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Introduction

It is well known that the entropy-based concept of mutual informa-
tion provides a measure of dependence between two discrete random var-
iables. There are several ways to normalize this measure in order to
obtain a coefficient similar e.g. to Pearson's coefficient of contin-
gency, [1], [31, (4], [51, [6].

In our paper we propose and study one way of normalizing the mutual
information. There are two factors which make our normalization at-
tractive. First, the coefficient we get possesses a consistent be-
haviour for a family of test distributions. In a situation where we
generate random variables having a "prescribed amount of dependence"
among them, we obtain a high degree of compatibility between the
entropy-based correlation coefficient and the a priori amount of de-
pendence. Secondly, the definition of the information and the normal-
ization procedure generalize directly to three dimensions. They pro-
duce a measure of total dependence among the three variables that pos-
sesses the ability to reveal also inverse association or negative de-
pendence between the random variables (even for pure categorical vari-
ables).

T™wo dimensional case

Let X and Y be two discrete random variables with ranges
{x1,...,xr} and {YT""’YC}’ respectively, having a joint distribu-
tion pij = P{X==xi, Y==yj}. The mutual information IXY between X
and Y is defined as

(1) IXY = Hy + HY = Hyy s
where H, and HY are the entropies of X and Y
= - T . = - c
(2) By = -Lj_,p; logpy 5 Hy = -Ij ,p ylogp 4.
and HXY is the joint entropy of X and Y
N o c
(3) Hyy = ~%j_q FjoqPyy logRyy -

The following statements are either direct consequences of the de-
finitions or well known properties of the mutual information:
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(6) IXY = 0 1iff X and Y are independent
1

(7) I = —-(HXv+H

Y 5 ) iff X and Y are completely dependent.

Y

Now we define the entropy correlation coefficient of X and Y by
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(8)  py = (2T,y/(Hy +H)) = (2(1 = Hyy/(Hy +H)))

The division of IXY by -%(HX-rHY) in {8) is an obvious way to scale
the coefficient to [0, 1]. The square root is needed to get a nicely
behaving coefficient. The consistent behaviour of the coefficient as

a measure of dependence is demonstrated by the following test distri=-

butions.

Consider two bi-valued random variables U1 and V1 with a joint
distribution F, : {p11 =Pr Pqy =0, Pyq =0, Py, = 1-p}. Then U, and
VT are completely dependent with distributions {p1 =P: P, = 1-p}
and {p 1P P, = 1-p}, respectively. Further, let U, and V, be

independent random variables with the same marginals as U1 and V1.

. . 1 )
The joint distribution of U, and V, is then F, .{q11-p ¢ dyy =

pl1-p), a5, =p(1-p), q,, = (1-p) %}.
Let now X and Y be random variables having a joint distribution
(O_Scxi?}:
ap + (1-a) p? " (1=a)p(1-p)
{9) F = aF1-+(1—a)F =

2 | 1-a)pl1-p)  a(1-p) + (1-a) (1-p) 2

It would be intuitively natural to argue that the amount of dependence
between X and Y 1is equal to «a. Therefore, a proper measure of
dependence between X and Y should not be too far from o and it
should also be relatively independent of the marginals, i.e. of p.

It is easy to see, that the entropy correlation coefficient has

the following properties: is scaled to [0, 1] such that 0 indi-

p
H
cates full independence and 1 complete dependence between the vari-

ables. Further, increases almost linearly from 0 to 1 with in-

PH

creasing a, [2, p. 4]. Figure 1 presents a plot of as a func-

p
H
tion of a and p. The plot demonstrates how strikingly well the
different requirements set for a dependence measure are satisfied by
pH‘

Three dimensional case

The information in the three dimensional case, called now total in-
formation, is again defined with the help of different order entro-
pies. To get the total information I between three random vari-

XY7Z
ables X, Y and Z, we subtract from the total entropy H all the

XYZ
lower order entropies:



(10 Iyyg = Hyyy = (Hyy ~Hy —Hy) - (Hy, ~Hy ~Hy)
~(Hyp mHy -Hy) - Hy - Hy - H,

= Hyyy = Hyy = Hyy = Hyy * He v Hy + Hy

The total information IXYZ satisfies the following properties,
[2, p. 5-6]:
1 1

(1) =3 My +Hy + 1)) < Iy, < 5 (Hy + Hy +Hy)
(12) IXYZ =0, 1if X, Y and Z are mutually independent

_ ] .
(13} IXYZ = 3(HX-t»Hyi-HZ), iff X, Y and Z are completely

(positively) dependent

N .

(14) IXYZ = .3(HX~+HY-kHZ), iff X, Y and Z are completely

negatively (or inversely)} dependent.

By complete positive dependence we mean that for each i, j and k
there is at most one pair (j,k), (k,i) and (1,3), respectively, such
that pijk > 0. Complete inverse dependence is said to exist if for
each pair {i,3), (j,k) and (k,i) there is exactly one k, i and 3,
respectively, such that pijk:=1/m2, where m = min{#(pi..>0),
#lp 4, >0, #(p | >0}, [2, p. 5-8.].

The entropy correlation coefficient for a three-dimensional distri-

bution is defined as
- 1/3
{15) Py = (31XYZ / (HX+HY +HZ))

The behaviour of in three dimensions can be analyzed in an anal-

p
ogous way as in ththwo=dimensi01al case. We construct three distri-
butions with equivalent marginals {p, 1-p}, the first exhibiting
complete independence, the second complete positive dependence and the
third complete inverse dependence. The two test distributions F =
aFﬁ + (1—a)F2 and G = BF1 + (‘I—B)F3 now possess a prescribed amount
of dependence, viz. a (positive dependence) and -8B (negative de-
pendence), respectively. The analysis shows, [2, p. 9], that the be-

haviour of as a function of o (or B) is quite consistent ex-

P
H
cept in those special cases where o is small and the marginals are

highly asymmetric.



Figure 1. Entropy correlation coefficient as a function of «

Py
and »p.

References

. Acz&l J., Dardbczy Z. On measures of information and their charac-

terizations. New York: Academic Press, 1975.

. Astola J., Virtanen I. On the use of entropy in measuring depend-

ence in two and three dimensions. Manuscript, submitted to Commu-

nications in Statistics, 1986, 14 p.

. Kullbac S. Information theory and statistics. New York: John

Wiley & Sons, 1959.

. Preuss L.G. A class of statistics based on the information con-

cept. Communications in Statistics, Theory and Methods, 1980,
Vol. A 9, No 15, p. 1563-1586.

. Shannon C.E. A mathematical theory of communication. Bell System

Technical Journal, 1948, vol. 27, p. 379-423.

. Theil H. ©n the use of information theory concepts in the analysis

of financial statements. Management Science, 1969, Vol. 15, No 9,
p. 459-480, '



