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PREDICTABILITY GF STOCK PRICES AND EFFICIENCY ON THE FINNISH
SECURITY MARKET

ABSTRACT

Stock market efficiency is a crucial concept when forecasting of future stock
price behaviour is discussed. In the litterature, 8 distinction is made between
three potential levels of efficiency. Under the weak form of efficiency,
information on historical price movements is of no value for predicting the
future price development. Similarly, the semi-strong form of sfficiency holds
that no publicly available information can be successfully used in the prediction
of the prices. And finally, the strong form of efficiency means that the share
prices fully reflect all relevant information including data not yet publicly
available. Stock market efficiency has been extensively studied in different
countries. On a thin security market, like in the Helsinki Stock Exchange, many
anomalies and deviations from market efficiency have been cbtained. This paper
is aimed to contribute that discussion. It is shown in the paper that both the
monthly and quarterly stock market prices (the general stock market index) can
be adequately forecasted using either univariate time-series analysis or multi-
variate econometric modelling. . - The univariate ARIMA-models seem to be
slightly eutperformed by the econormetric models. It is further shown that the
forscasting accuracy of the models can be improved when time-series and
econometric forecasts are combined for a composite forecast. The empirical
results obtained indicate an absence of efficiency - in all of its forms - on the
Finnish security market. -

1 INTRODUCTION

In an efficient market, a security's price will be a good estimate of its
investment value defined as discounted future cash flow. Any substantial
disparity between price and value would reflect market inefficiency. In the
litterature, a distinction is made between three potential levels of efficiency.
The market is efficient in the weak sense if share prices fully reflect the
information implied by all prior price movements. The market is efficient in the



semi-strong sense if share prices respond instantaneously and without bias to
newly published information. And finally, the market is efficient in the strong

sense if share prices fully reflect all relevant information including data not yet
publicly available,

Market efficiency is a crucial concept when predictions of stack price behavior
are discussed. Under the weak form of efficiency, information on historical
price trends is of no value for the prediction of either the magnitude or direction
of price changes. As such the weak form is directly opposed to the basic
premises of technical analysis or univariate time-series analysis (e.g. that
presented by Box and Jenkins 1970) where the behavior of the series is explained
by its own past variability. Similarly, the semi-strong efficiency holds that all
publicly available information is of no value in the prediction of future prices
(see e.g. Hagin 1979: 11-36). Thus, the semi-strong form of efficiency is
analogously directly apposed to the concept of fundamental analysis e.qg.
multivariate econometric models for estimating future levels of stock prices.

Stock market efficiency has been tested extensively in recent years in the U.S,
and Europe (see Fama 1970, Dyckman, Downes and Magee 1975, Korhonen 1977,
Hawawini and Michel 1984 and Berglund 1986). The results of these studies are
as a rule in support of the weak form of efficiency. However, the price changes
of some German and Scandinavian stocks exhibit statistically significant

dependence over time (see Hawawini and Michel 1984: 8-25 and Berglund 1985:
181).

According to the empirical results of many studies made in the U.S. the stock
market is efficient alsoc in the semi-strong form (see the report of Hawawini and
Michel 1984: 12-84). However, we can also find opposite results (see Umstead
1977: 427-441). A survey of quite a small humber of empirical studies performed
on European data indicates that alsoc some European stock markets are efficient
in the semi-strong farm (see Hawawini and Michel 1984: 46-49). On a thin
security market there may exist many anomalies and deviations from market
efficiency even in the weak form, as found by Berglund (1986). These anomalies

and deviations from market efficiency are the starting point of this research,

The purposes of this study are:

. 1
1 To analyze whether y to what exter t, ar d in which form a genera
ilIO(Ithly and quax‘terly stock market price index is pl‘edlctable on a thin

security market like the Helsinki Stock Exchange.

; ivari ime-series
2 To compare the forecasting results based on univariate time

analysis and multivariate econometric models with each other.

i ine
3 To develop composite forecasting models for stock prices and exam

| i he time-series
the forecasting improvement of these models relative to the time-se:

models and econometric models.

2. DATA AND MODEL BURLDING

2.1. Data and empirical variables

i ility ices we can
in = statistical investigation concerning the predictability of stoc.k prie i
T T e cond, price
forecast, first, the price level (e.g. Hansmann and Zetshe 1985), second, pri
? £l

Granger and Morgenstern 1970: 58-59) and third, total returns

e e Umstead 1977).

where current dividend yield is added to the price changes (e.q.

From a tlleol‘etlcal polr it of view, total returns are the best criterion variable
when the market eihcnenCy s cﬁnsldaled- In F l“la“dy on the Helsinki Stock
EXCIIallge we have In pubhc use the so called Unitas and KOP stock market

i i i P and
indices published by two Finnish commereial banks (the Unitas index by SYP a
)

the KOP index by KOP, respectively).
i i -year

in this research we use the Unitas stock market index during the eleve‘n y! )

eriod from January 1975 to March 1986. KOP and Unitas indices do not inclu i

; i ivi nt o0

dividend component of market returns. In practice the dividend compone

. d variation in total returns from

i inland is very stable an .
market returns in Fi e

menth to month is almost entirely due to price fluctuations.

i ted b
coefficient between the theoretically correct total return index (coun y
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Berglund, Wahlroos and Grandell 1983) and the Unitas stock market index is
higher than the correlation coefficient between the total return index and the
KOP index (the correlations between the changes of indices are .991 and .978
respectively (see Berglund, Wahlroos and Grandell 1983: 35).

The predicted general index has been measured in natural logarithm and in the
level form. There are two main reasons for the use of the logarithmic
transformation. The first one is the empirical fact that there have been
considerable changes in the value of the index, as there are in most economic
time series, which tend to invalidate the assumption of a constant relationship
between the absoiute vaiues of variables. The second reason is that, when .using
logarithms, the efficiency of the estimates is increased because
heteroscedasticity in regression analysis is reduced (see Driehuis 1972: 11-12). In

" the case of time-series analysis, stationarity in variance can be achieved,
respectively (Makridakis, Wheelwright and McGee 1983: 439).

The models will be estimated using both monthly and quarterly data. The.
monthly data contain more detailed and brecise information and they are,
therefore, expected to produce more accurate models. However, the quérterly
models will also be estimated in order to control and confirm the results based

on monthly data, because some independent variables in our econometric analysis

are observed only quarterly. The monthly values of those variables are .

interpolated. Further, the quarterly models generate one-step forecasts for
three months, instead of one month by monthly models.

2.2, Univariste time-series model building

AutoRegressive Integrated Moving Average (ARIMA) models have been studied
extensively by Box and Jenkins (1970), and their names have frequently been used
synonymously with general ARIMA processes applied to time-series analysis and
forecastlng. For several years now, also accounting and finance researchers
have applied this methodology to investigate for instance the behaviour of
reported numbers and stock market prices.
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invelves a single series observed at equally spaced intervals

by an
(e.g. monthly, quarterly or annually), and assumed to be generated by a

i i i the
autoregressive integrated moving average process. This technique examines
the behaviour of the series explamed by its

Univariate modelling

interstructure of the series, that is,
ARIMA models express the current value of a series (yt) as

ast variability.
- past values of & noise or error

a function of its past values as well as current and

series (et):
G.D) PE-8, = 09k, .

In(3.1) B is the backward shift or lag operator such that

(3.2) BY, = Yy K= L

er d for the

1-B is the dl”elEllcl“g operator to PIOdUCE differences of ord

#P(®) is the autoregressive polynomial in B of order p, \
and e, is the noise series, that is

d identically distributed over time.

series,
moving average polynomial in B of order g,

assumed to be independent and normally an
Model (3.1) is also called ARIMA (p,d,q) -model.

If we have to add seasonal components

-model, which in terms of the

Model {3.1) is for non-seasonal processes.
to the model, we get an ARIMA (p,d,qXP,D G)

polynomials becomes
P d 5D
3.3) e Be3-800-8%) "y,

- 69@)0%E%e, .

P 1
In (3.3) §- is the number of periods per season, 5" =and O , the seasona

1 moving average polynomials, respectively, as well as

autoregressive and seasona '
are now all expressed in powers of

the seasonal differencing operator (1-B )

BS,

o model

In the following the univariate Box - Jenkine method will be applied &

both monthly and quarterly stock prices on the Helsinki Stock Exchange. The

data to be used for identifying, estimating and testing the model consist of the
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values of the Unitas index in years 1975-84 (120 monthly values or 40 quarterly
values). The rest of the data (from January 1985 to March 1986 in monthly data
or from 1/1985 to 1/1986 in quarterly data) will be used for measuring the
forecasting accuracy of the models,

2.2.1. Identification of tentative models

We start our analysis with the monthly data. The data indicate that the changes
in the values of the Unitas index increase as one moves from the beginning to the
end of the period. Until December 1981, the value of the index was low and so
were the changes. From January 1982 until April 1984, prices increased and so
did their vériations from one month to the next (the value of the Unitas index

tripled). The rest of the year 1984 shows a clear decrease in the prices.

The variation in the magnitude of the price changes with time is referred to as
nogstationarity in the variance of the data. A stationary variance must be
achieved, however, before fitting an ARIMA model to the series. As stated
earlier, we apply the natural logarithm transformation to the Unitas index. This
transformation stabilizes the variance quite well. It also appeers reasonable
from a theoretical point of view since the first differences of the natural
logarithms will closely approximate the percentage change for the month (the
data to be analyzed comsist of index numbers, where only percentage, not
absclute, changes have any empirical meaning).

Due to a strong trend sven in the logarithmic transformed series, the data still
have nonstationarity in the mean. This can be seen for example from the
autocorrelation function which does not dampen out guickly (in the partial
autocorrelation function the first partial is very dominant, toc). To achieve
stationarity, we must difference the series, The trend in the transformed series
is stronger than linear. Therefore, taking of the first differences of the data is
not enough to fully stationarize it: the graph of the series still has a slight (but
statistically significant) trend, the autocorrelations dampen out quite slowly, and
‘the first partial is dominant. That is to say, we must take second differences of
the data, and reanalyze.
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As a result we abtain that the logarithmed data are now, after double
differencing, stationary in both the mean and variance. Further, there is a
suggestion of a MA(1) process for this twice differenced series, because only
the first autocorrelation is large and significant and because the first few
partials decay exponentially. With this interpretation, a tentative model for the
logarithms of the Unitas index would be ARIMA (,2,1), or

(3.6) a-8)%y, = (1-0BJe, .

A cleser look at the index series shows, however, that there also exists a clear,
although not very strong, seasonality pattern in the data. The value of the stock
market index is, for example, high at the beginning of each year and low in early
summer and late autumn, indicating a 12-month seasonal pattern. The auto-
correlation function of the stationarized series supports this impression fairly

well.

To take also the seasonal effect into account, we take, in addition to the
iogarithmic transformation and double differencing of the raw data, a 12-month
seasonal difference. The resulting series has two spikes in its autocorreiation
function (with lags of one and twelve months), and a partial gutocorrelation
function with exponentially decaying values. This all suggests a seasonal MA{1)-
component to be added to the model. In comparison with our non-seascnal madel

12
(3.4) we thus have a tentative seasonal model ARIMA (0,2,1)0,1,1)°°, or
' 12 12,
3.5) 1-87%0-812y, = (-0B)1-08"e, .

The behaviour of the quarterly Unitas index is very similar to that of the
monthly index (the quarterly index is computed as srithmetic means of the
relevant monthly velues). The main differsnce is in that the seasonal variation
becomes much more clear-cut, due to reduced random variation in the more

aggregated and thus smoothened raw data.

Derivation of a tentative model for the quarterly index proceeds as in the case
of the monthly data. The transformed data, after taking the natural logarithm,
the second non-seasonal and the first (four-quarter) seasonal difference, are

stationary in both the mean and variance. The autocorrelations and partials
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suggest a seasonal MA(1)-pracess for the transformed series (there is now no sign
of any non-seasonal MA(1)-process as was the case for the monthly series, the
t

fourth autocorrelation is the only large and significant). We thus have an ARIMA
(6,2,0X0,1,1)* -model, or

(3.6) a-e2a-84v, = q-e8k,,

where we have used capital letters Y and E referring to quarterly values of
the logarithm of the Unitas index and error term, respectively.

2.2.2. Estimating the parameters

The parameters have been estimated by a nonlinear Gauss - Marguardt algorithm
(Box and Jenking 1970), by the backcasting method (Dixon 1983).

Consider the non-seasonal monthly model (3.4) first. The estimated value of the
MA(1)-psrameter 6 together with its 95 % confidence interval is given below:

Parameter 95 % Confidence interval
8=0.7591 0.6375 to 0.8807

When we add the seasonal MA(1)-component to the model (model (3.5)), we get“
the following estimates for the parameters:

?arameter 95 % Confidence interval
?= 0.7529 0.6288 to 0.8770
0= 0.8396 0.7685 to 0.9107

The estimated value for the seasonal MA(1)>-parameter & in the quarterly model
(3.6) becomes:

Parameter 95 % Confidence interval
©=0.8332 0.7203 to 0.9461

10

We see that in all the models the values of the parameters fall with probability
(higher than) 0.95 into the interval 0 < parameter <1, as desired.

2.2.3. Diagnostic checking and testing of the models

After having estimated the parameters of tentatively identified ARIMA-models,
it is necessary to verify that the models are adequate. There are basically two

ways aof doing this (Makridakis, Wheelwright and McGee 1983: 446):
1. Study the residuals - to see if any pattern remains unaceounted for; and

2. study the sampling statistics df the current solution - to see If the model

could be simplified.

We have three models to consider, two based on monthly data (the non-seasonal
madel (3.4) and seasonal model (3.5)) and one on quarterly data (model (3.6)). The
optimum values for the parameters of the above models were given in Section

2.2.2,

The autocorrelation coefficients for the residuals of all the three models were
examined for several time lags to see if any of them were significantly different
rom zero. The analysis showed thet all the medels (3.4) - (3.6) have preduced
residuals for which the autocorrelations are essentially random: none of the
individual autocorrelations was significantly different from zero and the Ljung -
Box statistics (see Dixon 1983: 690) revealed no evidence of inadequacy of fit

for any of the models.

In Section 2.2.2. we already saw that the estimates of the parameters are very
stable. The standard errors of the estimates are small producing quite narrow
confidence intervals for the parameters. In testing significance this means that
the parameter values are statistically significant. Below we summarize the

relevant statistics:
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Model Parameter St. error t-value D.o.f.
(3.4) 5= 0.7591 0.0614 12.37 117
(3.5 5 = 0.7529 0.0627 12.01 104

8 = 0.8396 £8.0359 23.40 104
(3.6) 6 = 0.8332 0.0556 14.98 33

All the t-values obtained are highly significant, the probabilities associated with
them are all less than 0.001.

Another way to evaluate the appropriateness of a model is to figure out, how
well the model fits with the data. Residual mean square (mean of squared errors
of the fitted values) and its square root are common measures for this purpose.

These residual statisties for different models are presented below:

Model Residual sum D.o.f. Residual mean Square root
of squares square (RMS) of RMS
(3.4) 0.094177 117 0.000805 0.0284
(3.5 0.076103 104 0.000732 0.0271
(3.6) 0.061333 33 0.001859 0.0431

To judge the size of the different RMS's it is worth to note that the statistics
associated with the explained variable Y, or Yt (the natural logarithm of the
Unitas stock market index) are the following: mean = 4.688, standard deviation =
0.400, standard error of the mean = 0.0365 (for yt) and 0.0632 (for Yt)' The
adequacy of the fit is evident,

2.2.4, Discussion

The results of the preceding analysis can now be scrutinized also in the light of
the question about market efficiency, Under the weak form of efficiency,
information on historical price trends is of no value when predicting future stock
prices. In terms of Box - Jenkins methodology it means that the prices follow a
random walk model. A random walk in the general price level (in the logarithm
of the. general Unitas index, for being exact) would take the following form (see
e.g. Watts and Leftwich 1977: 258):
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12
(3.7 Ve = Ypptet S
or
(3.7 W-Bly, = e+ 6,

where & is a possible trend or drift in the series.

The preceding analysis, however, showed that the Finnish stock market prices
don't follow, either in the level form (yt and Yt) or as percentage price changes
(p = ¥py = Q-Bly, and Y, - Y, ;= (1-B)Y,), the genera'l random walk model.
At least one moving average component must be included in the ARIMA-model.
This can be interpreted as a non-existence of equity market efficiency in the

weak sense (transaction costs have been omitted in the analysis).

2.3, Econometric models
2.3.1.  The selection of explanatory variables

The results of the preceding section show that random walk model is not a
tenable representation of general price movements on the thin Finnish security

market. The results are opposed to the weak form of the efficient market

hypotesis.

If the market is not efficient in the weak sense it can not be efficient in the
semi-strong sence either. A logical step is now to analyze the usefulness of
other information than the own past historical data of prices to predict the

monthly and quarterly stock market prices.

In this section we develop a forecasting model based on multiple regression
analysis, in order to predict the future development of stock market prices. Our
econometric madel includes six groups of explanatory variables or "the kinds of
information” which a priori can be supposed to affect the development of stock

market prices. The classification of the variables is the following:



1.

2.

5.

Lagged endogenous variable. The first explanatory variable is, according
to the results of univariate time-series models, the endogenous variable
itself lagged one period (regression coefficient is a priori positive). This
variable does not totally exhaust the effect of past historical develop-
ment on the variable itself. However, we do not make experiments with
very many kinds of distributed-lag models because of other explanatory
variables. Further, composite stock price forecasting models to be

presented in the following section include this "full" past history.

The aggregated future cash-flow of the firms. As a crude surrogate of
this exogenous variable we use the anticipated order stock next period as
compared to now in Finnish industry ("decreases" answers; the regression
coefficient is a priori negative). The data originate from the business
surveys by the Confederation of the Finnish Industries (CF1, see in detail
Terdsvirta 1984: 3-4 and 21). In an efficient market stock prices change
significantly only in response to unanticipated changes in prospects for
future cash-flow.

Interest rates of bank deposits or the return of the state bonds. Our

hypothesis is that if the return of bank deposits or bonds decreases,.

ceteris paribus, stock prices will rise and the lag is some months, or ore
year and some months (time deposits).

The supply of money. According to Sprinkel's forecasting framework
changes in the stock of money and changes of stock market index are
leading indicators. The lead time for monetary supply is longer than the
lead time for stock market prices, Therefore, the money stock can be
used to predict changes in the level of the market index (see Bicksler
1972: 229-230). . According to our hypothesis the rise in money supply
will raise the stock market prices.

Inflation. The classical Fisherian theory implies that common stocks of
unlevered firms serve as an effective inflation hedge during anticipated
inflation (see Lintner 1975: 270). However, the results of Lintner (1975),
Fama and Schwert (1977), Modigliani and Cohn (1979), Feldstein (1980),
Kanniainen and Kurikka (1984) and Pearce and Roley (1985) show that
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inflation (both anticipated and unanticipated) has a variety of effects on
the real earnings of firms depending on the net monetary position of the
firms (see Sharpe 1985: 251-252) and on the prevailing tax system. Most
empirical results do not support the hypothesis that common stock serves
as ;an effective inflation hedge. However, the results of Kanniainen and
Kurikka (1984) suggest that inflation seems to be good rather than bad

news for the stock market in Finland, This is also our a priori

hypothesis.

6. Psychological aspects. According to empirical experience we know that
stock price fluctuations are parallel in different ccunt;ies, We are

. especially interested in the price fluctuations of the Stockholm Stock
Exchange for example whether the prices in the Finnish stock market
follow the prices of the Swedish stock market. During the period to be
examined the exchanges of Stockholm and Helsinki were isolated from
each other. Only at the end of the period there were some few firms
whose stocks were quoted on both exchanges. However, the economy of
both these vcountries is very open, export quite similar and trade between
them on a high level. Thus; it is possible that economic time series
including stock price fluctuations are to some extend similar in these
countries. According to our hypothesis Finnish stock prices follow

Swedish stock prices.

2.3.2. Empirical results

The least-squares results for estimated econometric models using monthly and
quarterly data, respectively, are presented in Table 1. The results sho\fv that the
signs of all coefficients - both in the monthly and quarterly equations - are
parallel to the hypotheses. The sign of inflation coefficient is opposed to most
empirical results but parallel to the Finnish results published by Kurikka and
Kanniainen (1984). The coefficients of all explanatory variables are also

significant at least at five per cent level.

The Durbin - Watson statistics shows that positive autocorrelation is actually not

a problem in the models (in the econometric model 3 the test is inconclusive).
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Durbin - Watson statistics is biased if lagged endogenous variable (e.g. yt-l)

appears as an explanatory variable. The bias tends to decrease if, apart from

Ypo10 there are also exogenous explanatory variables in the model (see Malinvaud
1966: 460-465). However, the absence of any positive autocorrelation was
verified also by the Durbin's method, which allows the lagged endogenous

variable as an explanatory variable (Durbin 1970: 410-421).

The models in Table 1 include explanatory variables from all the groups -
excluding the supply of money - presented in the preceding section. The supply
of money and inflation actually proved to be the alternative explanatory

variables. However, the statisticsl features of the models were better when

inflation was included.

The own history of the predicted variable was clearly the most important

explanatory variable especially in monthly but also in querterly models.

The price fluctuations of the Stockholm Stock Exchange seem to be a leading
indicator to the prices of the Helsinki Stock Exchange. Alternatively, we
experimented also with Dow - Jones and Standard & Poor indices but they had no

statistically significant effect on the development of the Unitas stock market

index.

The surrogate of the aggregated future cash-flow (the anticipated order stock in
Finnish industry) was also a necessary variable in the model. So, in the Finnish
stock market also anticipated chan;ges in future cash-flow affect the develop-

ment of stock market prices.

The lag-structure between the endogenous variable and the inflation variable is
quite long; thirteen months when monthly data was used and five quarters when
quarterly data used. However, it was very interesting to find out that when we
excluded inflation or some other explanatory variables or supposed other lag-

schernes we usually had a serious positive autocorrelation in the models.

Interest rates of bank deposits and the return of the state bonds were alternative
explanatory variables. We experimented with the average interest rate of both

all banks and commercial banks without concrete difference. The lag-structure
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between the endogenous variable and interest rate variable was very clear-cut
and the results show that one-year time deposits are a noticeable alternative to
the common stocks. The lag between the endogenous variable and the return of
the state bonds was four months. Eight months lag gives about as good results as
four months lag that is parallel to the results using quarterly data.

Finally, it seems appropriate to conclude that the results of the ecnnometric
models support the results presented in the preceding section. We can predict
both by using univariate time-series analysis and econometric models the
monthly and quarterly stock market prices in Helsinki Stock Exchange.
According to the empirical results of this study the stock market in Finland is
neither efficient in the semi-strong nor in the weak form when transaction costs
are excluded,

2.4, Procedure for obtaining improved compssite forecasts

When there are available two sets of one-step forecasts, then it is well known
that a linear combination of the two forecasts may outperform both of them
(e.g. Granger and Ramanathan 1984, for an application in financial analysis see
e.g. Guerard and Beidleman 1986). In tnis section we develop a procedure for
generating a composite forecast from an ARIMA-forecast and an econometric
forecast. By doing so we expect to obtain a furthermare improved forecasting
procedure, where all the explanatory components included in ARIMA and
econometric models have been incorporated. And as one outcame of this
combining procedure, we had no needto try to include either exogenous variables
in ARIMA-models (via transfer function modelling) or any longer own past

histary of the Unites index in econometric models {e.q. via distributed lags).

Consider the case where we for ¢ (the natural logarithm of the Unitas index)
have two unbiased one-step forecasts ftBJ {from an ARIMA-model) and ftE
{from an econometric model). The (linear) composite model is now of the form:
(3.8) BJe BJ - Ee E

yt=a+b ft bft +et’
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where a is a constant, B9 and bE are weights of the two forecast series and
e. is a random error term. Using ordinary least squares in estimation, there still
¢ . - >
remain three methods to fit the model (Granger and Ramanathan 1984: 199-201)
(i) no constant term, weights restricted to sum to unity, (i) no constant term,
unconstrained weights, and (iii) unconstrained weights with constant term. In
their paper Granger and Ramanathan (1984: 201) conclude thst method (iif) is
theoreticaily the best and the common practice of obtaining composite forecasts
as weighted averages (method (i)) should be abandoned in favour of an
urrestricted linear combination including a constant term (method (iii)). This
recomm;endation has been recently applied e.g. in finance by Guerard and

Beidleman (1986).

We started the estimation of our composite model (the estimation period
consisted of the years 1975-84 as in the case of individual models) with method
(iii). In all cases the value of the constant term became, however, near zero and
was far from being statistically significant. Therefore, in the final estimation
method (ii) was applied (unconstrained weights without the constant term). The
results of the estimation are presented in Table 2 (monthly data) and Table 3

(quarterly data).
Table 2. Estimated composite models for monthly data.

Weights for components and their t-values

i tric Residual
ARIMA ARIMA Econometric Economa!
Model ©,2,1) 8,2,1(0,1,1* model 1 model 2 mean square
o o m;:dsls 1.000 - - 0.000805
ARIMA (0,2,1 . -
. 12 - 1.000 - - 0.000732
ARIMA (0,2,1X0,1,1) o
del 1 - - 1.000 - 0.0
Econ. mod:l 2 - - 1.000 0.000556
con. Mot -
Comnposite madals
Model 0.107 - 0.893 - 0.000520
(0.878) (7.340)
Modet Il 0.124 - - 0.876 0.000520
(1.062) (7.364)
Model Il - 0.270 0.729 - 0.800496
(2.509) (6.744) . .
Model IV - 0.283 - 0.716 0.000495

(2.679) (6.763)
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Table 3. Estimated composite models for quarterly data.

Weights for components and their t-values

Mode! A0 oo e el
Component modsals ==
:RIMA @©,2,00,1,1* 1.000 - - 0.001859
E::: ::::]l j - 1.000 - 0.001495

o - - 1.000 0.001525
Composite modals
Model V 0.365 0.635 - 0.000956
e

. - 0.623 0.000897
(3.563) (5.899)

From the results we can see that in all cases combining an ARIMA-model with an
econometric model reduces the residual as compared with those of the compo-
nent models. This reduction is largest in the two quarterly models, whereas
combining the ARIMA (0,2,1) -model with any of the econometri’c models
{(composite monthly models I and II) reduces the RMS's of the econometric
models only slightly, This is also revealed in that the t-values of the ARIMA-

com : e
ponent weights are not significant. We see that the main contribution with

whi i
ch an ARIMA-component can imprcve the econometric models is in the

seasonal pattern included.

Further, it is interesting to note that in all models the weights add nearly to one
although it was not explicitely required. This, together with the non-significant:
constant term obtained by method (iii), indicates that, for our models and data
tht.é th‘ree different methods produce almost identical produres for combining’
univariate time series forecasts and econometric forecasts.

3. FORECAST RESULTS

The object of this chapter is to compute, using each of the derived models
y

forecasts for the Unitas stock market index from January 1985 to March 1986

258
20

(monthly data) or from the first quarter of 1985 to the first quarter of 1986
(quarterly data), and to compare torecast accuracy of the models.

:
The development of the Unitas index was quite interesting during that period.
The decrease in the share prices which began at the end of the estimation period,
in spring/summer 1984, continued until summer 1985 after which the prices
began to rise again. The increase in the value of the index was very rapid,

especially at the end of the forecasting period.

The forecasts were computed as one-step forecasts for the natural logarithm of
the Unitas index. The monthiy forecasts were compu uted using the two univariate
time series models, non-seasonal ARIMA (0,2,1) -model and seasonal ARIMA
(0,2,1)0,1, l)]‘2 -model (with parameters given in Section 2.2.2.), the two
multivariate econometric models (models 1 and 2 in Table 1), which differ in the
"ast” explanatory variable, and two composite models (models 11 and IV in Table
2; compasite models I and 1I were not used in forecasting, because their ARIMA=
component showed no statistical significance in the analysis). The quarterly
forecasts were computed with all the derived quarterly models: ARIMA
(D,Z,D)(D,l,l) time-series model, multivariate econometric models 3 and 4 (see

Table 1), composite models V and VI (see Table 3).

For evaluating the forecasting ability of the presented models, a variety of more
common accuracy measures will be used. That is because different measures
give weight to different aspects in the error series. The following measures
were computed (for definition of the accuracy measures see e.Q. Makridakis,
Wheelwright and McCee 1983: 43-54 and Flores 1986): mean errar (ME), mean
absolute error (MAE), mean of squared errors (MSE, analegical to residual mean
square, RMS, used in diagnostic checking of the models), root mean of squared

errors (RMSE ), mean percentage error (MPE) and mean absolute percentage error

(MAPE).

The results of forecasting procedure are summarized in Tables 4 and 5 (for

monthly and quarterly data, respectively).



Composite
model 1V

-0.00151
0.02461
0.00112
0.03352

-0.031
0.451

Composite
mode! I
0.00885
0.02674
0.00132
0.03629
0.157
0.489

Composite
model VI

-0.01713
0.06075
0.00477
0.06904

-0.327
1.113

Econometric

model 2

-0.00795
0.02808
0.00126
0.03547

-0.151
0.516

Composite
model V
0.00299
0.06519
0.00550
0.07415
0.038
1.188

Model

Econometric
model 1
0.00655
0.02996
0.00141
0.03760
0.113
0.548
Model

Econometric
model 4

-0.01328
0.06486
0.00494
0.07028

~-0.261
1.188

1)12

ARIMA
(0,2,1X0,1,
0.00840
0.02576
0.00157
0.03964
0.155
0.472
Econometric
model 3
0.01785
0.07041
0.00676
0.08220
0.305
1.280

8

0,2,1)
0.01152
0.02366
0.00120
0.03462
0.211
0.434
ARIMA

(0,2,0%0,1,1)
0.02230
0.08516
0.00908
0.09528
0.417
1.552

Forecasting accuracy summary (monthly data).
ARIMA

Forecasting accuracy summary (quarterly data).

Table 4.
Accuracy
measure
ME

MAE

MSE
RMSE
MPE (%)
MAPE (%)
Table 5.
Accuracy
measure
ME

MAE

MSE
RMSE
MPE (%)
MAPE (%)
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When we look at the statistics associated with the monthly forecasts, we see

that all the models perform quite well, the error measures have not increased

alarmingly as compared with those in the fitting phase (residual mean square vs.
mean of squared errors). Composite model IV, which has the seasonal ARIMA
(l‘.),Z,l)(D,l,l)]'2 .model and multivariate econometric model 2 (including the

return of the state bonds as one of the explanatory variables) as its components

seems to have the lowest error statistics: the forecast is actually unbissed {ME =
-0.00151, MPE = -0.031 %), the error has low variation (MSE = 0.00112, RMSE = -
0.03352) and is low in absolute values (MAE = 0.02461, MAPE = 0.451 %). We
nate that the non-seasonal ARIMA (0,2,1) -model, which was the least satisfacto-
now has quite a low error statistics (it has,

ry model in the fitting phase,
however, more biased forecasts than the other models). The rest four models are

almost equal to each other in accuracy.

As expected, forecasting accuracy of the quarterly models is not as high as that

of monthly models. This is natural since useful information is lost due to
aggregation in the modelling.

far away, for one quarter or three months ahead. The results are, however, fully

acceptable, Both econometric models seem clearly outperform the univariate
time series model. However, combining this time-series forecast with an
ced forecast (composité forecasts V and Vi) still reduces
the error statistics. Analogically to monthly modelling, composite model VI
(seasonal ARIMA-model and the econometric model including the return of state
omponents) possesses the lowest error statistics in general

The one-step forecasts are also computed more

econometrically produ

bonds as its o
(although composite model V is, in fact, unbiased).

4. SUMMARY

first, to analyze to what extent, and in which

The purposes of this study were,
e an a thin

form the monthly and quarterly stock market prices are predictabl
security market like the Helsinki Stock Exchange. Second, to compare the
series analysis and multivariate

forecasting results based on univariate time-
osite stock price

econometric models with each other. Third, to develop comp

forecasting models and examine the forecasting improvement of these models
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relative to the time-series and econometric models.

At the beginning of the paper we presented that market efficiency is a crucial
coneept when the predictability of stock market prices is analyzed. Under the
weak form of efficiency, information of past prices is of no value for predicting
future stock prices. As such the weak form of efficiency is directly opposed to
the basic premises of univariate time-series analysis to forecast stock prices.
Analogously, the semi-strong form of efficient market hypothesis is diametrical-
ly opposed to the basic premises of multivariate econometric analysis to forecast
stock prices. Many anomalies and deviations from market efficiency even in the
weak form serve a possibility to forecast Finnish stock market prices by using

both univariate time-series analysis and multivariate econometric analysis.

The empirical results showed that the Unitas general index did not follow a
random walk model. This can be interpreted as a non-existense of equity market
efficiency in the weak sense, If the market is not efficient in the weak sense it
can not be efficient in the semi-strong sence either. The empirical results of
multivariate econometric analysis were parallel to this deduction. We found
both theoretically and statistically satisfactory econometric models to predict
stock prices. After that we developed a procedure to generate composite

forecasts from univariate time-series models and econometric models.

Finally, as expected, forecasting accuracy of monthly models was better than
that of quarterly medels. Econometric medels provide slighly more accurate
forecasts than the univariate time-series models. However, the composite
models substantially reduced the mean square forecasting error compared to the
results of univariate or econometric models. So, t‘he empirical results strongly
support the use of composite models to predict Finnish stock prices.
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