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1. INTRODUCTION
1.9 On the concept and usz2 of entropy

The concept of eninropy has been widely used in physics and
information theory. Over the years the ides has been borrowed
by other disciplines and has been applied in several problem
areas within the social sciences, especislly in statisties,
cconomics, business, zecgraphy =nd operational research.
Entrppy has become an important tool for plenning purposss

in the wide snd fest devsloping ares of system modelling.

The concept of entropy originated in physics from the basic
principie of the second law of thermodynamics. One of the
mzny possible statements of this law is expressed in entTopy
form: the entropy of & physical system always increases.
This statement simply asserts that the systam cannot recelive
more in energy than ths amount of gxternal work supplied,
and rconverssly, the system cannot transfer more energy to its
envirgmment, in the form of work, than it has energy avail-
sble. For the use of entropy in physics sse e.g. Van Wylen
and Sonntag (1878, 183-285), see also the discussion in
Wilsan (1870b, 255-258).

Ths form of the cencept of enmtropy thst has found the most
applicetions in various branches of science originated in
informaticn theory. Shannon (194B) discovered that thers
was & unigue, unambigquous criterion Ffor the amcunt of uncer-
tainty represented by & discrete probability distribution,
which agreed with the intuitive notions that a broad dis-
tribution represents more uncertainty than does a sharply
peasked one and satisfied ell other conditions which made it
reasonable. He defined this measure of ungertainty, cell-
ed the erntropy of the probability distribution (p1.p2....,pn],
as
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2. BIVARIATE ENTROPY CORRELATION (Z.13 N, = g Nos o i = 1,2,04:,T,
i. 521 ij
Z.1 Notation r
{2.2) N.j :iiﬁNij , 3= 1,2,00.,Cs
In the present section we consider datz which are presented
as two-way contingency tables. These tables are most appro-
priate when the data are qualitative or categorical, but may The size of the populstion, N, is thsn
alsc be used for discrete but ordered or far continuous but
grouped data. The twe variables, X and Y, to be considered (2.3) N - § N, - ; N E ; N
are assumed to have r and ¢ classes, respectively., In con- je1 *° Fe +d i 3=1 J
nection with the fregusncy tables ws us= the notation pre-
senteg im Table 2.1. We assume throughout the paper that By dividing the frequencises in Table 2.1 by the population
the cell frequencies Nij are the theoretical or true fre- size N, we get the relative fraguencies or probabilities
quencies, i.e. that the whole population has been under clas- s given in Table 2.2, The cell probabilities Pij define
sification.
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Table 2.2. The joint probability distribution

Jable Z.1. The freguency table of fwo . s .
and the marginel distributions of

categorized veriables X and Y. . .
the random variables X and Y.

From the two-way table we can as marginsl freguencies obtain
the elass freguenciee for the variables ¥ and Y:



‘£he joint probability (or relative freguency) distribetion
pf X and Y. The cone-dimensional distributions of X and Y
are obtained as the marginal probabilitiss By, and p 5

The following relations are svident
g
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In what follows, the sympbocl log x is used io denote logzx,
i,e. the logarithm of x to base 2.

2.2 Coentropy and marginal entropiss

As was pointsd out in Section 1 already. the main role of
entropy in statistics is its use as a measurs of dispersion

in connection with one-dimensional categorical variables.

Dur aim is now to szxtend the concept of entropy fpr two dimzn-
sional distributions in srder to get an appropriate gquantitat-
ive measure for the degree of dependence {ar association)
eppearing in a two-way freguency table. The basic guantity

in formulating this measure is the entropy af the jeint dis-
tribution which can be shewn to revsel both the dispersion
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and the dependence existing in the distribution. We call
this two-dimensional entropy cceniropy becsuse the pair
gntropy-coentropy can be shown to possess in connection
with gualitative variables analogicel relations and inter-
pretation as the pair variance (or its sguare root standard
deviation) - covariance has in connzction with measurable
data. The definition of coentropy in & two-way frequency
+table is besed on the ideas presented by Theil (1889].
Coentropy has alsoc been called joint entropy (Theil 1888,
459-472) and cverall entropy (Preuss 1880, 15B8).

Definition 2.7. (Coentropy and marginal entropies).

Let the bivariste distribution and the marginsl distributions
of X and Y be as presented in Table 2.2. The entropies of the
marginal distributions of X and Y are defined as

r
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and the coentropy of the joint distribution of X and Y as
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Next we shall present some general propsriiass of entropy.
The procfs can te found e.g. in AczEl and Dardoczy {1873),
Astolz and Virtanen (1881, 7-8).

Theorem 2.1. (Shannons Lemmal Consider two variasbles Z and

7' with distributions [p1,...,pm) and {p%,...,pﬁ) respectively.
Suppose that pi >0 feri=1,...,M. Then



An important application of gntropy in information theory is
ite use as a measurs of thes expected information of a message
and as & toel for matehing information etreams with channel

capacities.

Entropy is also being ussd with increasing frequency in the
analysis of business and economic data. This was initiated

by Theil (18681 and followed up by a number of authors,
Empirical applications have been presented in economics, &s
well as in sach of the mejor functional areas of business,

viz. accounting, finance, management, merketing and production.
A good survey and critigque of the early business and zconomic
applications is found e.g. in Horowitz and Horowitz (1878).

The cencept of entropy has also been widely used in geography,
gspscially in building medels for urban gnd regional systems
and for transportation. As a pioneer in this ares may be
named A.G. Wilson, see e.g. Wilson [4870a8), whe has also con-
sidersd entropy 25 & genaral tool of system mcdelling'in the
context of opsretional research (Wilson 19708) .

1.2 Entropy in statistics

The use of entropy in statistics has its grigin in informstion
thesry. Shannen's measurs for uncertainty, for example, has
besn introducsg as a measure of dispersion for gualitstive
detz. For the connections beiween statistics and information
theery, see Kullback (1853).

For & gqualitative variable X, the values [symbols of the eguliv-
alence classes) of the variable may be guite arbitrary. The
whole informastion of the distribution is in the class fre-
quencise or probabilities. Iin order to get, fer example, a
location or dispersion index for the distribution, we have

to use these probabilities. As & mMEasuTe of the degree of
dispersion of a distribution X: (p1,p2,....pn] the entropy

of this distribution is used

n
(1.2] H = _i§1pilngzpi

wWwhen we compare H with Shannon's -original § given by (1.1,
w2 see that the coefficient k in the expression of § has been
fixed by choesing the base of the luogarithm as 2.

It is easy to show that entropy H iz a2 welldefined measure
for the dispersion of fhe distribution: H is non-negative,

H =0 if and only if some Py = 1, and B gets its maximum
valug [-= lagzn] for the uniform distributien, i.e. when

Pq = Py = eer T Py - 1/n.

It is possible to calculate emtropy also for & two-dimensional

distribution of twe cualitative variables, i.e. for e bivariate
distribution given as & frequency table. In this case antrapy

reveals both the dispersion of tha distribution and the depend-
ence between the two variasbles (Theil 1868, 489-4727.

The analysis of entropy as a measure pf dependence has remain-

ed, however, guite siight.

Our aim is now to carry out 2 more detailed analysis of the
concept of entropy defined for two-way freguzncy tables. ue
glso give entropy an intsrpretation as the mean uncertainty
appearing in the tsble and demonstrate its definitional analogy
with the covariance of two guantitative variables. Further,

we construct an sntropy-based measurs for the degree of depend-
ence and scale this mzasure in order to get a measure of depend-
snee that fulfills hoth the theoretical and intuitively rational
requirements for & well-defined serrelation coefficient.
Finally, s measure of depenaence far three-wey tables is intre-
duced and enalyzed.



(2.13) - ¥ p;logp; < -
i=1

and the eguality hplds only if Py = pi for 1 = 1,000 M.

Theorem 2.2. Let Z be a random variable with the distribution

(py.+espy)y Then O S H, S leg M
Hy = 0 1if =nd only if some p; = 1

and ;
HZ = lpg M if snd only if p4= Py «.. " Py T § -

Entropy will thus bes maximized when the paopulation is uniformly
distributed intoc eil of the clesses of the variable Z, i.e.
when the dispersibn of the distribution is at largest. Using
probabilisgtie interpretstion we may also say that the uncer-
tzinty connectsc with the gistribution is then at its maximum:
for 5 randomly chosen individual 21l the clzsses are sguiprob-

able a' priori.

In the following theorsm we list some properties of scentropy.
From these propertiss we sse that both the dispersion of the
joint distribution (the entropies of the marginal distributions}
and the degres of independence of the two variables have a con-

tribution to the valus of coentropy.

Theorem 2.3. The following properties held for the coentropy
HXY of the bivariats cistribution of X and Y and for the en-
tropies Hx and Hy of its marginal distributions:

< < -
(2.14) max{HX,HY} N HXY 2 Hy HY

such that

(2.15) Hyy =
i€ and only if X and Y sre independent. As numerical bounds

for HXY we have

(2.18) 8 £ H,y £ logirel.

Next we shall pressnt for the concepts entropy and coentropy
an interpretation that shows the analogy of their definitions
with those of varience (or its sguare root standard deviation]
and covariance of guantitative snd measurable variables, re-

spectively.

tet us first consider the entropy HZ of 2n one-dimensional dis-
tribvution Z;[p1,p2,...,pM}. wWe can write

ul
(2.7} HZ = -L pilug Py

p.logl1/p:).
i=1 i : l

1R
e

Introducing & random varisble H = H#(Z), which has the value

n; = 1Dg[1/pil when the value of the variable 7 belongs to

the i’th class, 1 = 1,2,...,M, we can write

nrt=s

M
(2.18) Hy =3

-
e

pilng[1/pi] =

Dini = E{H}-
1 i

1

1

i.e. entropy is expressed as the mesn value of the random
variable H. The quantity n, = lcg(1/pi] may be intesrpreted

a5 the amount of umcertainty in the i’th class: the uncertainty
equals zero, if P equals one, it increases monotonically when
Py decreases, and spproaches infinity when Py approaches zero.
Entropy thus expresses the mean uncertainty appearing in the
distribution. If we compzare (2.18) with the definition of the

standard ceviatiom of a guantitative variable Z, l.e. wiih
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(2.19) 9(z) = VE(z - E{Z1}° .

the analogy of these two definitions is evident. The standard
deviation expregeses the mean inagouracy appsaring in the disg-
tribution, the mean inaccuracy being measured as the root mean

square deviation about the mesan.

For coentropy (2.12] we get analogously to {2.18)

(2.20) H = -I P

where the guantities N5~ 1og{1/pij3, i 1,2,000.0, J = 1,2,
...,C, may now be interpreted as the values of a two-dimensional
randem varishle H(X.Y), as the amount of uncertainty in the

celis of the table. We have again

c

. T
(2.21) H = I Ip

= = E-{H(X,Y)} *
SIS

i3M13

i.e. coentropy Hyy may be intzrpreted as the mean uncertainty
appearing in the frequency table. The analogy with the covari-

ance of & two-dimensional guantitative variable (X,Y), viz.

(2.22) CoviX,Y) = E{(X-E{x}I{Y-E{Y})},

{5 again evident: coverience gives the mean inaccuracy {about

the mean) included in the distribution.

2.3 Mean dependence information

As we have seen, the coentropy measures both the dispersion
of the joint distributien ang the degree of independencs of
the two variables in the margins. - In order to get an appro-
priaste measure for the degree of dependence and for it only,
we must eliminate the effects of marginel entropies from the
coentropy and move over to the opposite guantity. Beacause
we are working with logarithms, the natural way to carry out
these modifications is subtfaction. We get a measure of the
tegrae of dependence called the mean dependence information
and denoted by Iyy. Theil (1969) calls IXY the expected
mutual information, the term mean information has bsen used
g.g. by Kullback (1358) in somewhat more general information

theoretical circumstances.

Definition 2.2. (Mean dependence informetison). The mean

gependence information of the bivariate distribution is de-
Tined as

(2.23) 1XY = *(HXY - Hx - HY] =H, + H, - H .

The rolz of IXY as the mean dependence information cen be
justified, however, a8 follows. We write ’

(2.24) Iy = Hy * Hy = Hyy
T c r r
= ;Eqpl log o, —1§1p_jlng p.j+ii1 qupijlog Pis
T T
roc
Dy gty
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whers lmgﬂ:zij/p_i p j) is the amount of information

1.,
about d;éendence in the ecell EEi,Fj]: if it holds for a
certain cell {Ei,Fj] the condition Py ~ Ps Pj {which 1is
the rule Ffor &1l ths cells in the case ot independent vari-
ables), the cell gives ng contribution to the amount of
dependeqne of the variables, otherwises 5 # 0 andg the cell
contains some information about the dependance of the vari-
sbles. From (Z.24) we ses that IXY is expressed as the mean
or expectse value of this information. Analogously to {2.1B]

and {2.21) we can write

r c
(2.25) To, = £ Eop., vy = BE{I0X,Y)D,

where 1 = 1{X,Y) is & two-dimensional random varishle describ-

ing the dependence information of the oells.

from (2.23) we can sec that the gefinition of the mean depend-
ence information is analegous to the definition of thes product
moment correlation coefficient p{X,Y) defined for cuantitative

variables:
(2.28} p(X,Y) = E?§§E’§’ .

The guantities IXY and p(X,Y} are formed with the help of the
two-dimensicnal coeniropy l(covariance) and the cne-dimensional
marginal entropies (variances). 1In (2.23) we, however, instead
cf multiplicztion and division uss addition and subtraction.
This is, of course, dus to the use of logarithms in the defini-
tion of the entropy gusntities.

The fcllowing thsorem considers the possible values of IXY and
shows that IXY can be ussd as a measurs of the degree of dspend-
gnce.
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Theorem 2.4. The following statements held for the mean

dependence information EXY

1
o < < 2 +}
(2.27) 0= IXY : s {HX ﬁY]
(2.28) 05 Iy  min{log r. log cl
(2.29) EXY = 0 if and only if X and ¥ are independent
(2.30) Iy = L(H,+H,) if and only if X and Y are com-
" o : _ NP ,
pletely dependent, i.e. piﬂjpizj g if i # i5,
j=1,.s.,c and pij1pij2 = 0 if Jq # doe
i =1,
2.4 Entropy correlation coefficient

In the previpus subszction we considered the guantity IXY’

the mean dependence informsticn, as & measure of the degree

of dependence of two gqualitative varisbles and demonstrated
its definitional =snalogy with the produci moment correlatien
coefficient of quantitetive varisbles. As a measure of depend-
gnce IXY has, however, some disadvantages. It is not satis-
factorily scaled [ws prefer scaling between § &nd t3. The
maximum valus of IXY depends on the sizes and type of the fre-
guency table (we reguire independence on the formation of the
table). And st last, reaching of this maximum value depends
on the marginzl distributions {we require reaching of the
maximum valus independently of the marginal distributiors in
the case of complete dependesnce). We nesd, therefore, another
derived msasure for dependence that fulfills all the require-
ments presented above.
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In order to get the final index to vary between 0 and 1 such
that D shall indicate full independence and 1 complete depend-
epce we must divide the velue of IXY by its maximzal value.

It is worth to note hare thst by complete dependence wg mean
the highest degree of dependence: if we for an individual know
the class of X we also know the class of Y it belongs to, and
vice versa (in the contingency table there exists at most one
pbsitive pij in sach row and in sach column). This degree of
dependence is sometimes called absolute dependence {Kendall
and Stuart 1878, 570). 1In order to get the other two regquirse-
ments satisfied as well, we use the maximal value %[HX+HY} in
the scaling , of. condition (2.27).

After having divided IXY by the term %(HX+HY) we have cbtained
an indeax for the degree of dependence which is theoretically
justified and completely matches the gensral idea about the
nature and degree of despendence at the gxtreme casas of full
independence and complete dependence: SCCTBS 0 and 1, respect-
ively. But doss this index posses & consistent bensviour
hetween these extreme values as well? Although it is very
difficult to say which numerical value of a2 measure of depand-
ence in each particuler case best corresponds to our intuitive
idea of the degree of dependence, it has Decome via several
numericzl examples -apparent thet the above index appears to
have guite small values, espscially in the cases of low or
moderate dependence. This has lead to use & sguare root trans-
formation for magnifying varistions near zero and for quarante-
ing the final measure an intuitively ratienal behaviour in the
whole interval [0, 11, 25 will be demonstrated later. We call
this new derived index enthopy cornelation ceefficient and
denote it by the symbol Py

Definition 2.3. (Entropy correlastion coefficient). The entropy

cerrelation.coafficient betwsen two wvariables ¥ and Y, the joint

distribution of which is given by Table 2.2, is defined as

18

I ¥ H 1
(2.31) o = (1 - 5
TiH,+Hy) X"y

7Hy* Py

Theorem 2.5 presents the theoretical foundations for entropy
correlation casfficient as o well-behaving messure of the

gegree of dependence. They are girect consaguences from the
corresponding properties of the mean dependence information

IXY (Theogrem 2.4},

Theorem 2.5. -For the entropy correlation goefficient Py it
holds:

(2.32) Gz P <1
(2.33) Py = 0 iff pij = pi.p.j’ v i = 1,2,..1,r, j=1,2,....C
. LB . =0, ¥i imy J = 1520000,
plﬂjplzj U i ¢ I ] 1,2 c
{2.34) Py = 1 iff
pijqpijz =0, ¥, F Jos i = 152,000,T

Theorem 2.5 thus shows that PH has been scaled between 0 and 1
{property (2.32)), D indicating full independence [(property
(2.33)) end 1 complete dependence (property (2.34)). From the
properties {2.33) and {2.34) we can also see that the values
of Py BrE independent of the size and type of the table: Py
can reach all the values between O end 1 both in sguare and
rectangelar tables. Further, £y does not depend on the forms
of marginal distributions fthe number of classes in these, the
iocaticn and dispersion indices of these 2te.): there are nc
speciel requirements for the marginal probabilities ;. angd
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p i far Py to reach the end values 0 and 1. And at last, the
populetion size N hes no effect on the values of Py- From the

point of visw of purely mathematics, it is intsresting to note

that Py doss not depend on the bass of the logarithm to be used.

As a summary of the properties oF_pH we can state that faor
qualitative ceteporicsl variables it is difficult to find an-
other measure of the degree of dependence that fulfills all
the properties verified for oy above, cf. for sxample the dis-
sussion in Kendall and Stusrt (1375, S5B6-5883).

2.5 Discussion

Our next aim is ©o conetruct a procscure by which it will De
possible to dsmonstrate and test the behaviour of an associ-
ation index on the whole range of the degree of dependence,
from the case of full independence to the case of complete de-

pendence.

We utilize & contingency tabls with & fixed populstion size
and with fixed marginal frequenzy distributions (the notation
is as presented in Table 2.1)}. We start (table 0) with the
case of full independence: the cell freguencies ars determined
by the marginal freguencies as '

{2.35) N, = —22rd 4 = 4,,,.,r, J = 1,.e..C

In the first phase (table 1) we modify, keeping the margins
fixed, the starting teble towards the case of complete depend-
ance just as little as possible: for some i both Nii and
Nive,1en 3,401 308 Nioq 4
decreased by one. In the following phases we procesd with

are increased by one, and beth N are

similar elementary modifications until we reach the final table

(table n, say) which represents the case of complete dependence:

we have

20

= i # o1 i =
(2.38) Ny jNi 5 g, voig F i Trevast
1 2
and
(2.373 NijﬂNijz = 0, viis=leenrms Jg F s

Without loss of generality, the positive frequencies of the
final table may be assumed to be located on the main diagonal,
becauss we are working with categuri;ed data only. This
adopticn was indicated by the definitions of the intermediats
steps already.

Table 2.3 presents the procedure of élementary modifications
for increasing the degres of dependence from full indspendence
to complete dependence in one particular case. We havz a

2 x 2-table with uniform margins. The population size N = 100
igads to 25 steps (26 tables) in the procedurs.

25 25 | 50 26 24 | 50 27 23| 50
25 25 | 50 24 26| 50 23 27| 50 ..
50 50 |1c0 50 50 {100 50 50 | 100
Table O Table 4 Table 2
28 2 | so 49 4} 50 50 0| 50
2 48 | s0 1 48 | 50 D 50 50
50 50 (100 50 50 {100 50 50| 400
Table 23 Table 24 Table 25

Teble 2.3. The procedure of elementary modifications
for varyving the degree of dependence.
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The procedure of elementary modifications offers now 2 method

to test the consistent bshaviour of an index of dependence.

The first and last table represent two guite unambiguous situ-
ations: the cases of full independence and complete dependence
must have the index scoras U and %, respectively. And because
the steps from the first tahle to the final table were made as
glight &8 possible, ws can assume a linear growth in the degree
of dependence along with the modificated tables. Theresfore, we
also require a linear relationship between the measure ot depend-

ence ang the number of slementary steps made in our procedure.

In Fig. 2.1 the behavigur of Py the entropy correlation coef-
ficient, and C, Fearson's coefficisnt of contingency, is pre-
sented as = funchiion of the degree of dependence, the latter
being measured by the number of mpodificatisns made into the
original table of full independence. The graphs in Fig. 2.1
correspond to the dats of Table 2.3, We can see, that the
graph of PH guite well fits the angie bisecter which is ussad
to stand for the ideal relationship. Only & slight underseti-
mation may be neted in the bshaviour of Py gspecially in the
middls of the relevant domain. The behaviour of L, on the
other hand, is less satisfasctoTy. The graph of C departs
strongly from the bisector at the right end {in the cases of
moderate and high dependence). The undersstimastion of the
"true” dagree of dependence is highest in the cass of complete
dependence: C can never reach the value 1.

Although the geducticns made sbove ere based on one perticular
case only, they cen be shown to hold generally. Several numeri-
cal computations with different population sizes, with different
number of equivalsnce clsssee In the margins and with different
forms of the table have shown that the gualitstive behaviour of
Py remzins as presented in Fig. Z.1.

22

1.0

(.

4

25 |25

~

Number of
modificaetions

Figure 2.%4. The behaviour of Py and L as 2 function of
+he degree of dependence.

As a conclusion from the discussibn concerning the entropy
correlation coefficient oy in the bivariate case we can state
that in Py we have a measure of dependence which exceptionally
well fulfills both the theoretical requirements and intuwitive
expectations we have set for 2 correlation coefficient. And
remembering its definitional analogies with the product moment
correlation coefficient, the foundations For its use become
gven more firm.

Number of
modifications

n
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3. GENERALIZATIONS TO THREE-WAY TABLES
- 3.1 Freliminary informaetion-based concepts

The entropy-based concepts derived for the bivariate case can
be guite strzightforwardly generalized to contingency tables
with any number of dimensions. In the fpllowing, however, only
three-way tables zre considered. This is mainly done to keep
ths notation simple. In higher dimensions we would zlso en-

counter interprstational difficulties.

Consider three categorized variables X, Y and Z having the joint
distributien [pijk}‘ £ = 4,000.T J = 1,0eest, k=1,0..0.1,
i.e. the table has r rows, C columns and 1 lavers with cell
probabilitiss {or relative freguencies) Pyike The coentropy

of the joint distribution is now defined as

r c 1
3.1 Hyyy = - s e
e I ij (L PLak 1 Pagk

We can also cazlculate the coentropiss of the two-dimensional
R

marginal distributions as

r ! - :
(3.23 H = -1 I p.: 1 -
XY 4o j=1p13. nE le.
c 1
(3.3] H = - I Ip ., logp
Y2 je1 ket Ak ik
r 1
(3.4} H = = I zp. log @:
*z 121 ket i.k i.k

and the entropies of the one-dimensional marginal distributions
as

r
{3.5) Ay = - Lopy  lezopy
i=1
' [
(3.8) Hy = —_§1p‘j- log I
‘J_\
1
{3.7) H2 = ﬁkqu"k leg pooy -

In order ¢o measure the overall dependence between the three
variables in the form of ons single index we must eliminate
the effects of lowsr order dependences and dispersion from the
coveristion (measured by the coentropy) of the variashles.
Analogically to the bivariate case we define the cuantity mean
{zotal) dependence ingonmation as z measure of overall depend-
ence prevailing in the distribution.

Definition 3.41. (Mean total cependence information). The mean

total dependence information IXYZ of & three-dimensicnal dis-
tribution is defined as

(3.8} I {H = Hy = Hy) = {Hyy - Hy - H- )

XY7 XYz ~ URY X Y X z
(Hyg = Hy = Hp) = Hy = Hy = Hy
= Hyyz - Hyy = Hyg = Fyz * Hy = Hy + Fy

The role of IXYZ as the expected value of the smount of infor-
mation about the cverall dependance cen be justified analogically
tp the bivariate case {esquations (2.24) and (2.23)].

In the following thecrsm we present some properties of IXYZ
that describs IXYZ from the point of view of a dependence index.
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The mzan total dependence information IXYZ has

the following properties

(3.9)

(3.10)

(3.11)

(3.123

Proof.

write

(3,133

X¢H+H

!
-
L

EXY7 = 0, if X, ¥ and 7 &re mutually independent

[HX + Hy ot HZ) if and only if fer sach

bt
e
I
wi-»

i, j and k there is st most one pair (j.k).
(k,i) and (i,j), respectively, such that pijk> i

1 . N
IXYZ = -3 {HX + Hy # HZ] if and only if for each

(i,3), {j,k) and {k,i} there is at most one k, i
and j, respectively, such that Prje ™ 1/m2; where
m is minimum of the numbers of nonzero gy .

nonzere p

3. o nonzero p..k B

For the left hand side of double ineguslity (3.9) we

Iyyg = Uy v Hy = Hyyd = (By = Hy = Byl
*lRyyz ~ Hyxz? - Hy
= Iyy * Iyz * (Hyyg = Hyg) - Hy
z *HY .

where thes ineguality holds on the besis of {2.27) and [2.14).
Similarly we have Iyy- z “Hy and Iyyo 2 -H; . These there
inegualitiess together confirm the left hand side of (3.9).
For the right hamd side of {3.8) we write first
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(3.14} IXYZ = (Hx + Ry - HXY

A
T
+
X
'
=u

r c 1 ﬁij
= I I L p:.. lOg =
101 =1 k=1 ik Pi.. P
T c 1 P
ijk
-~ b I p... log + H
i=1 j=1 k=1 1K Pi,, Pk z
r c 1
= = I h I pss log p..
im1 jo1 k=g 3F 13k
r ¢ 1 F-: P
i=1 j=1 k=1 Js
<
HZ ,

where the last ineguality results from Shannon's lemma. Simi-

< < :
lerly we havs Iyys = Hy and Iyys = Hy. and so also the right
hand side of (3.8) is shown to be true.

For proving (3,10} we write

Pij, Pi.k PLik

(3.15) T .
1=1 321 ket 9% Pisk Pi.. Poj. Pook

It

]
t1
t1
t4

o

XYL

r ! 1 p

; Po:B: P P 4P
log TR Pt TAETL Tk PR T 1.

Pi P PP PPk

H

1
]
™
[ oo
o

o,

where the second eguality holds bzcause of ths mutual indepand-

ENCE.
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From [3.11) we see that IXYZ reaches its maximum value in the
case of complets dependence, i.e. in the case where the posi-
tive Ffreguencies are located on the main diagonal of the cube
(the physical site on the main diagonal may reguire & Tenum-
bering of the classes but this is alwsys possible for trus
catesgorical datal.

a5 (3.12) shows we may siso encounter negative association

when thres categoriesl variables are considered together [(in
the bivariate case the sign of the sssosiation has no meaning
for true categarical variables). A negative associstion existis,
when two of the variables, X and Y say, are conditionally

{with respeect to Z) dependent, but the form of dependence varies
with different values of Z. 1In Table 3.2. we have a distribu-
tion where X and Y conditionally have & completes dependence

in both of the layers of Z but thes forms of dependence are

opposite to sach others: IXYZ reaches its minimum value -log 2.

//
071/
1 = -log 2
1/4 0 1/4 | 1 XYZ g
A

0 {1/4

Tabls 3.2. An example about complete negative
dependence betwesen three variables.

28

3.2 Tetal entropy correlation coefficient

As & measure of dependence, the mesn total dependence informa-
tion IXYZ has the same disadvantapes which wers pointed out

for IXY
its maximum (now also minimum) value depends on the size and

in the bivariats case: it is not satisfactorily scaled,

type of the contingsancy table and on the marginal distributions,
Analogically to the bivariste case we use scaling and an alge-
oraic transformation to obtain the final rationally behaving
measure of oversll stetistical dependence. called the total

entropy cornelation coedficient.

Definition 3.2. (Total entrepy correlation coefficient).

The £otel entropy correlation cosfficient PH of a three-dimen-

sipnal . distribution is defined as

Tyvz
T )
E(HX b HY T Hz}

{3.18) oy

Using Thecrem 3.1 we ses that py varies betwaen -1 and +1.

The minimum -1 (indicating maximel negative association) is
rzached by 2 distribution where there is a diagonalrcnnditianal
distributien in each layer but these distributicns situate in
different positions in differsnt layers (ocf. the distribution
in Table 3.2.). The maximum value +1 is reached by = diagonal
distribution, i.2. in the case of complste (or abspolute) posi-

tive dependence.

For mutually independent variables we have Py = 0, as reguired.
In the cases of certain conditional independencies or degener-
acise we also have Py = D (gf. the distributiocns in Tabie 3.1 I,
The different cases for Py * g can be distinguished for sxample
by cbnsidering the two-dimensional condifional distributions.

-
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The three critical wvalues of Py considered above match extremely
well the general idea about the nature ang degree of dependence
in the cases of complets nagative or positive dependence and
full independence, respeciively. Scaling of IXYZ by the ceef-
ficient 3/(Hy + H, = HZJ makes the index thepretically well
justified. The cubic root transformation is needed to guarantee
Py an intuitively rational behavisur betwesn the extrsme values,

too.

In order to cemonstrate and test the benaviour of Py ©N the
whole range of the degrss of dependence, we vtilize an analogical
procedure as describesd in the bivariate case. We take azsin &
contingency table with & fixed population size and with fixed
marginal frequency distributions. Then we start with the case
of ecomplete negetive dependsnce, condition {3.12) being sat-
igfisd, In the following phases we modify the table towards

the case ot mutual independence, keeping the stzpe as small as
possible. . After having reached the mutual independence we
proczed further with elementery modifications towards the cass
o complete positive dependance. Due to the glementary modi-
Ffications we can sgain assume 2 linear growth in the degree of
dependence along with the modificated tables. We should, there-
fore, elso have & linear functionship betwesn Py and the numbsr
of elementary eteps made in the procedure.

Table 3.3 presents the procedurs of elementary modifications
in & three-dimensional 2 x 2 x 2-table with uniform margins and
with N = 400.

31
PR
A
+1
//
///V/
Number of
-1 modifications
D |50 160

Figure 3.1. The behaviour of py as & function of the degree
of dgspendence.

1t is clear that in three or higher dimensions p_, can highlight
dependence from only oneg point of view, from the point of view
of total correlation. There exist, for example, several differ-

ent kinds of situations where Py = 0. More information about

gependence can be obtained when different types of partial or
multiple correlstion ccefficients are introduced. These corre-
1ation coefficients can alsp be based on entropy and cosniropy

concepis as has been recently shown by Preuss [1980).
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4. CONCLUSION

As a conclusion, the entropy basad indices (total) maan depand-

’E/’1DD 1 | gg //,/’///T5D 50 ence information ang (total) entropy gorrelation coefficient
appesr to be theoreticeally justified and intuitively well-
1o | 0 #5001 O gg 1 gg | 1 - 50 50) 50| 50 . . .
] behaving msasures of dependence in the connection of categor-
o |1oo 4 og 55 |50 ‘ izsd dats. In three (and higher) dimsnsions especially, the
) indices posses the ability to reveal 2lso inverse association
Teble O Table 1 Table 50 between the variables.

Throughouf the paper we have assumed thai the data is related

- to the whole population, i.e., the problem of stastistical infer-
//,r”zzjlﬂﬁf 49 48 a8 \ /,/////r 0 o] ence has not been sglevant. 1IF, however, the data is to be
. , . L e £ s
53 | a3 | a9 53‘ 55\ 28 | ag lSE ‘ ZDD\ 0 5 =00 considered as = sample, the sample distribution o ~the entities
: should be derived for estimation and testing purposes. It may
A4S | 49 48 | 48 V//,//// o 0 be conjectured that IXY [IXYZ]’ the purely theoretical ons of
ths indices, will play = central role in these considerations.
Table 51 Table 52 Tanle 100
Table 3.3. The procedure of eglsmentary modifications in

the trivariste case.

Figure 3.1 presents, using the deta of Table 3.3, the behaviour
of py @8 B tunction of the degrse of dependence. The latter is -
again measured by the number of modifications made into the
starting table. We see that the graph of Py also in the
trivariate cass guite well Ffits the angle bisectsor, the hypo-
tetized ideal relationship, The fit is nearly perfect on the
area of positive dependesnce, wharsas on the negativé side &
slight underestimation can be seen %5 pceur. If compared,
nowsver, 2.Z2. with Pearson’'s coefficient of contingency C, the
it is excesdingly good: on the positive side C would behave as
described in Fig. 2.1, and the negative sign of the inverse
association would not be revealed et all {on the negative side
only the absolute value of the degree of dependence would be
obtained).
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