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T Introduction

Reliability of a system with several independent components can

be brought up to a givenylevel in two main ways: it is made sure
that the components themselves are so reliable that the goal laid
down for the whole system is achieved, or alternatively, in the
case of low-reliability components, the lack of reliability in
these components is eliminated through sulitable measures of system
technics., The most important measure of this kind is with no

doubt to introduce redundancy among the strategic components,

Redundancy of components means additional costs, usually even to

a congiderable extent., Because of this it is important to have
methods for an accurate measuring of that improvement in reliability
which has been obtained as a counterbalance of these costs. The
purpege of this paper is to present a method based on supplementary
variable technique and Laplace transforms that makes it possible

to consider mathematically the operation of a quite general
stochastic system with redundancy in one of its strategic parts.

On the grounds of the regults describing the system's operational
behaviour several conclusions about the reliability of the system

are drawn.

2s Degeription of the system

The real system under consideration is composed of two Subsystems;
designated as S,I ja By such that subsystem Sq consists of M
identical components which are redundantly connected while 82
contains N independent different types of components connected

in series. In order to function satisfactorily the system must
have both of its components operable: subsystems Sq and S2 are
themselves in series. Redundancy in 54 is in parallel: all the
components of S,I start operating as soon as the system is put

into operation,.
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The repair of any falled component is possible only when the

whole sysbten stops operating. The operation of the gystem is not,
Ly
out until the system has got into a standstill as a consequence

!

howevear, purpose gtopped for repair, repairs are not carried

of a failure. Thig means the failure of some component in S? or

a complete failure in Sﬂ@ About the nature and influence of
faults it is assumed that contributions (cost, repair time etc,)
necessary for restoring a failed component in S,.l are considerable

higher than those for a component in S2 or for a used, still

operable component in Sqe

The specific vepair policy to be congidered in this connection

obeys The following principles. After a complete failure in Sq

all the failed couwponents in Sq are repaired, the components in

[ Wy
ey A
&

¢ left unattended, In the case of a failure in Y, the failed
s

suponent is cepsiredy in addition to this the operable components

it Sq are pre-serviced, whereupon they can be regarded as naw,
Failed components in S, arve left because of their labouriousness
Lo walt for a general overhaul of gubsystem Sﬁg

-y

the model and general definition of the problem

. Assumptions in

ln the paper the operation of a gystem, which is adapted to the
general framework of the last section, ig considered in the form
ol a mathematical model, Several factors having an offect on the
behaviour of the system are sbtochastic by nature. In the model

these sbochastic elements are treated as the following random

variables: time between failures of a component, repair time of
a component in S? or of the whole subsystem ng and waiting time
elapsing from failure to the beginning of repair. The following
aggsumptions concerning the distributions of the random variables

ave made,
e N & e Y o
for the greatest part of the system s random variables only one

requirement has been imposed., The probability density of random

©

variables must exist on the region of the whole non-negative

Teal p The shape of the probability density and sc Lhe type

V@

ol the distribution can otherwise be thorougly arbhitrary, A

general distribubion of this kind is introduced into the model
with the help of its probability density (%) or Tintengity

function”  w{x) That is in connection with f(x) in the form of
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equation<1

(3.1) f(x) = r(x) exp{ - 6/3 r(x) dx:}.

For example, in the case of the random variable time between
failures f(x) is called failure density and r(x) failure (or

hazard) rate, The following random variables have general
distributions in the model: time between failures for a Sq—
component (each component has the same distribution), repair time
and waiting time for the whole subsystem Sq, and repair and

waiting times for components in 52 (each component has distributions
of its own), Distributions of the time between failures for the
So—-components are, however, supposed to be exponential, i.e. the
failure rates are assumed as constants.,

Reliability properties of a system with the general structure
described in section 2 have been before considered by KULSHRESTHA(g,
In this paper the model developed by Kulshrestha has been
considerably generalized and enlarged. Not only the actual repair
time but the time that elapses in waiting for repair has been
introduced into the model as well. The waiting time is caused by
such factors as spare part supply, lack of any vacant repair crew
etc. Further the use of only the exponential distribution as a
model for the time between failures for components in S,I has been
replaced by the general distribution that covers all the continued
distributionsg.

The inclusion of general distributions into the model increases
its potential properties and utilization possibilities in a
considerable degree, The model can naturally serve as a usual
computing algoritm in order to solve problems concerning the
reliability of a spesific system when the system's distributions
are known or have been estimated. First of all the model is,
however, a general method that makes it possible to consider
reliability properties of systems of a certain type. The
methodologic character of the model is very clearly revealed

’ 1. About the functions r(x) definition, interpretation and
connections with probability density and distribution
functions see e.g, Barlow and Proschon, p. 10

2, Kulshrestha, D.K.: Reliability of a Repairable Multicomponent
system with Redundancy in Parallel
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when the steady-state behaviour of the system is considered. It
can namely be shown that after a sufficiently long time has gone
since the operation started the reliability properties of the
system cease to depend on the type of most of the system’s
distributions. For computing the steady-state reliability of the
system it is sufficient to know only the mean values of these
distributions,

Formulation of the model and search for solutions are for their
key parts based on supplementary variable and ILaplace transform
techniques, The former has turned out to be a very efficient
method in constructing state equations for originally non-Markovian
stochastic processes, The method has been developed on the region
of the general theory of stochastic processes(q@ From there it
hag got its way out through queuing applications(2 to reliability
theory and has found a remarkable application area there 59 When
thie supplementary variable technique is used, the state equations
of the system become partial differential equations, in the case
under consideration the state equations are, due to the special
properties of the system, differential equations, too. Solutions
for the gtate equations are derived with the help of Iaplace
transforms and they are got into a closed form for both the
trangient state and steady state. Existence of the steady state
and expressions for steady-state solutions are derived using
certain limit properties of the Taplace transform. Woteworthy in
this connection is that the steady-state solutions can be derived
without inverse ILaplace transforms. Besides, only the expected
values for most of the system’s distributions must be known,

the nature of the distributions has otherwise no effect on the
solutions,

Te Coxy pe 443
2o Kellson and Kooharian, p. 104
5o As first applications in this area can be mentioned e.g.

&

Garg’ s and Kulshrestha’'s papers
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4. Mathematical model for the system

4,1, Notations

Let us as a first step in the formulation of the model Specify
the states of the system and introduce some notations., We can note
that, at any instant of time, the system is found in one of the

states listed below:

m: the system is operable, m out of M components in Sq have
failed’ m = O,o.o, I"’T“'/l

W: the system is wailting for repair due to failure of all the
components in 81

R: the system is under repair of all the M components in Sﬂ

w_.: the system is waiting for repair due to failure of the ith
component in Sg; m out of M components in S,1 have failed,
mzo,omQQM”1; izq,noegN

r .t the system is under repair due to failure of the ith component
in SE; m out of M components in Sq have failed, the M-m operable
components in 5, are going through the pre-service, m=0,,.,M-1;
ir—'/l,ooc,N‘

Figure 1 shows the states of the system and the one-gtep transitions

among themn,

Fig. 1., The state transition diagram for the system
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Denote,
K set of the states of the system
S: subscript for a state, S€)

PS(Xﬁt):probability density for the joint probability that at time
t the system is in state S and the elapsed time since it came
into that state is x (Jjust the variable x is the supplementary
variable appearing in the name of the method to be used)

PS(t)z probability that the system at time t is in state S;
evidently Pg(t) = O/%S(x,t) dx

of (x): failure rate for components in S,

A(x): probability density for the time between failures of a Sy
componenty A(x) = ot(x) exp-{mojx<x(x) dx}

Ax) e repair rate for 8,

B(x): probability density for qus repair time distribution,
B(x) = pB(x) exp{;éfx ACx) dx}

P(x): waiting rate for S,

Clx): probability density for qus waiting time distribution;
C(x) :iy(x) exp{%oyfxaﬂ(x) dx}
}i: . constant failure rate for the ith component in Boy

. . N
lz/'gaee@.[\l‘é X ‘R 5
' = A
i=17

’Qi(x): waiting rate for the ith component in Bsy 1=Tge0s ;N
Hi(x); probability density for the waiting time distribution of

the ith component in Ss3 Hi(x)=Wi(x)exp{wojxﬂi(x)dx}9i=1,w@e9N
ﬁ%i(x): repair rate for the ith component in 82, 1=T5e00 4l

Mi(x): probability density for the repair time distribution of
the ith component in So%

X .
M, (x)= /ﬁ(x)exxw%bJ/ /“i(x)dx}? ;:j,osﬂ,N
A () = ka(x) exp{%ojkaw(x) dxi}g k=Ty00a,M

The expected wvalue of a random variable is denoted by the symbolémy;
thus the mean repair time for subsysten ng for instance, is denoted
by B. Other notations will be explained when they for the first time
appear,
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4.2, Formulation of the model

The system has to be found at any time instant t in one of the
states specified in section 4.1, A transition Tfrom one state to
another takes place according to figure 1 and is governed by the
probability laws defined above., Consideration of the system’s
behaviour during a time interval (t, t+/\) leads to the following
forward difference equations:

N
(4.1 Pm(Xféx,tféx)sz(x,t) ﬁmo(x)4¥lﬁém ]mz(q_vxizxé}+ o(/\),
i=
) m:O,...,M—1
(4.2) PyCre/\a b= Pylx,t) [1-GEA]+ o(A)

(403) Ppae/\,b+A)= PR(X,t){’Im/&(X)A]+ o(A\)

I
(e tt) Poymy e\ B4\ = Py (35,8) ["“71(3“)11\}“ LI me0,... M1
(e5) P Gorl\ B4A)= Py Geat) [190 GOA e o(A) | 200 oo

As /\ 9 0, equations (4.1) to (4.5) result in the following set
of variable coefficient partial difference equations;

(4.6) [?/é}c+'é/ét + (Mem)oA(x) +J\J Pm(x,t) = 0y M=04y0006,4M=1
(4.7) &SAax + /Lt + GYX)] Pw(x,t) 0

(4,8) ESA9X + /5t +/6(X)i]PR(X’t)
(4.9) [36x + 2/ + 20x) | By Get) = 0| g

wml
O i=19oe.,N

(4.10) [3/0% + a/ot +p2, ()] P (x,8)

rmi

i}

]

0

fl

Variables x and t are time quantities so that the density functions
in equations (4.6) to (4,.10) has been defined only on the region

o,

(4,11) T = {(X,t) | x 20, 2 o},

The equations are, therefore, to be solved under boundary
conditions on the boundaries

i:]f> 1. - -{(X,O) | =2 o}, E - {(o,ﬁ) | t2 o}

1 » el
The conditions on boundary'T " desribe the system s transition
from one state to another and they are
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(4.13)  P_(0,t)

il

O_/m Po(x,t)plx)dx +_i/} O/‘D PrOi(X,t)/ui(X)dx
1=

i}

(4e14) P (o0,t) OM/E)Pmmq(x,t)(Mmm+1)u(X)dx

N ,
+ z Oj(DPrmi<X9t)/4i<X)dX9 m=/]9¢oogl\"f[‘=“/'
i=1

i

(4.15) P (0,t) OJ/“’Pmuq(x,t)m<x)dx

(4,16) PR(Ogt) = OJ/G)PW(th)&{X)dX
. ® ]
(4:17) Pwmi(09t) = o// Pm(x’t)}ﬁqx _j\iPm(t> M=04 0600 4M="13
® f i'-:/lgena ,:N
(4.18) PLi(0y8) = o) Pwmi(x,t)?i(x)dx !

~

Assuming the system to start initially in state O, we obtain the
following initial conditions (the conditions on boundary T;):

1

(4.19) P (x,0) = d (%), m=0,..,,M1

(XgO) = Og m=O,aoa9P/I‘=”/‘

i*_—-/'gssog}q

i

(4.20) PW(X’O> PR(X,O) = Pwmi(x’o>'= P

rmi

where d;o is the Kronecker delta and d(x) the Dirac delta function.

Bquations (4.6) to (4.10) and (4.13) to (4.20) provide a complete
description of the state of the system at any instant of time.
Below they are called the state equations of the system,

4s3. Bolutions

Let the Laplace transform of a function F(t) be denoted by f(s),
le€o,

(4,271) @i‘{ﬂ(t)}'= o e ¥ R yat = £(e)

Applying the ILaplace transform to the set of equations (4.6) to
(4.10) and employing initial conditions (4.19) to (4.20), we obtain
(4.22) [Prax+ s + (Mem et ( 3) +;\]%Kxgs) =<§moé(x% m=04 ¢ oo M=
(4,23%) @/@”}c + 8 +XL(§{)] pw(x,s) = 0

(4.24) [6/63{ + 8 +/6(x)']pR(xgs) = 0
(4.25) Eaﬁax + 8 +7z#xjijmi(x?s) = 0 _

[a o e 5 M=0y000yM-Tyi=ty,,.,N
(4.26) {B/ox + s fﬂﬁlxilprmi<x’s) =

The Taplace transforms of boundary conditions (4.13) to (4.18)
are
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(4.27) pO(O,s)

]

I7
OJ/ﬂ)pR(X,SLﬁKX)dX +i§9 Ov/a)proi(x,sydi(X)dX

i}

(4.28) pm(O,s) vaﬂjpmmq(x,s)(Mmm+1)@<X)dX
Iy |

N
0
+i§/’ Of prmi(X‘DS)/"i(X}dxg m=1goon,M“‘/l
(4.29) 1 ,(0y8) = O_/gijhq(ng)m(X)dx
o Py, 8) (x)ax

(42510 2,3 (0,8) = Ayp, (o) hlm~o Me 121 N
l TVeees gli=igl= 3605 08 gil
(4,32) prmi(O,s) = ow/m)pwmi(x,s)ﬂi(x)ds

1

(4‘»50) pR<O,S)

§
J
State probabilities PS(t) and probability densities PS(X,t),

S8e) , are related to each others like shown in section 4.1,
Applying the Laplace transform to this relation, we get

(4e:55> pS<S> = Ow/&) PS(X«sS)dX’ Sé}: &
On integration over interval (0,x) equations“(4@22) to (4.26) give

(4e34) pm(x,s) =[;%0 + pm(O,sﬂ exp{;(s+ﬂ)x - OJKX(M;m)u(X)dx},

=0, ¢.4 41

]

pW(Ogs) exp{} 8X mojxyix)dx}
pR(O,s) exp{? sx wofﬁﬁ(x)dx}

3
(4e37) Dy (x,8) = p, - (0,8) exP{? 8X - Ojggi(X>dX} m=0y 00,y M=1;
} j_z/',oog,].l"]-

(4235) py(x,s)

i

(4.36) pp(x,s)

(4438) Prgs (2,8) = b (0,8) oxpf- ox - of i ()3

The expression for pm(O,s), Mm=05e00,M=1, in equation (4.34) is
derived starting in (4.33), Substituting the value of pm(x,s) from
(4e34) into (4.33) and integrating, we first obtain

Py(s) = o«fazm(x;s)dx

Edﬁo+ pm(O,sﬂ ome)exp{f(s+A)x~OJfX(M~m)a(X)dx}dx

(4.39) o tP,(0y8) -
3 ~ mogpf‘h [qojﬂ;“(S+AJX(M-m)X(X)GXP{—OI?M-m)%Xﬂ?}dfj

11 - a (s+)
Mem =046 00 ¢ M=
= Eégo+ pm(O’SZ] S F ' I ’

i

j
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so that the expression for pm(O,s) becomes

(4.40) p _(0,s) = 1m2M:m(s+)O,pm(s) =& s M0y 00yl
Integrating over (O,w ), applying equations (4.29) to (4,32) and
(4.35) to (4,38) repeatedly, and bearing further result (4,40)

and form (3.1) of the probability density in mind, we get the
Laplace transforms of the state probabilities into a form, where
their dependence on (so far unknown) quantities pm(s) is revealed:

(s+WN a(s+)0[1~ c(s)}
sEi» s(s+R)]

(s8+A) a(s+N11- b(e)]e(s)
(4.42) pR(s)= L ] prq(s)

s[;ﬂ - a(s+}\)]
(s)= :ki[j - hi(s>1 p.(s)

wimi m .
7mL S m=090009M;q§l=1,0u0,N

A b (s)] 1 - m(s)
(o) b (s)- T2 T [ =m0 b (5)
S

(4.41)  p(s)= Pyq(s)

(4.43) p

To determine the expressions for pm(s) we still have equations
(#.27) and (4,28) at our disposal, On relevant substitutions and
simplification these equations result in the variable coefficient
difference equations

( s +A N
T~ ay (s+A) “fgqjki h; (s) m;(s) p, () -

(4.45) 4

Pp.q(8) = 0y m=1,,0.,M-1,
. 1= oy (8 ) i

As solutions for these equations we have<1

d —;aM_m(s+).) Q(s,M-m-1)

446 = ’
( ) pm(S) <S+A> aM~m<S+}\) Q(SsM)"' b(s) c(s) "

SO,B.C,Mmq

where notation Q(s,k) is used to mean expression

1. see Virtanen, pp. 4648
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. N
s + A m[5 - ar(stﬂi}_ij\ihi(s)mi(s)
i= ,
(s +A) a,(s+1)

k>

k
Q(s,k) =T_F
(2. 47) =1
Q(S,O) = 1

After that the Laplace transforms for all the state Probahlities
are known, they can be got from equations (4.41) to (4,44) ang
(4el6) %o (4el7), Tt may be noted that for all values of s holds(/I

M- M-1 X :
/,
(4.48) %gg Pp(s) + py(s) + po(s) + %gg igJiwmi(S) + Drgs (8) = 2

I'rom the point of view of the state probabilities result (4,48)
means that, for all values of t, equation

1] M- W
(4.49) %gg Pp(t) + Pult) + Po(t) + = ig%@wmi(t) + Prmi(tﬂ = 1

holds. This points out the fact that the set of the system’s
states is well defined: the state probabilities are all mutually
exclusive and totally exhagustive Probabilities,

Now for given values of the system’s probability densities the
relations (4.,41) to (4.44) and (4.46) can be inverted to give
the desired state probabilities as their inverse Laplace transforms.

50) P

N

- 3 _
s® =L {pg(0)], sey

Final form of the state probabilities so remains to depend on the
specific properties of the distributions of the system and must

be in each case separately cleared up,

o4, Behaviour under steady state

From the transient-state solutions we can see that the state
probabilities have under this stage a (naturally) strong
dependence on the distributions of the system. In the following
it is shown, however, that after the system has been in operation
a sufficiently long time it gets into a steady state, where e.g,
the types of repair and waiting time distributions cease to have
an effect on the values of the state probabilities. To get the

1. see Virtanen, pp. 4951
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system finally into a steady state presumes only a few additional
assumptions for the system?s distributions: the expected values
for repair and waiting times must exist. The expressions for
steady-state probabilities can be brought into. their final solved
form in the case of general distributions, too. In addition, the
results are found without inverse Iaplace transforms which often
turn out to be very inconvenient to carry out. Applying the well
known result in ILaplace transform<1, viz '

(4,51) lim PF(t) = 1lim s f(s)

t3m 80 .
to the set of equations (4,41) to (4.46), we obtain the following
steady-~state probabilities (where notation PS is used for the
limit 1im Ps(t)9 SEY )

tam
Tea,, (A S, (A
(4052) szjaa M“?ﬂ) ; N M ] m=O,...,M;1
M1 1 + gg%ki(ﬁi¥ﬁi)+SM(A>(§¥a)
S (AT
(#.53) Py= ——g 1
1 +.§%Ri<ﬁi+ﬁi>+SM<Rj(? + C)
=
Sy(AB
(4.54)  Pp= 7 M
1 +.E€Ki(ﬁi+wg>+SM(}O(§ + )
i= '
1 - a,, ( 8. () ALH,
(4‘55) P M—m h) M )'Ai 1

wmi. =«A?Mum(70 I -
THLMEM L s VG D)

1= gy (N SO AT,

(4.56) Prmi :.R?M_m(70

N
1 +_24)¥§ﬁi%ﬁi)+ SM(}J(E + C)
d= . . . .

m=09u0¢,M~1%i=1,o..9N
where

M- a () |7

(4.57) 5 (A=
M kg/] )\akzx S o

1. Spiegel, p, 20
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From the steady-state probabilities (4.,52) to (4.56) we really
see that the effect of the type of repair and waiting time
distributions on these probabilities has vanished. Only the

mean values of repair and waiting times appear in the expressions
of the probabilities., The failure rate of a Sqmcomponent effects
through the values of Laplace transform ak(}Q.

4e5e. (n reliability of the system

Since both transient and steady-state probabilities of the

system are known questions concerning the reliability of the
system can be taken into consideration. One of the most important
indices measuring the quantity 'reliability' in a quantitative
sense is (%3intwise) availability P, of the system. Availability

is defined as the probability

(4.58) Pa(t) = P{%he system is operable at time t} o

From the definition of the states of +the system it follows that
the system is operable in being in one of the states OyoeeqlM=n
and inoperable in any other state. Availability of the system at
any time t is so obtained as the probability that the system at
that time is in one of the states 0,.0.,1=1,

On basis of equation (4.46) the Laplace transform of the
transient state availability becomes

| Mo M1 [1 = 2y (s+)] (s, M-n-1)
AR %Zg Pp(s) = %;g (s+May,  (s+A) [Q(s,M) ~ b(s)ec(s)]
(4.59) | '
1 Q(S,M) -

B N
s+A =L Ayby(s)m; (s) Q(s,1) - b(s)e(s)
d1=

For given probability densities characteristic of the system,
availability Pa(t) is after this obtained as the inverse trang-
form of the right hand side of equation (4.59),

As far as the state probabilities PS(t) are already known (cf.
equation (4.50)), availability is obtained through direct

addition

1o Gnedenko et al, p., 110
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M
(4.60) Po(t) = 2 Pp(t)
M=

Instead of that the steady-state availability can be determined
also in the case of general distributions in a closed form. From
equation (4,.52), we get

e 1

/]
(.61) Py = >, » — e
- T+ 5 AN;E + M)+ 5,003 + 0
i=1

Under the steady state, availability Pa has, along with the
probability of operation at a certain moment, a sensible empirical
interpretation. It gives the proportion of time that the system
under the steady state is operable and in operation 1@

5., Conclusion

The paper has dealt with behaviour of a system with a fixed
structure and with a spesific repair policy. The examinations
have been based on the theory of stochastic processes and they
have been carried out from the point of view of the system
reliability., In formulation of the model an important part is
played by the supplementary variable technique that has made it
possible to give up using only the exponential distribution as a
pattern for the system’s random variables; examinations have been
enlarged to cover all the continued distributions. The solutions
of the model are based on the Iaplace transform, especially at
the steady state their special properties have been efficiently
made use of, The examinations reveal also the methodologic
nature of the modelj for a system with other structure or

other repair policy, it is easy to make a model of its own
according to the general principles described above.

1+ Gnedenko et al, p. 102
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