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1. INTRODUCTION

The use of entropy in statistics has

its origin in information theory.
Entropy, Shannon's measure for un-
certainty  (Shannon 1948), has been

especially used as a measure of dis—
persion for qualitative data. The
dispersion of a distribution X : {(Ppy,
PZ""’Pn) can be measured by its
entropy

n
(1) B=- & p; log P;
i=1

due to the good properties of H as a

measure of dispersion: H is non~
negative, H = 0 if and oanly if some
p;=l, and H gets itfs maximum value

(= log n) for the uniform distribution

pp = P2 = +-» = Py =~ 1l/n, see e.g.
Astola and Virtanem (1981, 4~10).

Now we consider, however, data .which
are presented as a two—way contingency
table. TFor a more detailed discussion
on the subject see Astola and Virtanen
(1983). The two variables, X and Y,
to be considered are assumed to have r
and ¢ classes, respectively. Let the
joint probability (or relative
frequency) distribution of X and Y be
(Pyj)s A= 1,.uyry 3= 1,.00,c,

The entropies of the marginal dis-
tributiong of X and Y are

(2) Hy = - p;, log p;,

1

M

Ma

{(3) Hy = - p.jlog P, j»

1

i
where p; » 1 = 1l,...,r and bp i,
j = 1l,...,c are the marginal pro%-
abilities (relative frequencies) of

the distributions X and Y, respect-
ively.

The entropy of the Joint distribu-
tion, «called now coentropy, 1is
defined as

’ r
@) Hgy = -% £ pijlog pyj-
1=l j=1

o

Hyy has also Dbeen called joint
entropy (Theil 1969, 469-472) and
overall entropy (Preuss 1980, 1566).

In the following the elementary
properties of univariate entropy are
assumed to be known. Next we list
some general  properties of co-
entropy. The proofs can be found
a.g. in Astola and Virtanen (1981).
First we have

{5) max H H. Y% <
_ pad kS A S

such that equality holds in the right
hand side of (5) if and only if X and
Y are independent. As numerical
bounds for Hyy We have

(6) £q, %
0£H,, log{rc).
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From (5) and (6) we see that both the
dispersion of the joint digtribution
and the degree of independence of the
two variables have a contribution to
the value of coentropy.

2. ENTROPY CORRELATION COEFFICIENT

Coentropy measures both the dispersion
of the joint distribution and the
degree of independence between the
variables. 1In order to get an appro-
priate measure for the degree of
dependence, we must eliminate the
effects of the marginal entropies from
coentropy and change its sign.  Be-
cause we are working with logarithms,
the natural way to carry out these
modifications is subtractien.

We define the quantity mean depend-
ence information, denoted by Iyy, as

(7) T H, -H

Xy ~ "(HXY —Ux

HX + HY - H

Y) h

XYy -

Iyy has also been called the ex-
pected mutual information (Theil 1969,
470) or mean information (Xullback
1959, 5).

The following statements consider the
possible values of Iyy and show that
Iyy ¢an be used as a measure of the
degree of dependence. For proofs, see
e.g. Astola and Virtanen {1981, 16).
We have

(8) 0 &Iy €3 (L o+uy)

(9) 0 € Igy £ min {}og r, log é}

(10) Iyy = 0 if and only if X and Y

are independent

(11) Igy = #(Hy*Hy) if and

only if X and Y are completely
dependent, i.e.

if

|t}
o

Pi13Pi,7

il 2 i2’ j=1,...,c and

Pii1Fidy = 0 if
jl%jz, i=l,...,1‘.

The statements (8) and (9) show that
Ixy @ a measure of dependence
still has some disadvantages. It is
not satisfactorily scaled (we prefer
scaling between 0 and 1), The maxi-
mum  value of Iyxy depends on the
size and type of the frequency table
{we require 1independence on the
formation of the table), And at
last, reaching of this maximum value
depends on the marginal distributions
(we require reaching of the maximup
value independently of the marginal
distributions in the case of complete
dependence)., We need, therefore, an-
other derived measure for dependence
that fulfills all the requirements
presented above.

The new measure of dependence, called
entropy correlation coefficient and

denoted, by Py, is now defined as

T
XY
(12) PH - . . ) =
3 (Hy+Hy
\
Hyy
2 (1- Y.

The division by %(HX+HY) in (12)
is needed to meet the requirements
set above for the final measure. The
square root in the definition is not
necessary from the theoretical point
of view, but by magnifying variations
especially near zero it gives Py 2
behaviour which surprisingly well
matches our intultive ideas of the
degree of dependence.

In the following we present the
properties of entropy correlation
coefficients as a well-behaving
measure of dependence. They are
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direct conseguences from the corre-
sponding properties of the mean de-
pendence information Iyy. We have
(13) osgpy=l
(14) fh = 0, iff piJ = pi.p.j,
Mi=1i,...,r,
i=1l,...,¢
(15) p. .P. . =0,
1%3 12?
\1:ll * 12,
i=1l,...,¢c
PH = 1, iff
13 13 =0,
1 7-2
VJl 7! st
i=1,...,r.
We see that Py has been: scaled

between 0 and 1, 0 indicating full
independence and 1 complete depend-
ence, We can also see that the values
of {fy 38re independent of the size
and type of the table: y Can reach
all the values between 0 and 1 both in
square and rectangular tables, TFur-
ther, Py does not depend on the
forms of marginal distributions. And
at last, the population size hasi no
effect on y. As a summary of the
properties of Py We can state that
for qualitative categorical variables
it is difficult to find another
measure of dependence that fulfills
all the properties verified for @y
above, cf., for example the discussion
in Kendall and Stuart (1979, 586-590).

3. GENERALIZATIONS TO THREE~-WAY
TABLES

Consider three wvariables X, Y and Z
having the 301nt distribution (P1Jk)
i= 1,00ty 3= 1,000,c, k=

1,...,L. The coentropy of
the joint distribution is now defined
as

(16) Hyyz =

r ¢ 1
- g 2 Z Pi ik log Pi 5k
i=1 j=1 k=1

We can also calculate the coentropies
HxY 3 sz and HY A of the Two~—
dimensional marginal distributions
and the entropies Hy, Hy and Hy
of the one~dimensional marginal
distributions analogously to the bi-
variate and univariate case, respect-
ively, -

In order to get an overall measure
for total dependence between the
three wvariables, we eliminate the
effects of lower order dependences
and dispersion. We define the mean
total dependence information as

(1?) I =} ~{H

H
XYZ XYZ KY X ) -
H_ -H -H -
( XZ X Z)
H__-H -H - H -H -H
¢ YZ Y Z) X 'Y Z
= H +H +H ~-H__-H -
X Y Z XY HXZHYZ+
Bevze
I the following properties
XYZ 1 .
8 - = {(H _+H H =1
(18) { <y ) —
e L
g +H_+
3 (HX H, HZ)

(19) Igyyz =0, if X, Y and Z are
mutually independent

(20) 1 (H +H_+H )

XYZ X 'Y Z

if and only if for each 1, j
and k there is at most one pair
(jak): (k,i) and (i:j)s
respectively, such that i ik >0

(21) Loz ™ (HX+HY+HZ)
if and only if for each (i,]),
(j,k) and (k,i) there is at
most one k, 1 and j, respect~
ively, such that pl = l/m
where m = min ii

The final rationally scaled measure
of dependence, called total entropy
correlation coefficient, is defined
analogically to the bivariate case:
k! AY
Lyz

22) P = T
3 X Y Z
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Using the properties (18)-(21) derived

for Iyyy We see that F_H_ Vvaries
between —~1 and 1. The minimum -1
{indicating wmaximal negative corre-

lation) 1s reached for a distribution
in which there is a diagonal distribu-
tion in each layer but these distribu-
tions situate in different positions
in different layers. The maximum
value | 1s reached for a diagonal dis-
tribution, i.e. in the case of com—
plete dependence, And at last, inde=~
pendence is scored as 0. All these
critical values of Py Match extreme-
1y well our intuitive idea of the
nature and degree of dependence. The
cubic root transformation 1s needed to
quarantee @y @n intuitively rational
behaviour between the extreme wvalues,
too.

It is clear that in three or higher
dimensions Py Can highlight depend-
ence from only one point of view, from
the point of view of total correla-
tion. More information about depend—-
ence can be obtained when different
types of partial correlation coef-
ficients are introduced. These par~
tial correlation coefficients can also
be based on entropy and coentropy con-
cepts,
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