Fuller (1976):

27 % PCTILE_C.LT025: P(RHO) < 0.025

28 % PCTILE_C.LT05: 0.025 <= P(RHO) < 0.05

29 % PCTILE_C.H0: 0.05 <= P(RHO) <= 0.95

30 % PCTILE_C.GT95: 0.95 < P(RHO) <= 0.975

31 % PCTILE_C.GT975: 0.975 < P(RHO)

32 %---------------------------------------------------------------

33 % REFERENCE:

34 % Wayne A. Fuller (1976): Introduction to statistical time series

35 % Table 8.5.2 (p.373) first/second panel = with/without constant

36 %

37 % NOTE: calls the function OLS from the open source

38 % ECONOMETRICS TOOLBOX by James P. LeSage available from

39 % http://www.econ.utoledo.edu.

40 %

41 % written by Bernd Pape

42
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43

44 nobs = 500; %Fuller has only 25,50,100,250,500,inf observations

45

46 % Check whether length of Y is integer multiple of NOBS

47

48 if mod(length(y),nobs)

49 error(’The length of Y must be an integer multiple of 500.’)

50 end

51

52

53 % Initialize output variables

54

55 tests = length(y)/nobs; %number of tests to be performed

56 rho = zeros(tests,1); %(tests*1) estimated AR(1) coefficients

57 taustat = zeros(tests,1); %(tests*1) t-statistics of rho

58

59

60 % Start loop over number of DF tests to be performed

61

62 for test = 1:tests

63

64 % Generate input for regression

65 if test == 1 % NOBS-1 observations in first test

66 x = y(1:nobs-1); %((nobs-1)*1) lagged time series

67 dy = y(2:nobs)-x; %((nobs-1)*1) change in time series

68 else % NOBS observations otherwise

69 x = y((test-1)*nobs : test*nobs-1); %lagged ts

70 dy = y((test-1)*nobs+1 : test*nobs)-x; %change in ts

71 end

72

73 % Perform regression of change in ts upon lagged ts

74 regression = ols(dy,x); %perform regression

75 rho(test) = regression.beta + 1; %estimated AR(1) coeff.

76 taustat(test) = regression.tstat; %t-statistics of y_{t-1}

77

78

79 end %end of loop over number of DF tests to be performed

80

81

82 % (TESTS*1) indicator vectors for percentile distribution

83 % without constant from first panel in Table 8.5.2 (p.373)

84

85 ltnc025 = (taustat < -2.23); %logical(1) if pval < 0.025

86 ltnc05 = (taustat < -1.95); %logical(1) if pval < 0.05

87 ltnc95 = (taustat <= 1.28); %logical(1) if pval <= 0.95
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88 ltnc975 = (taustat <= 1.62); %logical(1) if pval <= 0.975

89

90

91 % create PCTILE_NC output structure (correct table: no constant)

92

93 pctile_nc.lt025 = sum(ltnc025); %P(RHO) < 0.025

94 pctile_nc.lt05 = sum(ltnc05-ltnc025); %0.025 <= P(RHO) < 0.05

95 pctile_nc.H0 = sum(ltnc95-ltnc05); %0.05 <= P(RHO) <= 0.95

96 pctile_nc.gt95 = sum(ltnc975-ltnc95); %0.95 < P(RHO) <= 0.975

97 pctile_nc.gt975 = tests-sum(ltnc975); %0.975 < P(RHO)

98

99

100 % (TESTS*1) indicator vectors for percentile distribution

101 % with constant from second panel in Table 8.5.2 (p.373)

102

103 ltc025 = (taustat < -3.13); %logical(1) if pval < 0.025

104 ltc05 = (taustat < -2.87); %logical(1) if pval < 0.05

105 ltc95 = (taustat <= -0.07); %logical(1) if pval <= 0.95

106 ltc975 = (taustat <= 0.24); %logical(1) if pval <= 0.975

107

108

109 % create PCTILE_C output structure (wrong table: includes constant)

110

111 pctile_c.lt025 = sum(ltc025); %P(RHO) < 0.025

112 pctile_c.lt05 = sum(ltc05-ltc025); %0.025 <= P(RHO) < 0.05

113 pctile_c.H0 = sum(ltc95-ltc05); %0.05 <= P(RHO) <= 0.95

114 pctile_c.gt95 = sum(ltc975-ltc95); %0.95 < P(RHO) <= 0.975

115 pctile_c.gt975 = tests-sum(ltc975); %0.975 < P(RHO)

116

117

118 % Print range of RHO to command window

119 sprintf(’The range of RHO is %1.6f to %1.6f.’,min(rho),max(rho))
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A6 Matlab code for simulation of the allocation model in
chapter 5

1 function [stock1,stock2,ewindex,cwindex] = Allocation(T)
2 % ALLOCATION simulates Asset Allocation model
3 % SYNTAX: [STOCK1,STOCK2,EWINDEX,CWINDEX] = ALLOCATION(T)
4 % INPUT: T = scalar number of observations to simulate
5 % OUTPUT: STOCK1 = (T*1) logreturns of stock 1
6 % STOCK2 = (T*1) logreturns of stock 2
7 % EWINDEX = (T*1) logreturns of equal weighted index
8 % CWINDEX = (T*1) logreturns of cap. weighted index
9 %
10 % written by Bernd Pape, University of Vaasa, Finland
11

12

13 tic %start clock
14

15 % Technical Parameters
16

17 steps = 500; %nuber of microsteps per integer time step
18 N = 500; %number of traders
19

20 % Model Parameters
21

22 pf=zeros(1,2); %(1*2) logarithmic fundamental prices
23 v=0.001; %# stock/strategy revaluations per macro time step
24 vb=0.04; %# asset allocation revaluations p. macro time step
25 a=0.1; %strength of infection within stocks
26 ab=0.4; %strength of infection between stocks / bonds
27 l=0.5; %leverage parameter (tc/tf)
28 s=0.8; %discount factor for fundamentalist profits
29

30

31 % Initialization of vector and matrix dimensions
32

33 p=pf; %(1*2) vector of current trading prices
34 dp=zeros(1,2); %(1*2) price increments at micro time step
35 phist=zeros(T,2); %(T*2) logprice history at integer steps
36 Phist=zeros(T,2); %(T*2) trading price history at integer steps
37

38 c = zeros(1,2); %(1*2) current chartist utilities
39

40 nc=zeros(1,2); %(1*2) vector of current chartist populations
41 dnc=zeros(1,2); %(1*2) increments in chart. pop’s at microstep
42 nchist=zeros(T,2); %(T*2) history of chartist populations
43
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44 nf=zeros(1,2); %(1*2) vector of current fundamentalist populations
45 dnf=zeros(1,2); %(1*2) increments in fundam. pop’s at microstep
46 nfhist=zeros(T,2); %(T*2) history of fundamentalist populations
47

48 pmat=zeros(6,2); %(6*2) strategy transition prob’s in stocks
49 dnmat=zeros(6,2); %(6*2) stockinvestors changing strategy
50 %Entries in the matrices above:
51 % c1->c2 c2->c1
52 % f1->f2 f2->f1
53 % c1->f1 f1->c1
54 % c2->f2 f2->c2
55 % c1->f2 f2->c1
56 % c2->f1 f1->c2
57

58 pbmat = zeros(4,2); %(4*2) transitions between bonds and stocks
59 dnbmat= zeros(4,2); %(4*2) traders switching betw. bonds/ stocks
60 %Entries in the matrices above:
61 % b ->c1 c1 -> b
62 % b ->c2 c2 -> b
63 % b ->f1 f1 -> b
64 % b ->f2 f2 -> b
65

66

67 % Initialize random variables (Statistics Toolbox User Guide p. 2-11)
68

69 state = 137;
70 rand(’state’, state);
71 randn(’state’, state);
72

73

74 % Initialize strategy populations at equilibrium
75

76 nc0=fix(N*ones(1,2)/8); nc=nc0; %round towards lower integer
77 nf0=ceil(N*ones(1,2)/8); nf=nf0; %round towards higher integer
78 nb0=N-sum([nc0,nf0]); nb=nb0; %rest is bondinvestors
79

80

81 % Initialization of traders aggregate cash for tc=1, Pf0=exp(pf0)=1
82

83 ccash = zeros(1,2); %(1*2) implies chartist start wealth = nc
84 fcash = zeros(1,2); %(1*2) fundamentalist’s cash: no stocks at p=pf
85

86 cchist = zeros(T,2); %(T*1) history of chartist aggregate cash
87 cfhist = zeros(T,2); %(T*1) history of fundamentalist aggr. cash
88

89

90 %Simulation loop with price and population recording at integer steps



190 ACTA WASAENSIA

91

92 for t = 1:T %Start outer loop over integer time steps
93

94 for st = 1:steps %start inner loop over micro time steps
95

96 % Calculate traders utilities
97

98 c(1) = (nc(1)+nf(1)-nc(2)-nf(2))/N;
99 c(2) = -c(1); %(1*2) chartist utilities
100 f = s*abs(pf-p); %(1*2) fundamentalist utilities
101

102

103 % Fill probability matrix for transitions within stocks
104

105 pmat(1,1) = c(2) - c(1); % c1 -> c2
106 pmat(2,1) = f(2) - f(1); % f1 -> f2
107 pmat(3,1) = f(1) - c(1); % c1 -> f1
108 pmat(4,1) = f(2) - c(2); % c2 -> f2
109 pmat(5,1) = f(2) - c(1); % c1 -> f2
110 pmat(6,1) = f(1) - c(2); % c2 -> f1
111 pmat(:,2) = -pmat(:,1); % reverse direction of col. 1
112

113 pmat = (v/steps)*exp(a*pmat); %(6*2) transition prob’s
114

115

116 % Fill prob-matrix for transitions between stocks / bonds
117

118 ne = N - nb; %# equity investors
119 pbe = exp(ab*(ne-nb)/N); %p_BE: from bond to equity
120 pbmat(1:2,1) = nc’*(pbe/ne); % b -> c1; b -> c2
121 pbmat(3:4,1) = nf’*(pbe/ne); % b -> f1; b -> f2
122 pbmat(:,2) = repmat(1/pbe,4,1); % c1, c2, f1, f2 -> b
123

124 pbmat = (vb/steps)*pbmat; %(4*2) transition prob’s
125

126

127 % (6*2) draws of traders leaving their strategy w’in stocks
128

129 dnmat(1,1) = fastbin(nc(1), pmat(1,1)); % c1 -> c2
130 dnmat(1,2) = fastbin(nc(2), pmat(1,2)); % c2 -> c1
131 dnmat(2,1) = fastbin(nf(1), pmat(2,1)); % f1 -> f2
132 dnmat(2,2) = fastbin(nf(2), pmat(2,2)); % f2 -> f1
133 dnmat(3,1) = fastbin(nc(1), pmat(3,1)); % c1 -> f1
134 dnmat(3,2) = fastbin(nf(1), pmat(3,2)); % f1 -> c1
135 dnmat(4,1) = fastbin(nc(2), pmat(4,1)); % c2 -> f2
136 dnmat(4,2) = fastbin(nf(2), pmat(4,2)); % f2 -> c2
137 dnmat(5,1) = fastbin(nc(1), pmat(5,1)); % c1 -> f2
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138 dnmat(5,2) = fastbin(nf(2), pmat(5,2)); % f2 -> c1
139 dnmat(6,1) = fastbin(nc(2), pmat(6,1)); % c2 -> f1
140 dnmat(6,2) = fastbin(nf(1), pmat(6,2)); % f1 -> c2
141

142

143 % (4*2) draws of traders switching between stocks / bonds
144

145 dnbmat(1,1) = fastbin(nb, pbmat(1,1)); % b -> c1
146 dnbmat(2,1) = fastbin(nb, pbmat(2,1)); % b -> c2
147 dnbmat(3,1) = fastbin(nb, pbmat(3,1)); % b -> f1
148 dnbmat(4,1) = fastbin(nb, pbmat(4,1)); % b -> f2
149

150 dnbmat(1,2) = fastbin(nc(1), pbmat(1,2)); %c1 -> b
151 dnbmat(2,2) = fastbin(nc(2), pbmat(2,2)); %c2 -> b
152 dnbmat(3,2) = fastbin(nf(1), pbmat(3,2)); %f1 -> b
153 dnbmat(4,2) = fastbin(nf(2), pbmat(4,2)); %f2 -> b
154

155

156 % Calculation of stock population increments
157

158 dnc(1)= dnmat(1,2) + dnmat(3,2) + dnmat(5,2) + dnbmat(1,1) - ...
159 dnmat(1,1) - dnmat(3,1) - dnmat(5,1) - dnbmat(1,2);
160 dnc(2)= dnmat(1,1) + dnmat(4,2) + dnmat(6,2) + dnbmat(2,1) - ...
161 dnmat(1,2) - dnmat(4,1) - dnmat(6,1) - dnbmat(2,2);
162 dnf(1)= dnmat(2,2) + dnmat(3,1) + dnmat(6,1) + dnbmat(3,1) - ...
163 dnmat(2,1) - dnmat(3,2) - dnmat(6,2) - dnbmat(3,2);
164 dnf(2)= dnmat(2,1) + dnmat(4,1) + dnmat(5,1) + dnbmat(4,1) - ...
165 dnmat(2,2) - dnmat(4,2) - dnmat(5,2) - dnbmat(4,2);
166

167

168 % Update of trader populations
169

170 nc = nc + dnc; %(1*2) updated chartist populations
171 nf = nf + dnf; %(1*2) updated fundamentalist populations
172 nb = N - sum([nc nf]); %(scalar) upd. bond population
173

174

175 % Update of (1*2) trading prices
176

177 dp = (l*dnc + (pf-p).*dnf)./nf; %(1*2) price increments
178 p = p + dp; %(1*2) updated trading prices
179

180

181 % Update of traders cash
182

183 price = exp(p); %(1*2) ordinary trading price
184 ccash = ccash-dnc.*price; %(1*2) aggr. chartists cash
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185 fcash = fcash+dnc.*price; %(1*2) aggr. fundament. cash
186

187

188 end %end inner loop over micro time steps
189

190 % Update history of state variables at integer time steps
191

192 phist(t,:)=p; %(T*2) history of logarithmic trading prices
193 Phist(t,:)=price; %(T*2) history of ordinary trading prices
194 nchist(t,:)=nc; %(T*2) history of chartist populations
195 nfhist(t,:)=nf; %(T*2) history of fundamentalist populations
196

197

198 % Record history of cash
199

200 cchist(t,:) = ccash; %(scalar) chartists aggregate cash
201 cfhist(t,:) = fcash; %(scalar) fundamentalists aggr. cash
202

203

204 end %end outer loop over integer time steps
205

206

207 % Calculation of Return Series
208

209 %Individual logreturns
210 rhist = phist-[pf;phist(1:T-1,:)]; %(T*2) individual logreturns
211 corr = corrcoef(rhist); %(2*2) cross-correlation matrix of returns
212

213 %Equal weighted index returns
214 ret = exp(rhist); %(T*2) individual gross returns
215 ewret = mean(ret,2)-1; %(T*1) equally weighted index net-returns
216

217 %Capitalization weighted index returns
218 price = exp([pf; phist(1:T-1,:)]); %(T*2) lagged price history
219 weight = price./repmat(sum(price,2),1,2); %(T*2) cap. weigths
220 cwret = sum(weight.*ret,2)-1; %(T*1) cap-weighted index net-returns
221

222 %Index logreturns
223 ewlret = log(1+ewret); %(T*1) logreturns of equally weigthed index
224 cwlret = log(1+cwret); %(T*1) logreturns of cap-weighted index
225 avlret = mean(rhist,2); %(T*1) average logreturns
226

227

228 % Calculate history of traders holdings normalized at tc=1
229

230 hchist = nchist; %(T*2) chartist aggr. holdings history for tc=1
231 hfhist = nfhist.*(repmat(pf,T,1)-phist)/l; %(T*2) fund. holdings
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232

233

234 % Calculate history of traders wealth
235

236 cwealth = sum(hchist.*Phist+cchist,2); %(T*1) chartists wealth
237 fwealth = sum(hfhist.*Phist+cfhist,2); %(T*1) fundament. wealth
238

239

240 % Create graphical output
241

242 %Output 1: Trader Populations and Trading Prices
243 figure;
244 subplot(2,1,1),plot([nchist,nfhist]),title(’Population Values’);
245 subplot(2,1,2),plot(phist),title(’Trading Prices’);
246

247 %Output 2: Logreturns for asset 1
248 figure;
249 subplot(2,1,1),plot(rhist(:,1)),title({[’Logreturns Asset 1’];...
250 [’(Correlation with Asset 2 = ’,num2str(corr(1,2)),’)’]});
251 subplot(2,1,2),
252 plot(100*[hchist(:,1)./sum([hchist(:,1),hfhist(:,1)],2),...
253 hfhist(:,1)./sum([hchist(:,1),hfhist(:,1)],2)]),
254 title(’Asset 1 holdings in % (Chartists blue, Fundamentalists green)’);
255

256 %Output 3: Logreturns for asset 2
257 figure;
258 subplot(2,1,1),plot(rhist(:,2)),title({[’Logreturns Asset 2’];...
259 [’(Correlation with Asset 1 = ’,num2str(corr(1,2)),’)’]});
260 subplot(2,1,2),
261 plot(100*[hchist(:,2)./sum([hchist(:,2),hfhist(:,2)],2),...
262 hfhist(:,2)./sum([hchist(:,2),hfhist(:,2)],2)]),
263 title(’Asset 2 holdings in % (Chartists blue, Fundamentalists green)’);
264

265 %Output 4: Equal and capitalization weighted index logreturns
266 figure;
267 subplot(2,1,1),plot(ewlret),title(’Equal Weighted Index Logreturns’);
268 subplot(2,1,2),plot(cwlret),
269 title(’Capitalization Weighted Index Logreturns’);
270

271 %Output 5: Average Logreturn and holdings of the two stocks
272 figure;
273 subplot(2,1,1),
274 plot(avlret),title(’Average Logreturn’),
275 subplot(2,1,2),
276 plot(100*[sum(hchist,2)./sum([hchist,hfhist],2),...
277 sum(hfhist,2)./sum([hchist,hfhist],2)]),
278 title(’Traders holdings in % (Chartists blue, Fundamentalists green)’);
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279

280

281 %Output 6: Traders cash and wealth
282 figure;
283 subplot(2,1,1),plot([sum(cchist,2),sum(cfhist,2)]),
284 title(’Traders Cash (Chartists blue, Fundamentalists green)’);
285 subplot(2,1,2), plot([cwealth,fwealth]);
286 title(’Traders wealth (Chartists blue, Fundamentalists green)’);
287

288

289 % Provide function output
290

291 stock1 = rhist(:,1); %(T*1) logreturns of stock 1
292 stock2 = rhist(:,2); %(T*1) logreturns of stock 2
293 ewindex = ewlret; %(T*1) logreturns equal weighted index
294 cwindex = cwlret; %(T*1) logreturns cap. weighted index
295

296 toc %end clock
297

298

299 function k = fastbin(n,p)
300 %FASTBIN generates binomial random variates optimized for speed
301 %K = FASTBIN(N,P) generates a random number from the
302 %binomial distribution with sample size N and probability P.
303 %Uses the BINV algorithm described in:
304 %Voratas Kachitvichyanukul and Bruce W. Schmeiser (1988):
305 %Binomial Random Variate Generation
306 %Communications of the ACM 31, 216-222
307 %
308 % written by Bernd Pape
309

310 %BINV algorithm starts here
311 %Step 1
312 q = 1-p; s = p/q; a = (n+1)*s; r = q^n;
313

314 %Step 2
315 u = rand; k = 0;
316

317 %Step 3 + 4
318 while u > r
319 u = u - r;
320 k = k + 1;
321 r = ((a/k)-s)*r;
322 end
323 %end of BINV algorithm
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A7 Derivation of master and quasi-meanvalue equations for
nearest neighbour transitions between arbitrarily many
investment styles

The following derivation of the master and quasi-meanvalue equations for nearest neigh-

bour transitions between arbitrarily many investment styles follwows rather closely the

treatment of the corresponding concepts in chapters 10 and 11 of Weidlich (2002).

Consider a set of L possible investment styles i = 1, 2, . . . , L, with ni traders investing

according to style i. The configuration of the investment community is then fully

described by the vector n = {n1, . . . , ni, . . . , nL} with ni ≥ 0 ∀ i ∈ {1, . . . , L}. Let
P (n; t) denote the probability of finding the investment community in state n at time

t. The probabilistic evolution of the configuration n between times t1 and t2 = t1 + τ

is given by the law of total probability as

P (n; t2) =
3
{nI}

P (n; t2|nI, t1)P (nI; t1). (A7.1)

Therefore, the probability of observing n changes between t1 and t2 by

P (n; t2)− P (n; t1) =
3
nI W=n

P (n; t2|nI, t1)P (nI; t1) + P (n; t2|n, t1)P (n; t1)− P (n; t1)

=
3
nI W=n

P (n; t2|nI, t1)P (nI; t1)− (1− P (n; t2|n, t1))P (n; t1)

=
3
nI W=n

P (n; t2|nI, t1)P (nI; t1)−
3
nI W=n

P (nI; t2|n, t1)P (n; t1) (A7.2)

due to the normalization condition
�

{nI} P (n
I; t2|n, t1) = 1.

Expanding P (n; t2|nI, t1) and P (nI; t2|n, t1) in a Taylors series around t1 = t with

respect to t2 = t+ τ yields

P (n; t2|nI, t1) = P (n; t|n; t) + τ
∂ P (n; t2|nI, t1)

∂t2

eeee
t2=t

+ o(τ 2)

= δn,nI + τw(n|nI) + o(τ 2) (A7.3a)

and similarly

P (nI; t2|n, t1) = δnI,n + τw(nI|n) + o(τ 2), (A7.3b)

where δ denotes the Kronecker delta function defined in equation (4.22), w(nI|n) de-
notes the per unit time transition probability between configurations n and nI as in
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(4.20), and o(τ 2) stands for terms of second and higher order in τ . Inserting (A7.3)

into (A7.2) and taking the limit τ → 0 yields the fundamental master equation for the

probability change over infinitesimally small time intervals

Ṗ (n; t) :=
dP (n; t)

dt
= lim

t2→t1
P (n; t2)− P (n; t1)

t2 − t1
as

Ṗ (n; t) =
3
nI W=n

w(n|nI)P (nI; t)−
3
nI W=n

w(nI|n)P (n; t). (A7.4)

In the next step we confine ourselves to transitions between neighbouring states of the

investment configuration as a result of the Poisson-type dynamics induced by at most

one trader changing her strategy during any infinitesimal time interval τ .144 That is,

we consider only transitions between configurations n and

nij := {n1, . . . , (ni − 1), . . . , (nj + 1), . . . , nL},

such that

w(nI|n) = w(n|nI) = 0 for nI W= nij,
and define

wij(n) := w(nij|n) = nipij (A7.5)

in line with (4.21), (4.23) and (4.24), with pij denoting the probability for a single

trader to change from strategy i to strategy j. The fundamental master equation

(A7.4) reduces then to

Ṗ (n; t) =
L3
iW=j
wji(nij)P (nij; t)−

L3
iW=j
wij(n)P (n; t)

=
L3

i,j=1

wji(nij)P (nij; t)−
L3

i,j=1

wij(n)P (n; t) (A7.6)

Note that we need not exclude i = j because nii = n.

Introduce next translation operators T+i and T
−
i on the configuration space {n} as

T±i F (n1, . . . , ni, . . . , nL) := F (n1, . . . , (ni ± 1), . . . , nL), (A7.7)

144see the discussion of the herding model by Lux (1995) on pp. 78.
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such that

T+j T
−
i F (n) = F (nij) and T+i T

−
j F (n) = F (nji). (A7.8)

We may therefore write

L3
i,j=1

T+i T
−
j wij(n)P (n; t) =

L3
i,j=1

wij(nji)P (nji; t) =
L3

i,j=1

wji(nij)P (nij; t),

such that the master equation (A7.6) may be rewritten as

Ṗ (n; t) =
L3

i,j=1

(T+i T
−
j − 1)wij(n)P (n; t). (A7.9)

Note the following properties of the translation operators:

T±i nkF (n) = (nk ± δik)T
±
i F (n) (A7.10a)

⇒ nkT
±
i F (n) = T

±
i nkF (n)∓ δikT

±
i F (n) = T

±
i (nk ∓ δik)F (n) (A7.10b)

⇒ nkT
+
i T

−
j F (n) = T

+
i nkT

−
j F (n)− T+i δikT−j F (n)

= T+i T
−
j (nk + δjk)F (n)− T+i T−j δikF (n)

= T+i T
−
j (nk + δjk − δik)F (n) (A7.10c)

Property (A7.10c) may be used in conjunction with (A7.9) in order to calculate the

dynamics of the expected number of traders using strategy k,

<nk>t :=
3
{n}
nkP (n; t),
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as

<ṅk>t =
3
{n}
nkṖ (n; t)

=
L3

i,j=1

3
{n}
nk(T

+
i T

−
j − 1)wij(n)P (n; t)

=
L3

i,j=1

3
{n}
T+i T

−
j (δjk − δik)wij(n)P (n; t)

=
L3
i=1

3
{n}
wik(nki)P (nki; t)−

L3
j=1

3
{n}
wkj(njk)P (njk; t)

=
L3
i=1

3
{n}
wik(n)P (n; t)−

L3
j=1

3
{n}
wkj(n)P (n; t)

=
L3
i=1

<wik(n)>t −
L3
j=1

<wkj(n)>t

=
L3
i=1

<wik(n)− wki(n)>t. (A7.11)

Equation (A7.11) is the exact mean value equation for trader population nk. In order to

obtain the approximate quasi-meanvalue equations for the trader populations, expand

all transition rates wij(n) to first order around their values at the expected configuration

<n>t at time t,

wij(n) ≈ wij(<n>t) +
L3
l=1

∂ wij(<n>t)

∂nl
∆nl, (A7.12)

and insert into the exact mean value equations (A7.11):

<ṅk>t ≈
L3
i=1

[<wik(<n>t)− wki(<n>t)>t]

+
L3
i=1

L3
l=1

w
∂ wik(<n>t)

∂nl
− ∂ wki(<n>t)

∂nl

W
<∆nl>t

=
L3
i=1

[wik(<n>t)− wki(<n>t)] (A7.13)

Inserting the individual transition probablilites (A7.5) yields the quasi-meanvalue equa-

tions in the form of the main text:

<ṅk>t =
L3
i=1

(<ni>t pik −<nk>t pki) . (A7.14)
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A8 Proof of Proposition 1

A fundamental equilibrium requires

˙nc1 = ˙nc2 = ˙nf1 = ˙nf2 = 0 at p1 ≡ pf1 and p2 ≡ pf2. (A8.1)

Using the identity

nje
α(Ui−Uj) − nieα(Uj−Ui) (A8.2)

=(ni + nj) ·
}
tanh(α(Ui − Uj))− ni − nj

ni + nj

]
cosh(α(Ui − Uj))

the equations of motion for the trader populations (5.14) may be rewritten in terms of

hyperbolic funcions as

˙nc1 = vB nc1

}
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

]
(A8.3a)

+ v

F
(nc1 + nc2)

}
tanh(α(C1 − C2))− nc1 − nc2

nc1 + nc2

]
cosh(α(C1 − C2))

+ (nc1 + nf1)

}
tanh(α(C1 − F1))− nc1 − nf1

nc1 + nf1

]
cosh(α(C1 − F1))

+(nc1 + nf2)

}
tanh(α(C1 − F2))− nc1 − nf2

nc1 + nf2

]
cosh(α(C1 − F2))

k

˙nc2 = vB nc2

}
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

]
(A8.3b)

+ v

F
(nc2 + nc1)

}
tanh(α(C2 − C1))− nc2 − nc1

nc2 + nc1

]
cosh(α(C2 − C1))

+ (nc2 + nf1)

}
tanh(α(C2 − F1))− nc2 − nf1

nc2 + nf1

]
cosh(α(C2 − F1))

+(nc2 + nf2)

}
tanh(α(C2 − F2))− nc2 − nf2

nc2 + nf2

]
cosh(α(C2 − F2))

k

˙nf1 = vB nf1

}
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

]
(A8.3c)

+ v

F
(nf1 + nc1)

}
tanh(α(F1 − C1))− nf1 − nc1

nf1 + nc1

]
cosh(α(F1 − C1))

+ (nf1 + nc2)

}
tanh(α(F1 − C2))− nf1 − nc2

nf1 + nc2

]
cosh(α(F1 − C2))

+(nf1 + nf2)

}
tanh(α(F1 − F2))− nf1 − nf2

nf1 + nf2

]
cosh(α(F1 − F2))

k
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˙nf2 = vB nf2

}
nB
nE
eαB(nE−nB)/N − e−αB(nE−nB)/N

]
(A8.3d)

+ v

F
(nf2 + nc1)

}
tanh(α(F2 − C1))− nf2 − nc1

nf2 + nc1

]
cosh(α(F2 − C1))

+ (nf2 + nc2)

}
tanh(α(F2 − C2))− nf2 − nc2

nf2 + nc2

]
cosh(α(F2 − C2))

+(nf2 + nf1)

}
tanh(α(F2 − F1))− nf2 − nf1

nf2 + nf1

]
cosh(α(F2 − F1))

k

In order to fulfil the condition (A8.1) it suffices that all squared brackets above equal

zero. That is the case when both

nc1 = nc2 = nf1 = nf2 = nE/4 and nB = nE = N/2, as claimed.
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A9 Proof of Proposition 2

Local stability with respect to regime-specific dynamics will be considered by inspecting

the Jacobian of the system of differential equations for the trader populations and

prices.145 We will for that purpose reformulate the population dynamics (A8.3) in

terms of the new variables

c1 :=
nc1
N
, c2 :=

nc2
N
, f1 :=

nf1
N
, f2 :=

nf2
N

(A9.1)

as

ċ1 = vB c1

�
1−c1−c2−f1−f2
c1+c2+f1+f2

eαB(2(c1+c2+f1+f2)−1) − e−αB(2(c1+c2+f1+f2)−1)
=

+ v

F
(c1 + c2)

}
tanh(α(C1 − C2))− c1 − c2

c1 + c2

]
cosh(α(C1 − C2))

+ (c1 + f1)

}
tanh(α(C1 − F1))− c1 − f1

c1 + f1

]
cosh(α(C1 − F1))

+(c1 + f2)

}
tanh(α(C1 − F2))− c1 − f2

c1 + f2

]
cosh(α(C1 − F2))

k
(A9.2a)

ċ2 = vB c2

�
1−c1−c2−f1−f2
c1+c2+f1+f2

eαB(2(c1+c2+f1+f2)−1) − e−αB(2(c1+c2+f1+f2)−1)
=

+ v

F
(c2 + c1)

}
tanh(α(C2 − C1))− c2 − c1

c2 + c1

]
cosh(α(C2 − C1))

+ (c2 + f1)

}
tanh(α(C2 − F1))− c2 − f1

c2 + f1

]
cosh(α(C2 − F1))

+(c2 + f2)

}
tanh(α(C2 − F2))− c2 − f2

c2 + f2

]
cosh(α(C2 − F2))

k
(A9.2b)

145see e.g. Gandolfo (1996).
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ḟ1 = vB f1

�
1−c1−c2−f1−f2
c1+c2+f1+f2

eαB(2(c1+c2+f1+f2)−1) − e−αB(2(c1+c2+f1+f2)−1)
=

+ v

F
(f1 + c1)

}
tanh(α(F1 − C1))− f1 − c1

f1 + c1

]
cosh(α(F1 − C1))

+ (f1 + c2)

}
tanh(α(F1 − C2))− f1 − c2

f1 + c2

]
cosh(α(F1 − C2))

+(f1 + f2)

}
tanh(α(F1 − F2))− f1 − f2

f1 + f2

]
cosh(α(F1 − F2))

k
(A9.2c)

ḟ2 = vB f2

�
1−c1−c2−f1−f2
c1+c2+f1+f2

eαB(2(c1+c2+f1+f2)−1) − e−αB(2(c1+c2+f1+f2)−1)
=

+ v

F
(f2 + c1)

}
tanh(α(F2 − C1))− f2 − c1

f2 + c1

]
cosh(α(F2 − C1))

+ (f2 + c2)

}
tanh(α(F2 − C2))− f2 − c2

f2 + c2

]
cosh(α(F2 − C2))

+(f2 + f1)

}
tanh(α(F2 − F1))− f2 − f1

f2 + f1

]
cosh(α(F2 − F1))

k
. (A9.2d)

The price dynamics (5.3) may be rewritten in terms of (A9.1) as

ṗi =
1

fi

p
lċi + (pfi − pi)ḟi

Q
, i = 1, 2, (A9.3)

where we have used the leverage parameter l := tc/tf introduced in proposition 2 in

order to express the relation of chartist relative to fundamentalist target holdings. The

entries of the Jakobian matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ċ1
∂c1

∂ċ1
∂c2

∂ċ1
∂f1

∂ċ1
∂f2

∂ċ1
∂p1

∂ċ1
∂p2

∂ċ2
∂c1

∂ċ2
∂c2

∂ċ2
∂f1

∂ċ2
∂f2

∂ċ2
∂p1

∂ċ2
∂p2

∂ḟ1
∂c1

∂ḟ1
∂c2

∂ḟ1
∂f1

∂ḟ1
∂f2

∂ḟ1
∂p1

∂ḟ1
∂p2

∂ḟ2
∂c1

∂ḟ2
∂c2

∂ḟ2
∂f1

∂ḟ2
∂f2

∂ḟ2
∂p1

∂ḟ2
∂p2

∂ṗ1
∂c1

∂ṗ1
∂c2

∂ṗ1
∂f1

∂ṗ1
∂f2

∂ṗ1
∂p1

∂ṗ1
∂p2

∂ṗ2
∂c1

∂ṗ2
∂c2

∂ṗ2
∂f1

∂ṗ2
∂f2

∂ṗ2
∂p1

∂ṗ2
∂p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A9.4)

of the coupled system (A9.2) and (A9.3) evaluated at the fundamental equilibrium

c1 = c2 = f1 = f2 = 1/8 (A9.5)
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read for the population subdynamics

∂ċ1
∂c1

=
∂ċ2
∂c2

= (α− 3)v + (αB − 1)vB
2

(A9.6a)

∂ċ1
∂c2

=
∂ċ1
∂f2

=
∂ċ2
∂c1

=
∂ċ2
∂f1

= (α− 1)v + (αB − 1)vB
2

(A9.6b)

∂ċ1
∂f1

=
∂ċ2
∂f2

= (α+ 1)v + (αB − 1)vB
2

(A9.6c)

∂ċ1
∂p1

=
∂ċ2
∂p1

=
∂ḟ2
∂p1

= −αv
4
F1
I(pf1) (A9.6d)

∂ċ1
∂p2

=
∂ċ2
∂p2

=
∂ḟ1
∂p2

= −αv
4
F2
I(pf2) (A9.6e)

∂ḟ1
∂c1

=
∂ḟ1
∂c2

=
∂ḟ1
∂f2

=
∂ḟ2
∂c1

=
∂ḟ2
∂c2

=
∂ḟ2
∂f1

= v + (αB − 1)vB
2

(A9.6f)

∂ḟ1
∂f1

=
∂ḟ2
∂f2

= (αB − 1)vB
2
− 3v (A9.6g)

∂ḟ1
∂p1

=
3

4
αvF1

I(pf1) (A9.6h)

∂ḟ2
∂p2

=
3

4
αvF2

I(pf2) (A9.6i)

Application of the chain rule to (A9.3) at p1/2 = pf1/2 yields for the price subdynamics

∂ṗ1
∂c1

= 8l
∂ċ1
∂c1
,

∂ṗ1
∂c2

= 8l
∂ċ1
∂c2
, . . .

∂ṗ2
∂p2

= 8l
∂ċ2
∂p2

. (A9.7)

A complication arises from the fact that F1
I(pf1) and F2I(pf2) are not defined because

F1/2(p1/2) = s|pf1/2 − p1/2| (A9.8)

implies a jump of the derivative F I1/2 at the respective fundamental price

F1/2
I(p1/2) = ±s for pf1/2 ≶ p1/2. (A9.9)

It is therefore necessary to examine each of the regimes (p1 > pf1, p2 > pf2), (p1 <

pf1, p2 < pf2), and (p1 ≷ pf1, p2 ≶ pf2) separately. Furthermore, stability with respect
to regime-specific dynamics is in general neither a sufficient nor necessary condition

for stability of the overall dynamics (Honkapohja & Ito 1983). The following analysis

serves therefore only as a general guideline, which factors may have an impact upon
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local stability of the fundamental equilibrium within the overall dynamics. All four

regimes share the common eigenvalues:

λ1 = λ2 = 0, and (A9.10a)

λ3 = 2(αB − 1)vb. (A9.10b)

The remaining eigenvalues differ from one regime to another. Consider first the case

where the mispricings in both stocks have the same sign:

λ4,±± = −4v(1± αls), (A9.11a)

λ5,±± = v
�p
1 +
√
1± 16ls

Q
α− 4

=
, (A9.11b)

λ6,±± = v
�p
1−√1± 16ls

Q
α− 4

=
, (A9.11c)

where the plus sigs apply to (p1 > pf1, p2 > pf2) and the minus signs to the regime

(p1 < pf1, p2 < pf2). The last three eigenvalues for the regimes (p1 ≷ pf1, p2 ≶ pf2)
read

λ4,±∓ =
2

3
v

F
α

}
1 + f(ls)1/3 +

1

f(ls)1/3

]
− 6
k
, (A9.12a)

λ5/6,±∓ =
1

3
v

F
α

}w
2− f(ls)1/3 − 1

f(ls)1/3

W
± i
√
3

w
f(ls)1/3 − 1

f(ls)1/3

W]
− 12
k
,

(A9.12b)

with f(ls) := 1− 108(ls)2 + 6ls
0
324(ls)2 − 6, (A9.12c)

the real parts of which are given by

Re(λ4,±∓) =
2

3
v

F
α

}
1 +

w
|f(ls)|1/3 + 1

|f(ls)|1/3
W
cos

w
1

3
arg(f(ls))

W]
− 6
k
,

(A9.13a)

Re(λ5/6,±∓) =
1

3
v

F
α

}
2−
w
|f(ls)|1/3 + 1

|f(ls)|1/3
W
· (A9.13b)w

cos

w
1

3
arg(f(ls))

W
±
√
3 sin

w
1

3
arg(f(ls))

WW]
− 12
k
,

none of which exceed

Re(λ±∓)max =
2

3
v

F
α

}
1 + |f(ls)|1/3 + 1

|f(ls)|1/3
]
− 6
k
, (A9.14)
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which is again smaller than the largest eigenvalues in those regimes where the signs of

the mispricings in both stocks coincide,

Re(λ±±)max =

l
v
JD
1 +
√
1 + 16ls

i
α− 4o , for ls ≤ 3/2,

4v(αls− 1), for ls ≥ 3/2. (A9.15)

The necessary conditions for stability with respect to the regime-specific dynamics

listed in proposition 2 follow then from requiring the real part of all eigenvalues not to

exceed zero in any of the four regimes, that is λ3 ≤ 0 and Re(λ±±)max ≤ 0.


