TEEMU AHO, D. Sc. (Econ.)

Lappeenranta University of Technology

ILKKA VIRTANEN, D. Sc.

University of Vaasa

Adequacy of depreciation allowances
under inflation

1. INTRODUCTION

The present corporate tax law in Finland (= EVL) determines that
depreciation on fixed asseis is to be based on the original purchase prices.
If the general level of prices is rising, the sum of depreciation allowances
for tax purposes fsll short of the costs of replacing the asset in question.
The higher the rate of inflation is, the wider becomes the difference between
the purchase price of a new asset and the sum of tax deductible deprecia-
tion allowances. Depreciation based on original purchase prices thus in-
creases the taxable profit which is measured in nominal terms!

As the real value of tax deductible depreciation under inflationary con~
ditions is continuously decreasing, it would be beneficial from the firm’s
point of view fo utilize these allowances as soon as possible within the eco-
nomic life of the asset? Also the present value of depreciation tax shield
increases if the depreciation allowances can be made at the earliest possible
time. Therefore, accelerated methods of depreciation provide at least a
partial hedge against inflation. However, a company must have profits
against which to write off the aceelerated depreciation allowances,

Riistama ? has analysed the adequacy of the present EVL tax allowances
by comparing the present value of EVL determined depreciation amounts
with that derived from using the realization method of depreciation in the
light of specific examples. In the case, where investment is equity financed,

1 Honko (1973), pp. 177—I180.

2 Inflation constitutes another factor, in addition to fime preference, which
reduces the present value of depreciation. See Davidson (1975), p. 1183.

3 Riigtama (1975), pp. 67—72.
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he calculated that rate of interest which equates the present value of depre-
ciation based on the declining halance method, which is the EVIL. approach
to depreciation calculations, with the present value that is derived from the
realization method, i.e. one based on the real rate of return on investment,
assuming that stable price level prevails. He showed that the former present
value would remain unaffected by inflation in real terms, if the discount
rate in the declining balance method were adjusted for inflation. This cor-
rected discount rate may be expressed as the sum of the following three
iterns: the real rate of discount, the rate of inflaticn, and the product of
these two terms.? If the declining balance method produces a higher present
value of depreciation than the realization method, the investment in ques-
tion may be said to tolerate inflation. This tolerance is the higher the wider
this difference in favour of the former method is. For example, it is de-
monstrated that an equity financed investment in machinery with a yearly
rate of return of 10 % and a length of life of 10 years is still viable if the
annual rate of inflation is 5 %. Inflation folerance increases, if debt capital
can be used in financing the project

It has been argued by some commentators of the present corporate tax
law that the 30 %o depreciation allowance for tax purposes that applies to
machinery and equipment is accelerated enough in itself to take inflation
into account. However, no systematie analysis of the adequacy of the present
EVL allowances in inflationary conditions has been undertaken. Since reali-
zation is commonly regarded as the correct basis for determining corporate
income, it seems justified to employ the realization method of depreciation
as the measuring rod against which the adequacy of EVL depreciation
allowances is to be judged. A realizafion depreciation may be interpreted
as the present value which is arrived at, if the annual refurn on investment
is discounted by the project’s internal rate of return.®

This paper analyses the concept of inflation tolerance by using the present
values of depreciation in calculating it for equity financed investments. The
objective is to analytically determine the inflation rate which makes the
inflation adjusted present value based on the declining balance method equal
1o the present value of realization depreciation under stable prices. Only
investment in fixed assets is included in the analysis. In Section 2, the
relevant present value expressions for both these methods of depreciation
are derived, together with the expression for inflation tolerance. Section
3 examines the relationships between the inflation tolerance on the one hand,

4 See also Aho (1979), p. 301 and pp. 305—306.

5 Riistama (1975), pp. 70—72.

6 For the notion of income underlying this concept, and for a closer discussion
of the method, see Saario (1969), pp. 207—209.
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and the profitability of the investment, its economic life and the rate of
depreciation on the other, and derives the absolute upper bound for infla-
tion tolerance. This section also contains an analysis which aims at determi-
ning those rates of depreciation and service lives which would suffice for
protecting the investment against such rate of inflation which on average
prevailed in Finland during the 1970’s, The discussion ends with a summary
and an appraisal of the adequacy of the EVL depreciation allowances.

2. DETERMINING THE INFLATION TOLERANCE OF DEPRECIATION

2.1. Present Values of the Depreciation Series

In the following, a fixed asset investment of size C and with a constant
annual return, P,, is examined using continuous discounting.” If the (real)
internal rate of return on the investment is denoted by i, P, ecan be expressed
as

— c
(2.1) Pt =cChli C= ——
anli

et —1

— the annuity factor for discrete payments made

1—e™ g the end of each period, and

] — ~ni

ay1; = -—;—ew = the present value factor for discrete payments
et—1 made at the end of each period.

where Tuli™

The realization depreciation in year f, Dlt%, equals the present value of

P, discounted by the internal rate of return on the investment, ie.
22) DY = P,

The present value for D®, NPV (D), equals
{2.3) NPV (DR®) = DFe it = pe-2i,

and the sum of all realization depreciation amounts:®

n I n ) A, 1o
(24) NPV (DR)= X NPV (D)= — 3 eHM=C =,
t=1 Anli g=1 anli

7 For the justification of using continuous method of discounting, see Aho--
Virtanen (1981), pp. 4—5.

8 TFor the derivation of (2.4), see Aho— Virtanen (1981), p. 19.
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According to EVL, depreciation is based on the declining balance method.
In year t, the declining balance based depreciation, DPB, is

(2.5) DPB = j(1-—j+iC, t=12...,n—1,

In the last year of the length of life for the invesiment, year n, {2.5) must
be supplemented with an additional depreciation of (I — j)*C so as to com-
pletely write off the original purchase price. Therefore:

(26) NPV (DPB) = j(1 — jj»-ICe=in -+ (1 — j)iCe~in,

and from {2.5) and (2.6).

hn
(27 NPV (DDB) = 3 j(1-—j)~ICe~H + (1— jjRCein
t=1
_i b (el Dein — gy

- C.
et—~(1—1)

Inflation reduces the present value of depreciation amounts based on the
declining balance method. This is taken into account by adjusting the dis-
count rate, i, used in ecalculations by the rate of inflation, s. Therefore, the
inflation adjusted rate of discount becomes the sum i - 5.2 The real present
value of depreciation under the declining balance option is then:

_j -+ (ei+s —_ l)e—n(i—l-s) (1 J— 3)“
(2.8) NPV (DPB) = Py T C.

The present value expression (2.8) can be approximated by the present
value bhased on infinite horizon, i.e.10

(2.9) NPV (DPB) :Eljrs_—]_(”f“—u:uﬁ C.

2.2. Determining the inflation tolerance of depreciation based on the
declining balance method

In the case of an equity financed investment, the inflation tolerance may
be found by solving for that rate of inflation, s, from expression (2.8) or

9 The product term does not appear in the formula, because continuous dis-
counting is used. See Aho— Virfanen (1981), pp. 7—8.

18 Cf. Kettunen (1976), p. 202.
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{2.9), which results in NPV (DR = NPV (DPE).1t First, the expression for
NPV (DR}, (2.4), is examined. If the interest factor et is denoted by R, it
follows that 12

@2.10) NPV (DR):cfi“‘zi:cl;em- e—1
2l et —1 1—e™
_ol—R™ BRI
RE_1 1—R=
_ 0—-R®(A+B? BRI
R_)®+1) 1—R=
14 R-»
=C =T

Correspondingly, the present value NPV (DPE) becomes

i+ ®s—1) RS)™I—°

DB}y =
(2.11) NPV (DPB)=C -

| -
i+ ®S—1) (pg)®

= C
RS — (1 —j) ’

where § is used to denote e, the inflation factor.

Inflation tolerance 1# is determined by the following expression, derived
from (2.10) and (2.11):

_ 1—j
1 4gn HES=DL RS])n
@12)  — g T RS_—(1—1J)

Tt is not possible to solve for the inflation factor S, and consequently the
rate of inflation, s, analytically. However, for given values of R, j and n a
numerical solution is always possible.

From the point of view of further analysis, the functional dependency
of s, inflation tolerance, on i, j, and n must be determined. This may be
accomplished by employing the approximation formula (2.9) for the present
value in the declining balance method. In this case

1 +R™ _ j
1+R RS —(1—1J)

(2.13)

1t See Riistama (1975}, p. 70.
12 ¢t corresponds fo the term 1 41 in discrete discounting.

13 Measured first in terms of S, the inflation factor, and eonsequently in terms
of s==1n 8.
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which first results in

i+R

14 —_—(l—=j =] —
(2.14) RS—(1—3j) R

from which S can be solved for as:

1 1+R
@) S=g l—it+j Tyg=]
1 . R—R1
B AR Es =

1 R+l
=1+ j—
Tl
Taking into account the definitions ¢ =S and el =R, it is possible to
write
elm+l)i__ |
ettt + ]
which in its logarithmie form produces the following formula for inflation
tolerance

(2.16) eS=-e [l +j

?

eln+l)d__ 7

2. §=—1i+1In[l1+j -
@1 =

It may be seen from (2.17) that inflation tolerance depends on three
variables: the profitability of investment (the discount rate), its length of
life and the rate of depreciation, ie. s = s(i, n, j). In practice, the most
tmportant partial dependencies are s = s(i) and s = s(n), since j may be
regarded as relatively fixed by corporate tax laws.

FExpression (2.17) gives inflation tolerance as an approximation sinece the
underlying present value formula was based on the assumption of infinite
horizon, The error in this approximation becomes greater, as the life of the
investment under investigation shortens. Table 2.1. gives examples of the
magnitude of this error under different combinations of economic life, rate
of discount and rafe of depreciation. If the length of life is 10 years, the
approximation error is 0.1 %, while with economie life of 20 years or over,
no error arises. In the case where the life is 7 years, the approximation error
equals 0.6 %. The approximativeness of the above formula must, therefore,
be born in mind, when conclusions in connection with very short lengths
of actual economic life are made.i¢

4 It may be noted that the present value formula based on infinfte length of
life has been applied to finite cases by e.g. Riistama (1975), p. 68, Kettunen (1976),
pp. 202—203 and Yli-Riisfinen (1977), pp. 341—342.
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Table 2.1. Examples on the Magnitude of the Approximation Error.

n i i Sappr. sexact Error
7 0.10 0.30 0.015 0.021
7 0.20 0.30 0.011 0.017 —0.006
7 0.30 0.30 —0.018 —0.010
10 0.10 0.30 0.050 0.051
10 0.20 0.30 0.052 0.053 — 0.001
10 0.30 0.30 0.016 0.617
20 0.10 0.20 0.128 0.128
20 0.20 0.30 0.103 0.103 0.000
20 0.30 0.30 0.03% 0.039
40 0.10 0.1¢ 0.001 0.001
40 0.20 0.10 — 0.085 — 0.085 0.000
40 0.30 0.10 - 0,173 —0.173
60 0.10 0.10 0.004 0.004
60 0.20 0.10 — 0.085 — 0.085 0.000
60 0.30 0.10 0.173 —0.173

Next section analyses the dependency of inflation on the profitability
of the investment, its length of life and the rate of depreciation, as shown
by expression (2.17), in greater detail.

3. ANALVSING THE INFLATION TOLERANCE OF DEPRECIATION

3.1. Inflation tolerance as a function of the profitability of the investment

In what follows, the length of life, n, and the rate of depreciation, j, are
assumed to be fixed. The investment under investigation is a marginal pro-
ject financed from equity sources, whose internal rate of return equals the
rate of discount. The functional relationship s = s(i) is analysed by letting i
vary within the limits (0, o0). It may be noted from (2.17) that if i equals
zero, s(0) equals zero as well. Thus, the function s = s(i) passes through the
origin. Correspondingly, as i approaches infinity, the limit for inflation foler-
ance can be found as follows:
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em+l)iE__ q
(3.1) Hm s@) = Hm{—i+In[l +j —— =]}
i— o0 i— oo e+ 1
(m+1yk
=1lim In{e-Y1 +j S L —Lp

iy 00 end L1

A 1 — g—(m+1)i

=In{ lim [e~} + e
PRI 1+ ent

=1ln j.

Thus, the limit of inflation tolerance, as i approaches infinity, is given
by the natural logarithm of the rate of depreciation. As 0 <j <1, it follows
that lim s(i) < 0. Within the interval (0, o) the function s(i) may be analysed

i— oo 3s

using the partial derivativeﬁg. It eguals

+ 1jelmtiHfani | 1] —peifein+id__ q
G2 By @ De™ e | 1] —netife ]

oi en+Di__q .
[1-+3 , Jle™ +17#
e 11
-1+ ePife(m+i 4 (n + 1)el + n]

D@ EDIE + D)+ e rDi— 1)
— &® + jne@ i + [i(n + 1) — 2™ — (1 — j)
(" + 1) [(™ + 1) + jem+Di—1)] '

At the origin, {3.2) equals

j(n +
@9 o= —1+i8 10,

Therefore, this expression is positive, if

(G4 —1 +—j(%ri >0,

i.e. one obtains the condition

2 3
@5 > —— ([57k-0 > 0)

This implies that as the profitability of the investment becomes positive,
depreciotion based on the method of declining balance tolerates inflation
fat least during the initial phases), if the rate of depreciation j exceeds the
ratio 2/ {length of life + 1). Alternatively, this condition may be presenied
as n>2/j—1.
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The value of the partial derivative at the origin equals zero, if

3s
oi

36 j=— (

=0 Yico = 0},

or if n =2/j—1. And at last, the derivative at the origin is negative, if

687 i<

2 ds
2L <),
n+1 ([ aill-ﬁ )

The order of magnitude of the quantities j and 2/(n + 1) is therefore deci-
sive for the behaviour of the function s = s(i) at the origin. The following
discussion demonstrates that behaviour at the origin determines the gualita-
tive behaviour of the function over the entire interval (9, =).

Tirst, the case j > 2/(n -+ 1) or n>2/j—1, is examined. At the origin

s(0) = 0 and [§—?]i=ﬂ> 0. Inflation tolerence becomes positive as the pro-
o

fitability of investment increases (from zero). On the other hand, if i is high

enough, it follows that %f— < 0. The denominator of (3.2) is always positive,

wherefore the sign of the whole expression is given by the sign of the numer-
ator. Under high values of i, this, in turn, is determined by the highest power
of el, which in this case equals (e} = e Its coefficient is negative, which
implies that under high i-values the sign of the partial derivative is nega-
tive as well, i.e. inflation tolerance is decreasing. Taking into account the
earlier result: lim s(i) <0, a typical pattern for the function s = s{i) may
11— 0

be depicted as in Diagram 3.1. If the internal rate of return on the invest-
ment equals zero, depreciation does not tolerate inflation, ie. s(0) = 0. As
the profitability of the investment increases, inflation tolerance hecomes
positive (%> 0), and increases up to a certain value of profitability, i, at
which point it achieves its maximum value (sy). After that internal rate of
return, i,, inflation tolerance is decreasing (%Si—< 0), until at i, it comple-
tely disappears. From iy onwards, s takes increasingly larger negative values
as i increases, approaching its mathematical limit In j.

The profitability of investment, i, which corresponds to the maximal

inflation tolerance (s,) can be solved for from the condition [%s{]iﬂm =0,
i.e. by solving the following equation with respect to i:

(3.8) — et jn e®ti L [in + 1) —2[e™ — (1 —j) = 0.

Denoting ef again by R, (3.8) becomes
(3.9) —R™ + jn R®! L [j(n + 1) — 2R — (1 —j) = 0.
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Diagram 3.1 Inflation Tolerance as a Function of fhe Profitability of Investment
When j > 2/(n + 1).

The left-hand side of the above equation is a polynomial of order 2n in
terms of R, the roots of which comprise the solutions for (3.9). Only the
solution which is realized when R = 1 (or i > 0) is of interest here, i.e. nega-
tive internal rates of return are not considered. It is not possible to solve
for R explicitly as a function of j and n. Numerical solutions based on given
combinations of j and n are, however, easy to arrive at. After locating the
point R, the profitability, i,, which corresponds to the maximal inflation
tolerance is found as the logarithm of R,:

(8.10) i, =In eim=1In R,
and the maximal inflation tolerance from the expression:
e(n*"l)iﬂ.'nw—l

3.11 = iy + Infl + j
(3.11) sy Ly T Inft +j o 1

That profitability i), which results in the disappearance of inflation foler-
ance, can be solved for from the condition

(3.12) s(iy) =0,
ie. iy is the solution for
e+l __ 1

313) —i+Im[l+j— " 7=9¢
{3.13) [1-+7 e 1
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Once again, only solutions where i>> 0 are of interest.!® (3.13) can also
be written as

(3.14) (1— j)Rn+1 —R*+R—(1—3) =0,
where B is used to denoie el

The largest root Ry of the polynomial above, which is of order n + 1,
may be found numerically once n and j have been fixed. The corresponding
profitability is obtained from

(3.15) i, =1n et =In R,

Of course, iy may also be numerically solved directly from equation (3.13).
Next, the function s = s(i) is examined in the case where j == 2/(n + 1).

This analysis, like the earlier one, employs partial derivatives. Furthermore,

the general results s(0) = 0 and lim s(i) = In j <0 are available. The partial

i— oo

derivative (3.2) may now be expressed in the condensed form:

8s _ —emi 2 —j)eti—(1—j)

Qi (el + 1) (e + 1) + jletntDi__1)]

(3.16)

Since the denominator of (3.16) is always positive, the sign of the whole
expression may be determined by analysing the sign of the numerator. Once
again, the interest factor ¢! is denoted by R, which enables the presentation
of the numerator as the following polynomial:

(3.17) P(R) = —R% + (2 j) o1 —(1--j).

The requirement that the investment possesses a nonnegative internal
rate of return (i = 0) implies that the polynomial is analysed only for values
of R which fulfill the condition R = 1. Clearly,

(3.18) P(1) =0,

3
ai
It is demonstrated in the following that —%—j <0 as i > 0. Differentiation

i.e. the derivative-s—equals zero at the origin ([—Z%]i:o = 0).
of the polynomial P(R) produces:
(3.19) P(R) = —2nR»~! + (2—]j) (n + 1)R™

When R =1 (or i = 0}, (3.19) becomes

(3.20) P(l)=—2n+2—jl{n+1)
=_—2n+2n+2—jn+1) =039

15 i — 0 constitutes one of the solutions as is evident from the preceding dis-

cussion.
16 jmt+1=2
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Diagram 3.2 Inflation Tolerance as a Function of the Profitability of the Investment
When j < 2/(n + 1).

When R>1 (or i 0), (3.19) can be written as

(3.21) P'(R) = —2nR2-1 | (2—§) (n + DRP
= RA[@2—j) @ 1 1) — 2nR™]
~ R™2n[1 — R™-1] < ¢ (if n > 1).

The results derived so far can be summarized as follows: P(1) =0,
P(1) =0, P(R) <0 when R> 1. Therefore, P(R)<0 when R>1. The
3s
En
tive as well. By combining this result with the earlier ones: s(0) = 0 and

lim s(i) = In j, it is possible {o sketch out the general pattern of the function
i— o0

s = s(i) in the case where j = 2/(n + 1), as shown in Diagram 3.2. In this
case inflation tolerance is mever positivel” and increasing profitability

merely serves to incregse the negativity of s.

numerator of is negative, and consequently the whole expression nega-

Finally, the case j <2/(n + 1) is examined. The general pattern of the
function s = s(i) resembles that derived in the preceding analysis. At the
origin s(0} equals 0, s is decreasing (and therefore under positive values of
i always negative) and approaches In j at the limit. The function s is even
more strongly negative than in the case j = 2/(n + 1). This may be inferred
directly from the expression for s:

aln+)i __ 1

3.22) s=—1i-+In[l+]j
( ent + 1

It was shown in the preceding discussion that if j = 2/(n + 1) holds, the
relation s < 0 is fulfilled for all positive values of i and all values of n n>

17 Cf. Riistama (1978), pp. 132-—133.
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1). Since s is monotonically increasing with respect to j,’® moving away
from the situation j = 2/(n + 1) and into the situation j < 2/{n -+ 1) must
imply a reduction in s, i.e. increased negativity of s (whatever the values
of n and i as long as 1> 0 and n > 1),

1t can be concluded from the two analyses above that if j < 2/(n + 1)
holds, positive inflation tolerance is not achieved at any level of profitability.
Therefore, the relation between the rate of deprecietion and the length of
life is extremely important. If the necessary (but not sufficient) condition
tor positive inflation tolerance, j > 2/(n + 1), is not fulfilled, depreciation
based on the declining balance method does not tolerate inflation whatever
the profitability of the investment in question.

Diagram 3.3 illustrates the function g == s(i) under different combinations
of length of life and rate of depreciation. Graph st describes the behaviour
of this function when n = 5 years and j = 0.30.1% This might, for example,
be a suitable combination for n and j where the investment is an equity
financed purchase of computer equipment2® As j falls short of 2/(n -+ 1),
ie. 0.3 <0.33, a project of this type has no positive inflation tolerance. The
profitability of investment affects s, the inflation tolerance, by increasing
its negativity with increasing i.

Diagram 3.3 Inflation Tolerance as a Function of the Profitability of the Investment
Using Specific Combinations of the Length of Life, n, and the Rate of Depreciation, j.

Graph s¥ describes the function s = s(i} for a typical case of investment
in machinery. The graph initially increases and reaches the maximal infla-
tion tolerance at the value i, of i which here equals 0.153 (15.3 0/p). If the
internal rate of return on the investment is 15.3 %, the tolerance value is
5.7 %. Thig inflation tolerance may be examined in relation to, say, average
annual inflation in Finland during the 1970°s, 11.5 %2t which reveals that
the 30 % depreciation allowance for tax purposes is not accelerated enough
to hedge investment projects of this type against inflation.®® If the internal
rate of return on investment is high enough (i.e. i = 33 %) positive inflation
tolerance ceases to exist.

Graph s applies to an investment in buildings with an economic life of
40 years and an annual depreciation of 10 %. This is calculated using the
declining balance method in accordance with EVL 34:2:1. Here as well, the

18 ‘This, although self-evident, will later be demonstrated in analysing the effects
of j on s.

19 EVL 30:3.

20 Yritystutkimusneuvottelukunta recommends the economic life for machinery
and equipment in many industries to be set at five fo six years. See Yritystutkimus-
neuvottelukunta (1979), Appendix 2.

21 The average annual rise in the wholesale index corresponds to a rate of
inflation of 10.9 %s in the case of continuous discounting.

22 This will be more closely examined in section 3.5.
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function initially increases with the profitability of the investment. The
maximal inflation telerance amounts to mere 2.8 %, which is reached when
the rate of return equals 4.5%. With higher rates of return, inflation
tolerance begins to decrease. When i, = 0.102, inflation tolerance disappears
and higher rates of return produce negative values of s. Graph sV (n = 60
years, j = 0.09) reaches the maximal inflation tolerance even sooner, ie. at
the internal rate of return of 3.8%. This implies that the investment in
question tolerates a vearly rate of inflation of 3.7%. Inflation tolerance
disappears when the internal rate of return equals 8.3 %0,

On the basis of the preceding examples, it may be concluded that the
present depreciation allowances stipulated by the corporate tax laws are not
even nearly adequate as hedges against the harmful effects of inflation from
the firm’s point of view. The situation is most unsatisfactory in the case of
such investments, where the condition j > 2/(n + 1} cannot be fulfilled.

3.2, Inflation Tolerance as a Function of the Economic Life of the Invest-
ment

Without loss of generality, i and j are assumed to be fixed in the following
analysis of s = s(n). Although in practice a narrower range is possible,
(depending on, say, the value of j), the analysis is accomplished over the
entire interpretatively meaningful range of n, i.e. 1 £ n < oo,

Expression (2.17) is first utilized in determining the values of s for the
extreme values of n. One gets

e 1
(323) s=s(l)=—i+In[l+j——]
et +1
= —i - In[l 4 jlel—1)]

=In[e~! + j(1 — eI
and

. em+)i__ q
(3.24) s=1lim s() = lim {—i-+In[l +j——=

n-— oo n— oo em—l-l

}

. enl__ g1
=Him In{et+j —— ——
- co et 41

] 1 p—n+1}
=1Intm{ei+j——o
n—> 0o 14 e

= In[e~! + j].
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Next, it will be shown that s(n} is monotonically increasing, i.e. as n
grows from one to infinity, s grows from its lower bound to its upper bound,
By differentiating s with respect to n, one gets

Js _ j{ietetlifend + 1] jeni[eln+ili 17}
(3.25) an emrii__q
[1+j———"7[e™+ 1]2

erd -1

ijend (e + 1)
(e‘“i + 1) [(emi.- -+ 1) -+ j(e(n-i-il}iw 1)]

os

on
from the value s (at n = 1) to the value s {as n— o), A cloger analysis of
the two values s and s follows.

The lower bound of the inflation tolerance, s, is always negative, since

It is clear from the above that >0, ie. s(n) increases monotonically

(3.26) s = —i-1Inft + j{e'—1)]
= In[e~t -+ j(1 — e~ )]
ZEhleitl—ed=mi=0

The inequality in (3.26) results from excluding j-values larger than one
from the analysis. When j equals one, 8 equals zero. Otherwise, s is genuinely
negative.

The sign of §, the upper bound of the inflation tolerance, depends on the
relation between the two fixed parameters, i and j, since the positivity con-
dition of s:

327) s=Ifet+j>0
results in the condition
(3.28) e3> 1,
and further,
(3.29) j>1—et
Thus, increasing the length of life produces positive inflation tolerance
only if condition (3.29) is fulfilled, ceteris paribus. Since e*o21 —i, the
above result implies that positive inflation tolerance is possible only if 28

(3.30y j>i

23 And only if the values of n are sufficiently large.
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Diagram 3.3. Inflation Tolerance as a Function of the Profitability of the Investment
Using Specific Combinations of the Length of Life n, and the Rate of Depreciation, j.

In other words, the rate of depreciation must exceed the (real) internal
rate of return on the investment. In the case 24 j < 1 — o1 inflation tolerance
is negative whatever the value of n. If j > 1 —e~%, there exists such a value
n, for the length of life, n, that when the actual value of n is higher than
this, inflation tolerance is positive (since s is monotonically increasing and
§ = 0). This value, n,, is the smallest value of n which satisfies the inequality:

e(n-+1}-i —1
(3.31) sm)= —i-+Infl +j—-—"]20,
e £ 1
or further,
(m+1 __ .
(332 1+j0 T >l

et + 1
and, using the interest factor R,

nu+1_1

(3.33) 1 - o
R® 4+ 1

(4%

R,

which, after simplification, becomes

(3.34) (1—jR™1_ReE+ R (1-—3§) <0.

24 Qr as an approximation: j < i
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The first n that satisfies the inequality (3.34), using given values of i, R
and j, is the value n, The solution is easy to arrive at when numerical
methods are employed. For example, given the values j = 0.30 and i = 0.10
(R = 1.1052), ny equals six years. An investment of this type must therefore
have an economic life of at least six years in order to tolerate inflation.

Diagram 3.4 graphs the function s{n) using two value combinations of i
and j. These are for graph s, i = 0.08 and j = 0.10, and for s; i = 0.20 and
j = 0.10. The exireme values of s; are:

5, = In[e~008 + 0.10(1 — e~098)] = — 0.072
5 = In(e~"% + 0-10) = 0.023

and of sp:

5y = In[e~02¢ + 0.10(1 — e 02N} = — 0178
55 = In(e~"2 + 0.10) = 0.085.

Along the graph s,, inflation tolerance becomes positive when the length
of life increases, n, = 25 years. Positive inflation tolerance is made possible
by the fact that the positivity condition (3.29) is saitsfied in this case, since
j > 1—e 1 (0.1 > 0.077). Although the second graph, s, describes an invest-
ment with o higher rate of return (20 %), it does not produce positive infletion
tolerance whatever the length of life. This is because j <1 —e 1 (0.1 <0.181).

On the basis of the above discussion it may be concluded that in order
to hedge against inflation, the firm should invest in projects with as long
economic lives as possible, provided that the rate of depreciation exceeds
the internal rate of return on the investment in question.

3.3. Inflation Tolerance as a Function of the Rate of Depreciation

In analysing the effects of the rate of depreciation it is natural to con-
sider only those j~values that fall in the interval 0 < j = 1. From the basic
formula for inflation tolerance, expression (2.17), s may be solved for the
extreme values of j to give

{3-38) s(0) = —1i

25 Using very different methods, Poensgen and Straub arrive at the same gen-
eral recommendation. See Poensgen-Straub (1976), p. 21.
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6) s(l) b+ 22

3.3 s(1)y =-—1 n _—

¢ et + 1
e(n'l'l}i —-|— el’l;i

emt)i 4 oi
For positive values? of i, therefore, s(1) > 0.

On the basis of {(3.35) it may be noted that an investment which cannot
be written off against income (for example land property) has a negative
value of 5, equal to the internal rate of return in absolute terms, whatever
its economic length of life. On the other hand, the unlimited depreciation
allowances that have been applied during the recent years, if they are fully
exploited during the first year, result in inflation folerance that always
rémains positive (see Table 3.1). For example, the inflation tolerance of an
investment with a length of life of 10 years and a rate of return of 10 %o is,
from expression {3.36), 0.33 (33 %¢). A similar investment but with a length
of life of 40 years tolerates inflation up to the value of 62.6 %o. Thus, unlim-
ited depreciation allowances provide an efficient hedge against inflation. It
must be kept in mind, however, that in order to write off the whole pur-
chase price in one period, the firm must have adequate income also from
other sources than the investment under investigation from which this depre-
ciation may be deducted.

Table 3.1. Inflation Tolerance of Lump Sum Depreciation (§j = 1).

§ |
i 5 10 490 60 l
0.05 0.093 0.194 0.542 0.620
0.10 0.170 0.331 0.626 0.642
0.20 £.285 0.471 0.598 0.598

The function s{j) is monotonically increasing. This is evident from the
expression for s(j) itself, and may also be ascertained by examining the par-
tial derivative

e(n+‘1)i —1
mi | (n+1) __q
(3:3) -g—?= .,
j 143 e+l __ g ettt - 1 4+ ](e(n-z- H___ 1
el 4 1

26 When i == 0, s(j) = 0.
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I .
| s(1y > 0

s(0) = -i<0 {/ ig

Diagram 3.5 Inflation Tolerance as a Funciion of the Rate of Depreciation, i > 0.

which is clearly positive (when i > 0). Typically, therefore, s(j) can be de-
scribed as in Diagram 3.5. It begins to increase from the value s(0) = —i,
reaches the value zero at a point j; (0 <j, < 1), and from j, onwards becomes
positive, being always monotonically increasing: The graph demonstrates the
imporiance of } with respect fo the size of the inflation tolerance. As long
as the internal rate of return is positive, all combinations of i and n enable
the achievement of positive inflation tolerance, if the rate of depreciation j
can be made high encugh (§ > jg).

The critical rate of depreciation, j,, can be solved for from equation

(3.38) sl =—it+tInfl+j—71=0,
e+ 1

i.e. one geis

et -+ 1) (et — 1)
em+1)__q
erd - 1
el 4 efn-14 £ ool g
_etid4 1

(339) jo =

Spi1ly

n n
where s,}; = 2 RF1 = ¥ ot-1 iy the prolongation factor for discrete pay-
t=1 =1
ments made at the end of each n periods in the case of continuous diseount-
ing.
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3.4. The Absolute Upper Bound for Inflation Tolerance

Tt is evident from the preceding partial analyses that the function
g = sfi, n, j} is bounded from above, i.e. it possesses an absolute upper bound
which cannot be exceeded whatever the parameter values employed.??

In what follows, this upper bound is derived. The function s, being con-
sidered as a function of three variables:

e(n:l--I.}i —1

(3.40) s =s(t,n§) = —i+Infl £ — 7

is increasing with respect to j. Since j < 1, it holds for all values of i and n
that:

. eln+i}i__]
341) s=< s{i,n,1) =Infe™ +—————
e(n+1}1 + el

e(n+‘1)’1 4+ eni

e@+1)i 1 ei‘

If s{i,n, 1) is denoted by 5(1, n), (3.41) becomes

) (n+1H | ool
(342) sSEEM) =In " -
e(n+.1-)1 + b

Tha firnatinn g(

oS30 LAR L LA LD

1) inereazes with n. Thus, for all values of i:
(n+1)i - i
i N . e e
(3.43) s=3§@,n)=lim §(i,n) =lim In —————
11— OO n-— co
1+ et
=In lim — ~—=1In (1+ e™h.

n-—co 1+ e ™

e{n-l--’l)-i 4 ei

If lim 3(i, n) is denoted by §(i), it holds that
n—-co
(3.44) s= s(1) =1In (1 -+eY,
Function s(1) is, in turn, a decreasing function of i Therefore its maxi-
mum value, when i is limited to its nonnegative values, equals s({)) In 2.
Thus, it always holds that

s<In 2~ 0.693,

i.e. inflation tolerance cannot exceed 69.3 %, whatever the parameter values
of i, j and n (wherei =0, 0<j<1, n=1)

27 The absolute maximum value of s with respect to i is sm. The extreme values
of ¢ under varying values of n are s and 5, and the extreme values with respect to
i, 8(0) and s{l).
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3.5, Adequacy of Present Tax Depreciation Allowances in the Light of
Recent Inflation Experience

Let the actual or predicted rate of inflation equal 8. It is possible to
examine, how large the rate of depreciation, j, should be so that the invest-
ment in question telerates the inflation rate s. If this crucial rate of depre-

s b A . A . A
ciation is denoted by j, it follows that s(j) = s and s(j) > § when j > j.28
Since lim s(j) = oo this value j always exists. Of course, it is interpretatively
I 00
meaningful only if j <1,
This depreciation rate, j, can be solved for from equation:2?
em+l)i___ 1

3.45) s(f)=Iln[l +j— ———jJ—ij =24
(3.45) s(}) = In] Jem+1 j—i=3%

ie. one gels

(ent 1) (5 — 1)

e(nEll __ ] ’ ]

(3.46) j=

Using the wholesale index, the average rate of inflation during the 1970’s
equalled 11,5 % p.a. The corresponding rate of inflation in continuous dis-
counting is therefore In 1.115 = 0.109 (10,9 %). Table 3.2 presents the rates
of depreciation, }, which are caleulated from (3.46) using the value of 0.109
for §, and employing several combinations of assumed values for the para-
meters i and n. If the lengths of life are five years and ten years, the EVL
approved rafe of depreciation equals 0.30. For example, if the investment
produces a rate of refurn of 10%, and its economic life is ten years, the
crucial ﬁ-value equals 0.43, ie. in order to have protected the investment
against the harmful effecis of the average inflation during the 1970's {§ =
0.109), the declining balance method should have allowed a depreciation rate
of 0.43. This implies that the actual allowed rate of depreciation, 0.30, was
not sufficiently accelerated so as to provide a hedge against inflation.

The discrepancy between the actual rate of depreciation allowance and
the ﬁ—value is the larger, the shorter the life of the relevani investment is.
The EVL approved rate of depreciation for buildings varies (depending on
the building material and the use purpose of the builéing) between five and

ten percent. Table 3.2 demonsirates that the crucial j-values corresponding
to the lengths of life of 40 and 60 years vary from 0.18 to 0.30. Consequently,

28 Cf. with the monotonically increasing behaviour of s = s(j).
28 See also Diagram 3.6.
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Table 3.2. The Rate of Depreciation that Guarantees Tolerance of Inflation of 10,9 tp
p.a. under Selected Combinations of 1 and n.

n
\ 5 10 40 60

0.05 (1.13) 0.62 0.21 0.18
0.10 0.75 0.43 0.22 0.21
0.20 0.58 0.38 0.30 0.30

the EVL allowances vere totally inadequate in the case of buildings as well,
if they were to protect the investment against the effects of inflation. In
view of the above a—values for buildings, the proposed increase?® in the
velevant EVL allowances to 15 % is still insufficient from the inflation pro-
tection point of view. The maximum depreciation allowance should equal
at least 20 %.

3.8. The Minimum Required Economic Length of Life as a Protection Factor
against Inflation

It was noted earlier that inflation tolerance increases monotenically with
the length of life of the invesiment, n. Positive inflation tolerance was found
to be possible when the length of life increased, if '
(3.47) 5= Hm s(n) = Infe™* + j1 >0,

n-— oo
ie. if

(348) j>1—e

s(0)

A
Diagram 3.6. Determining the Rate of Depreciation, j, which Guarantees Tolerance
of Inflation of Size £

30 See Vritysverotustoimikunnan mietinté (1980), p. 59.
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It may be asked, whether it is possible for an investment which satisfies
(3.48) to tolerate the inflation rate §, ie. whether it holds that 5= §, and if
so, what is the minimum length of life, fi, which enables the achievement
of inflation tolerance of this magnitude.

The first part of the above question may be answered in a straightforward
manner, An inflation tolerance of size § requires that the following condi-
tion is fulfilled:

(349) s=In(el 4§ =5
ie.

(3.50) e—i--j=ed

or .

(3.51) j=eS—ei

and, as an approximation 31
(352 §>i+s.

The rate of depreciation must therefore at least equal the nominal inter-
nal rate of return on the investment.3?

If the condition j = e —eiis fulfilled, fi, the minimum required length
of life, may be determined from the inequality:33
e(‘n+1)i - 1

(8563) sm)=In[l+j—— 1 —i>s
et + 1

This can further be expressed as
en+h)i__ 1

(354) 14 j——t T =it
ert + 1

which becomes, using R to denote e! and é to denote egz

R+l __ 1 A
355) 1+j-— =g
( RRt1 —

and finally,
A A
(3.58) (S —j)R*™ —R0L + SR —(1—7j) <.0.
31 exz=z1 -+ x.
32 The condition for positive inflation tolerance was that the rate of deprecia-

tion had to equal or exceed the real rate of return on the investment.
33 Cf, section 3.2. where n, is determined.
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Table 3.3. The Upper Bound of Inflation Tolerance, s, and the Minimum Required
Length of Life, i, Under Selected Combinations of i and j.

\ 0.05 0.08 0.09 0.10 0.30

0.05 0.001 0.011 0.040 0.050 0224 §
_ — — - 24 0

0.10 — 0.046 —0.038 —0.005 0.005 0.186 §
- — m — 17 4

10.20 —0.141 —0.129 — 0.098 —0.085 0112 5
— — — — 26 A

The first n that for given values of i, (R), j and S, (é) satisfies the above
inequality, is the reguired minimum economic life, n. This value must be
solved for numerically.

Table 3.3 presents the upper bound values for s, E, and (if 5= S) the
required minimum lengths of life which correspond to the average rate of
inflation in the 1970’s, 10.9 %, using selected combinations of i- and j-values.
Increasing the length of iife is a feasible method of hedging against infla-
tion only, if the investment in question is eligible for the 30 % depreciation
allowance. This minimum economic life is 24 years, if the internal rate of
return on the investment is 5 %. The corresponding minimum lives are 17
years and 26 years, if the internal rates of return are 10 %0 and 20 °/y respec-
tively. In practice, the economic life of machinery and egquipment rarely
reaches those levels which produce protection against inflation 34

4, SUMMARY AND CONCLUSIONS

This paper has examined the concept of inflation tolerance by using
present values of the depreciation amounts in analysing all equity-financed
capital projects. The investment under consideration must be regarded as
marginal, since the internal rate of return was assumed to equal the rate
of discount.

It has been emphasized in discussions concerning the adequacy of tax
deductible depreciation allowances that only profitable firms find it feasible
to protect against the harmful effects of inflation.3% This study has demon-

34 See Yritystutkimusneuvottelukunta (1979), Appendix 2.
35 For example, Riistama (1980), p. 9.
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strated that the relation between the length of life of the investment and
the EVL approved rate of depreciation is of crucial significance in deter-
mining the conditions for positive inflation tolerance. In the case iZ%/m+ 1
positive inflation tolerance is impossible, whatever the profitability of the
investment under consideration. Instead, increasing profitability merely
accentuates the negativity of the inflation tolerance, s. This arises from the
fundamental characteristics of the realization depreciation. It is very sensi-
tive to changes in both the length of economic life and the rate of discount
because of the double discounting procedure employed in its calculation.
However, realization is the commonly acknowledged principle to be observed
in determining corporate income and as the basis for corporate taxation.

The necessary, but not sufficient, condition for positive inflation tolerance
was found to be j > 2/(n + 1). In order to satisfy this condition, it is profit-
able for the firm to invest in assets with long estimated economic lives pro-
vided that the EVL determined rate of depreciation applicable to these is
higher than the internal rate of return on the relevant asset. Once the con-
dition j > 2/(n + 1) is satisfied, increasing profitability raises inflation toler-
ance until the latter achieves its maximum value at the level of the internal
rate of return i,. Affer this point, higher profitability is associated with
decreasing inflation tolerance.

Inflation tolerance of depreciation is the higher, the longer the economic
life of the asset in question. Inflation tolerance was also shown to inecrease
with the rate of depreciation.

The adequacy of EVL depreciation allowances was examined in the light
of the average rate of inflation in Finland during the 1970’s {10.9 %%). It was
shown that the present allowances do not enable protecting the investment
against a rate of inflation of this magnitude. For example, an investment
with a length of life of ten years and an internal rate of return of ten per-
cent should have required a rate of depreciation of 43% in order tolerate
inflation of 10.9 % p.a, while the actual EVL allowance equalled 30 %b. The
EVL accepted rates of depreciation applicable to buildings were shown to
be equally inadequate. They vary from five to ten percent, whereas at least
a 20 % depreciation based on the declining balance method would have been
necessary for producing protection against the average rate of inflation dur-
ing the 1970’s.

The determination of inflation tolerance in this paper does not take into
account the option of using debt capital as a form of finance. If debt capitai
can be ufilized, the inflation tolerance of depreciation increases3® The
strength of this effect is being analysed in the ongoing research based on
the present paper.

36 Riistama (1975), p. 71.
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Inflation tolerance has here been analysed with respect to separate invest-
ment projects. The tolerance of inflation for the whole firm may be defined
as consisting of the sum of all these separate tolerance values, which implies
that the growth of the firm is one of the factors to be taken into account in
determining the firm-specific inflation tolerance. This remains to be accom-
plished in future research.
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Appendix. List of Symbols

Symbol Interpretation Units
a, |; present value factor for discrete payments made at

the end of each period {n periods, continuous dis-

counting using the rate i) —
C purchase price of the investment FIM
[ annuity factor (n periods, continuous discounting

using the rate i) —_
DDE depreeiation in year t based on the declining balance FIM

method
DE realization depreciation in year t FIM
i real infernal rate of return = rate of discount l/year
im internal rate of return associated with maximal

inflation tolerance (when s = s(i)) l/year
i, critical internal rate of return: s(i) <0 as i > i, l/year
j rate of depreciation in the declining balance method —
i critical rate of depreciation, s(j) > 0 as j > i —
j\ minimum rate of depreciation associated with infla-

tion tolerance of the actual/predicted rate of infla-

tion, § —
n economic life of the investment years
n, critical n; s(n) > 0 as n > n, years
n minimum n associated with inflation tolerance of

the actual/predicted rate of inflation & years
NPV(DPE) present value of D PB (see above) FIM
NPV(DP8) present value of the sum of all D DE’s FIM
NPV(DE)  present value of DE (see above) FIM
NPV(DR) present value of the sum of all DE’s FIM
P (constant} annual return on investment in year t FIM
R interest factor: R = ¢f —
8 rate of inflation; inflation folerance 1/year
Sm maximum inflation tolerance l/year
5 lower bound for inflation tolerance when s = s(n);

5 =s(l} 1/year
5 upper bound for inflation tolerance when s =s(n); 1/year

5= lim s(n)
n—»= oo
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Symbol Interpretation Unit
8 actual/expected rate of inflation 1/year
Syl prolongation factor for discrete payments made at

the end of each period (n periods, continuous dis-
counting using the rate i) : —

inflation factor; S = ef —
subindex denoting the number of the year

length of the discounting period years



