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APPLICATION OF SUPPLEMENTARY VARTABLES AND DISCRETE TRANSFORMS
IN AVAILABILITY AND RELIABILITY ANALYSIS OF A PARALLEL REDUNDANT
SYSTEM WITH GENERAL FAILURE AND REPAIR TIME DISTRIBUTIONS

L. Introducticn

In practice, we come across a number of systems containing a stra-
tegic component which fails frequentily and ceuses catastrophic
damage. In order to achieve a high system reliability the failure
of such component should be avoided as much as possible. Often this
is possible through a sufficient amount of maintenance . Sometimes,
however, it becomes too much expensive or even impossible to reduce
the frequency of failures of the strategic component to the desirad
extent. In such cases, the only alternative way to achieve high
reliability is to introduce suitable redundancy in the systen.

The following two types of redundancy are usually consider’ed:1

(a) Standby redundancy - out of the redundant components only one
component operates at a time. The system aufomatically switches
over to the mext component when the operating component fails.

The system fails when the last standby connected components fails.

{(b) Parallel redundancy -. all the components connected in parallel
start operating together as soon as the system is put into
cperation and the system fails only when all the components
have failed.

Operational behaviour and reliability properties cof a redundant

system have been earlier studied by several authors.2 Out of these

1 See e.g. Pieruschka {1963), p. 76, Barlow and Proschan (1965),
p. 162 -

2 e.g. Kulghrestha (1966,1972), Gnedenko et al. {1969}, Das (1972),
Srinivasan and Gopalan (1973 I, 1973 II}, Govil (1974}, Kistner
and Subramanian (1974), Kodama and Deguchi (1974), Gopalan (1975)



redundancy models the most general are those given by Kulshrestha.
First Kulshrestha studied the effect of standby redundancyl on the
reliability of a system whereas parallel redundancy was considéred
in one of his later papers.2 The assumptions in Kulshrestha's models
are quite general: the number of redundant components may be arbit-
rary (most of the cother papers deal with a two-component system)
and successive fajlure times of each individual component as well as
the repair times of the system are allowed to be random variables
with gencral distributions (instead of exponentiazl distrivutions
usually assumed). In this paper, the parallel redundancy model gi#en
by Kulshrestha will be dealt with, and a lot of new results con-
corndng rellability properties (i.e. reliability, availability, mean
bLime to system failure) of the system will be derived.

N
Tn the formuelation of the model the suppilementary variable technique
develuped by Keilson and Kocharian- will be utilised. The solution '
ol the model is mainly based on the use of Laplace transforms and
discerete transforms. ‘

2. Description of the problem

The probilem to be considered in this paper is as follows. A simple
system consists of N {N > 1) components that are redundantly econnected
in parallel. The running times of each individual component are
identically and independently distributed random variables having a
common general distribution. The repair times of the system are

distributed according to another independent general distribution. i

The repair of the system starts when all the N components have failed,
after completion of the repair of all the N components the system
is put into operation again.

The object of the study is to find out both the transient state and
steady state behaviour of the system, and, on the basis of this
information to Qerive the most important reliapility characteristics

Rulshrestha (1966)

Kulshrestha (1972)

Keilson and Kooharian (1960)

On discrete transforms see e.g. Thiruvengadam and Jaiswal (1964)
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(i.e. reliability, availability and mean time to system failure MTSF}
for. the system. The behaviocur of the system is desecribed by state
probabilities, a state {at a time t) giving the number of [ailed
components at that time. The system must have a 1little different
state definition for availability analysis than for reliability
analysis. This means that there also will be two separate models,

one for the availability and another for the reliability and MTSP

analysis of the system.

The system to be considered in this paper is the same as that intro-
duced by Kulshrestha.1 However, the analysis carried out by
Rulshrestha has been considerably enlarged and completed:

1. Kulshrestha considered only the availability model, this paper
deals also with the reliability model.

2. Kulshrestha limited his considerations to the derivation of the
state probabilities, the availability of the system was not found.
In this paper all the three reliability characteristics mentioned
above are obtained.

3. For expressions of the state probabilities, only an iterative
procedure was given in Kulshrestha”s paper. Now the expressions

for the state probabilities are given in a c¢losed form.

3. The availability model

2,1. Notation

Def‘ine2
Pn(x,t)A = the joint probabiiity that the system is in operable
' state at time t and n out of N components are in failed
state and the elapsed time since the system was last put
into operation lies between x and x+4, n=0,1,...,N-1. ’
Pn(t) = the probability that the system at time t is %n operable

state and n out of N components are in failed state.

1. Kulshrestha (1972)
2. Except a few modifications in subscripts, notation is the same as

in Kulshrestha (1972)
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{4y [asax + 3/3t + (N—n)k(x)]Pn(x,t) = {1 - 1. o) (N=n+1N ()P . (x,t)
PN(x,t)A = the joint probability that the system is under repair ' ’

of all the N components at time t and the elapsed repair n=0,1,...,8-k, x > 0, t > 0
time lies:between x and x+4. - {5) [a/sx + a/at + p(x)]PN(x,t) = 0, x>0, t > 0.
Plt) = the probability that at time t the system is under repair - .
of all the N components. ’ ' . Equations (4) and (5) are to b. solved under the following boundary
- - . conditions:
a(x) = failure rate of a single component,
%) = probability density function of the failure time.distribut- : (6) P (0,8) = _f Py (%,t) u(x)ax, t » 0
ion of a single component. :
wix) = repair rate of the system {i.e. of all the N components). {7 Py(o,t) = oI Py (xstha(xddx, ¢t >0
T(x) = probability density function of theée repair timedistribution
(8) P (0,t) = 0, n=1,2,...,N-1, € > 0,
of the system. n :

i . L If the system initially starts with all the N components new the
Now we can easily see that the following relations hold :

following initial condition can be set up:

(1) P (t) =OImPn(x,t) dx, = n20,1,...,N-1,N o) P (x,0) =6 6(x), me01, el x 3 0.
e
(2) S(x) = a(x) e-nij(x)dx - - . In quations () and (9) an,o is the Kronescker delta and s{x) is
the Dirac delta funetion,
(3) ) = nix) e'ofxu(x)dx- . Let the Laplace transform of a function £{t) be denoted by T(s), i.e.
The variable x in the expression of P (x,t) (n=0,1,...,N) is just (10) ?(s) B v:)J'm e—Stf(t)dt’ Re(s) > 0.

the supplementary variable appearing in the name of this paper. With . .
Applying the Laplace transform, the equations (L) to (8) with the

the help of this supplementary variable the originally non-Markovian L .
initial condition (9) become

system becomes semi-Markovian. The probabilities Pn(t} {n=0,1,...,N) -

are called the state probabilities. _ .
(11) [3/3x + s + (N-n}k(x)]Pn(x,s) =,(1-6n O)(N-n+1}x(x)Pn_1(x,s)
L]

+ an’oa(x), n=0,1,.,..,N-1, x » 0

3.2, The model -
(12) la/ax + 5 + w(x}] Pylx,8) = 0, x>0

The model describing the behaviour of the system gets a form of the 5 (o Im v
. . . . = %
following set of difference differential equations with variable (13) Po( »5) o N »5) w{x)ax
coefficients:l ) ) s Im v _
{14) N(O,S) =, N_l(x,s)l(x)dx
1. Except a few modifications in notation, the formulation of the (15) T (0,s) = 0, n=1,2, ... .N-1.

model and the derivation of the solution are presented, up to n
equation (26}, following Xulshrestha (1972)



In order to solve equation (1l1) the following discrete transforms

will be introduced

5

(16) A lx,8) = BB (x,s0(0), kel

- 'R

The functions ?h(x,s)_are then got as inverse transforms

( 1) (ﬁ n+!()A

1
||“|:3

(1) Palx,s) N-nsk¢

(-1t K g

i

Applying the diserete transforms (16) in (11) and simplifying, (11)

reduces to

X,5)

X,8), n=0,1,

(18) [3/3x + s + ()18, (x,8) = s(x}()), k=1,2,

Solving equation (18) we obtain

’Ak(O,s)

(19) hk(x,s) =
N -5x-~
[Ak(ﬂ,s) + (k)]e

From equation (12) we pet

—sx—ofxu(x)dx

{20) ?M(x,s) = ?N{O,s)e

How using (17), (15) and {20) in the boundary conditions (13) and
(14), the following expressions for F (0,s) and P {0,8) are after

some labour obta}ned
k=-1,N

Okax(x)dx

_ Ty B -0FY DE, (5)
{21) PD(G,S) H -
D{s)
N
- 5 CDFTHDE ()
(22) Fyl0,s) =
D(s)
where
- R (x)ax
(23} s5,.(x) = xa(x)e s k=1,2,...,N
N k=1 N\ g
{24) Dpls) =1 -T(s) T (-1177(,)5,(s)
5 k=1

JN-1,

LN, X

for x =

for % »

vV

and T(s) and §k(s) (k=1,2,...,N) are the Laplace transforms of T(x)

and Sk{x) (k=1,2,..,,N}, respectively.

From equation (1) we get

(25) Fn(g) N 3 L(x,8)ax, h=c,1,...,g.

- Setting n = N in (25) and using (20) and (22), equation (25) on

integration becomes
1 - T(s) k§1(-l}
s D{s)

k-1.N
(k)qk(s)

(26) Fy(s) =

Equation {26) gives the Laplace transform of the state probability
PN(t) {probability that the system is in the failed state at time t).
Next the Laplace transforms of the probabilities of the operable
states will be derived. Pirst, setting x = 0 in (16) and using (15)
we have

(27)  4,(0,3) = : = (ﬂ)Fo(o,s), ¥=1,2,...,N

n-

e (0>80C)

For x > 0, equation.(lQ) thus becomes

-sx—o[xkx(x)dx

(28) A (x,8) = (D1 + P (0,5)]e | s k=1,2,..0,N,

Using (17} and (28) in (25) we have

o N ’ :
= _ k-N+n, k .,
{29) F (s} = J k=xN_n(-l) (on )y (x,8)
N - _ o =8%x- [ {x)dx
= x 0RRCE e ¢ P (0,80 f e of ax
ksN-n - _
N . 1 -3 (s}
= 0z (-1)k*N*“( )( X1+ B (0,5 k
k=N=-n s

N
- (N) 1 E (_l)k—N+n

(ML - §.48), n=0,1,...,N-1.
N 3b(s) k=N-n N-k k- ’

This can further be written

1 - By(s)
—_— for n=0
(5’0) 'pn(s) = aD(s)

)k'N*“+l(ka)§k(s) for n=1,2,...,N-1.



Equation (30) contains as particular cases the éxpressions for
?O(s) and Fl(s) which Kulshrestha has by an iterative procedure

obtained.l

The Laplace transforms of the state probabilities are given in (26)
and (30). Now for given values of T{x) and S(x) we ¢an invert
?n(s) (n=0,1,...,N> for obtaining the state probabilities Pn(t).

3.3, Availability of the system

Availability of the system, denoted here A(t}, is defined® as the
probability ' ' : . S - .

{31) A(t) = P{the system is operable at time t1}.

From the definition-of the states it fellows that the system is
operable in being in one of the states 0,1,...,N-1 and inoperable
in state N. The Laplace transform of the availability of the system

. thus becomes

1 N-1 N ‘ o

= N k-N+n, n =
{32) R(s) =. 200 no (-1) (. 01 - & {s)]
sb{s) n=0 B p=N-n N-k . k
or more simply
(33) R(s) = = - Fy(s) = ——(1 - S DR ()
s sD(s) k=1 k' k
1 N k-1,N
= T (-1} (k)ll - ﬁk(s)]°
sN{s) k=1

Again, with given values of T(x) and S(x) equation (33) can be
inverted to give the availability A(t).

3.4, Behaviocur under steady state

The steady state behaviour of the system can bte found out using
3

the well known result in Laplace transforms”, viz,

1. see Kulshrestha (1972), equations (28) and (29)
2. OGnedenko et al., p. 110
3. the final value itheorem, Spiegel (1965), p.20

(34) 1im £{t) = 1im sT(s).

L+ = 5+ 0

Applying this relation to the equations (26) and (29) we get the
steady state probabilities

(35) Py 1im PN(t) = lim s FN(s)
t = s * 0

N
1 - Ms) kgl{—l)k'l(ﬂ)ﬁk{s)

. R
= 1im = =
s+ 0 s D(s)/s b
(36) Pn = lim P () = 1lim s P (s)
Lt + = 5 » 0 n
N - ¥ ?
- 11mL_é%;T : (- n Y ! 'k{S)f
s + o — k=F-n s J
)
= (hi § (-1yk~N N oap 0,1 N-1
T D N R N
where
(37} R = [ xT(x)dx = the mean repair time of the system
o
N
(38) - p = 1im 28l g+ ek ldhe
8 o0 8 k=1

a0

(39) B, = [ x5,(x)ax = foxrkaCeyexpl=_[Mer(x)dxldx,  k=1,2,...,N.
G Q

Tne steady state availability of the system thus is

= - = —B—:
(k0y A = 1 F, =1 5
k-1,N
(B

k=1,N
(IEy,

N
ik (1)

N
R+ I{-1)
k=1

3.5. Particular case

If both the failure times of the components and the repair times of
the system follow exponential distributions with parameters A and ¢
respectively, we have ’
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(41) Rz oyt

(42) E, = (e)™h, k=1,2,...,0. :
So the steady state availability of the system becomes
k-1,N, -1

(K

k-1

N
T,(-1}
(43) !

N

-1
Wk

{

Lo ¥ o1/
k=1

4. The reliability model
4.1. Notation

In reliability analvsis, unlike in availability analysis, the repair
of the system—is not considered. The system is only observed until the
first failure occurs. So the distribution of the repair times of the
system is not needed in the reliability analysis either. The states
OsLy...,N-1 are the same and they have the same meaning as in the
availability model. Thus also the functions Pn(x,t) and Pn(t) are

for n=0,1,...,N~1 the same as in sectiom 3.1. Only the quantities
joining with the state N must be redefined. So define

PN(t) = the probability that the system is inoperable at time t (the
system has totally failed before or at time t).

The state N becomes an absorbing state and so PN(x,t) is not needed,

4.2. The model

Followinpg similar lines as in the availability model the following
set of difference differential egquations with variable coefficients
can be set up:

11

L4y [a/sex + a/3t + (N—n}%(x)]Pn(x,F) (1-5n,0}(N-n+1)l(x)Pn_l(x,t)

n=0,%,...,N-1, x = 0, t > 0

(45) (a/at)PN(t) = oI Pypix.8)rlx)dx, x » 0’.t > 0.

Because only the first operation periocd is considered, the boundary

conditions now become
(46) P (0,8) = 0, n=0,1,...,N-1, t > 0.

Assuming all the components as néw at time t = 0D we pet the following
initial conditions

v
=

(87 P (x,0) = an,oatx), n=0,1,...,N-1, x >

(48) PN(G} = 0.

The Solﬁtion of equation (b4) at first proceeds in the same way as
thé soluticn of eguation (4) in section 3.2: we armply the Laplace
transform in {(44) to get (1l), apply the discrete transforms (16) in
(11) to get (18), integrate (18) and obtain (19). Using (16) and the
Laplace transform of (46} we obtain

N .
(49) A, (0,s) z Fuon(®:8) (1) = 0, k=1,2,...,N.

n=k
Thus, for x » 0 eguation (19) now becomes

—sx-okal(x}dx

N e R k=l,2,...,N.

)

11

(50) Ak(x,S)

Following the similar lines as in the derivation of eguation (29)
in sectiocn 3.2 we obtain the folleowing expression for Fn(s}:

(51) FI‘.(S) = :E-"k{s)

N
I ) L, onEl,2,..,N-1
=N-

4 n s

From equation (45) we get, taking the Laplace transform on both sides
o
P = 7 X
{52) SPN(S) = of PN_l(x,s) (x)dx

and further, using the inverse of the distrete transform of ?N_l(x,s)
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{eg. (17)]1 and equation (50)

o N ' -
Il z (- 1) kAk(x,s}A(x)dx
k=

(53) 8P (s)
0

X _
- —sx- | k
i kgl(ﬂl)k I(N) f kl(x}e o oj' J\(X)dxcix

k-1 ,N,=
kgl( 1) (k)sk(s).
So we have obtained

k-1,N
(k

ml—
M=

(5h) ?N(s) = (-1}

L )3k(s).

k

Again, with a given value of S(x) equations (51) and (54) can be
inverted to give the state probabilities Pn(t) (n=0,1,...,N).

4.3, Reliability and MTSF of. the system

Reliability of the system, denoted R{t), is definedl

ability

as the prob-

(55) R{t) = Plthe system does not fail during the interval (0,th.

Evidently we now have
N-1
(56) R(t) = = Pn(t) =1 - PN(t).

n=9_

The lLaplace transform bf the reliability so becomes

(57) R(s) = g - Fy(s)
N k1N
i SR VAR R ENCY
N k=1.N 1 - Sk(s)
= DTG — ke,

which after inversion gives the reliability R(t).
The mean time to system failure (MTSF) has been shoiwn2 to be

(58)* MTSF = 1im ®(s).
8= 0

1. Gnedenko et al. (1969) .79
2. pas (1972), p.69 » P
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Thus we have

N. 1 -8 (s) N -
(59) mrsF = 1im oz (-1 K= 5 c1)He
5 -+ 0 k=1l s k=1

i; given in equation (39).

where Ek

k. b, Particular case

If the failure times of the components obey exponential distribution

with parameter A, we have

KA

{60) § (s) = —=— , k=1,2,...,N
3 + KX
and thus
= N k-1, N -1
(61) R{s) = I (-1I) (s + kr)
- k=1

which after inversion gives the reliability R(tX

N
(62) Rn(s) = E {-1)
k=1

k-1 N) -krt

MTSF becomes in the exponential case

N -
(63) mrsr =z (-1 N(Maoy™ =7t

k=1 k

(1/K).
1

n M=

We can notice that the result for the exponential case MIPSF is the
same as earlier obtained e.g. by Gnedenko et al.,1

1., Gnedenko et al. (1969), p.281
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