
2. The Simple Regression Model

2.1 Definition

Two (observable) variables ”y” and ”x”.

y = β0 + β1x + u.(1)

Equation (1) defines the simple regression

model.

Terminology:

y x
Dependent variable Independent variable
Explained variable Explanatory variable
Response variable Control variable
Predicted variable Predictor
Regressand Regressor
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Error term ui is a combination of a number

of effects, like:

1. Omitted variables: Accounts the effects

of variables omitted from the model

2. Nonlinearities: Captures the effects of

nonlinearities between y and x. Thus, if the

true model is yi = β0 + β1xi + γx2
i + vi, and

we assume that it is yi = β0 + β1x + ui, then

the effect of x2
i is absorbed to ui. In fact,

ui = γx2
i + vi.

3. Measurement errors: Errors in measuring

y and x are absorbed in ui.

4. Unpredictable effects: ui includes also in-

herently unpredictable random effects.
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2.2 Estimation of the model, OLS

Given observations (xi, yi), i = 1, . . . , n, we
estimate the population parameters β0 and
β1 of (1) making the following

Assumptions (classical assumptions):

1. y = β0 + β1x+ u in the population.
2. {(xi, yi) : i = 1, . . . , n} is a random sample

of the model above, implying uncorrelated
residuals: Cov(ui, uj) = 0 for all i 6= j.

3. {xi, , i = 1, . . . , n} are not all identical,
implying

∑n
i=1(xi − x̄)2 > 0.

4. E[u|x] = 0 for all x (zero average error),
implying E[u] = 0 and Cov(u, x) = 0 .

5. Var[u|x] = σ2 for all x, implying
Var[u] = σ2 (homoscedasticity).

Here |x means “conditional on x”, that is,
we restrict our sample space to this partic-
ular value of x. The practical implication in
calculations and derivations is that we can
treat x as nonrandon, for the price that our
result will hold for that particular value of x
only. Otherwise the calucation rules for con-
ditional expectations and variances are iden-
tical to their unconditional counterparts.
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The goal in the estimation is to find values

for β0 and β1 that the error terms is as small

as possible (in suitable sense).

Under the classical assumptions above, the

Ordinary Least Squares (OLS) that minimizes

the residual sum of squares of the error terms

ui = yi − β0 − β1xi produces optimal estimates

for the parameters (the optimality criteria are

discussed later).

Denote the sum of squares as

f(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2.(2)

The first order conditions (foc) for the mini-

mum are found by setting the partial deriva-

tives equal to zero. Denote by β̂0 and β̂1 the

values satisfying the foc.
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First order conditions:

∂f(β̂0, β̂1)

∂β0
= −2

n∑

i=1

(yi − β̂0 − β̂1xi) = 0(3)

∂f(β̂0, β̂1)

∂β1
= −2

n∑

i=1

xi(yi − β̂0 − β̂1xi) = 0(4)

These yield so called normal equations

nβ̂0 + β̂1
∑

xi =
∑

yi

β̂0
∑

xi + β̂1
∑

x2
i =

∑
xiyi,

(5)

where the summation is from 1 to n.
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The explicit solutions for β̂0 and β̂1 are (OLS

estimators of β0 and β1)

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

(6)

β̂0 = ȳ − β̂1x̄,(7)

where

x̄ =
1

n

n∑

i=1

xi

and

ȳ =
1

n

n∑

i=1

yi

are the sample means.

In the solutions (6) and (7) we have used the

properties

n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xiyi − nx̄ȳ(8)

and
n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2.(9)
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Fitted regression line:

ŷ = β̂0 + β̂1x.(10)

Residuals:

ûi = yi − ŷi

= (β0 − β̂0) + (β1 − β̂1)xi + ui.
(11)

Thus the residual component ûi consist of

the pure error term ui and the sample errors

due to the estimation of the parameters β0

and β1.
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Remark 2.1: The slope coefficient β̂1 in terms of sam-
ple covariance of x and y and variance of x.

Sample covariance:

sxy =
1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ)(12)

Sample variance:

s2
x =

1

n− 1

n∑

i=1

(xi − x̄)2.(13)

Thus

β̂1 =
sxy

s2
x

.(14)
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Remark 2.2: The slope coefficient β̂1 in terms of sam-
ple correlation and standard deviations of x and y.

Sample correlation:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

sxy

sxsy
,(15)

where sx =
√

s2
x and sy =

√
s2

y are the sample standard

deviations of x and y, respectively.

Thus we can also write the slope coefficient in terms
of sample standard deviations and correlation as

β̂1 =
sy

sx
rxy.(16)
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Example 2.1: Relationship between wage and educ-
tion.

wage = average hourly earnings
educ = years of education
Data is collected in 1976, n = 526
Excerpt of the data set wage.raw (Wooldridge)

wage (y) educ (x)
3.10 11
3.24 12
3.00 11
6.00 8
5.30 12
8.75 16

11.25 18
5.00 12
3.60 12

18.18 17
6.25 16

... ...
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Scatterplot of the data with regression line.
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Figure 2.2: Wages and education.

Sample statistics:

Wage Educ
Mean 5.90 12.56
Standard deviation 3.69 2.769
n 526 526
Correlation 0.406
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Eviews estimation results:

Dependent Variable: WAGE

Method: Least Squares

Date: 02/07/06   Time: 20:25

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.904852 0.684968 -1.321013 0.1871

EDUC 0.541359 0.053248 10.16675 0.0000

R-squared 0.164758     Mean dependent var 5.896103

Adjusted R-squared 0.163164     S.D. dependent var 3.693086

S.E. of regression 3.378390     Akaike info criterion 5.276470

Sum squared resid 5980.682     Schwarz criterion 5.292688

Log likelihood -1385.712     F-statistic 103.3627

Durbin-Watson stat 1.823686     Prob(F-statistic) 0.000000

The estimated model is

ŷ = −0.905 + 0.541x.

Thus the model predicts that an additional year in-

creases hourly wage on average by 0.54 dollars.

Using (16) you can verify the OLS estimate for β1 can

be computed using the correlation and standard devi-

ations. After that, applying (7) you get OLS estimate

for the intercept. Thus in all, the estimates can be

derived from the basic sample statistics.
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2.3 OLS Statistics

Algebraic properties

n∑

i=1

ûi = 0.(17)

n∑

i=1

xiûi = 0.(18)

ȳ = β̂0 + β̂1x̄.(19)

SST =
n∑

i=1

(yi − ȳ)2.(20)

SSE =
n∑

i=1

(ŷi − ȳ)2.(21)

SSR =
n∑

i=1

(yi − ŷi)
2.(22)
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It can be shown that
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2,(23)

that is

SST = SSE + SSR.(24)

Prove this!

Remark 2.3: It is unfortunate that different books and

different statistical packages use different definitions,

particularly for SSR and SSE. In many the former

means Regression sum of squares and the latter Error

sum of squares. I.e., just the opposite we have here!
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Goodness-of-Fit, the R-square

R-square (coefficient of determination)

R2 =
SSE

SST
= 1− SSR

SST
.(25)

The positive square root of R2, denoted as

R, is called the multiple correlation.

Remark 2.4: Here in the case of simple regression

R2 = r2
xy, i.e. R = |rxy|. These do not hold in the

general case (multiple regression)!

Prove Remark 2.4 yourself.

Remark 2.5: Generally it holds for the OLS estima-

tion, however, that R = ryŷ, i.e. correlation between

the observed and fitted (or predicted) values.
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Remark 2.6: It is obvious that 0 ≤ R2 ≤ 1 with R2 = 0

representing no linear relation between x and y and

R2 = 1 representing a perfect fit.

Adjusted R-square:

(1) R̄2 = 1 −
s2
u

s2
y
,

where

(2) s2
u =

1

n− 2

n∑
i=1

(yi − ŷi)
2

is an estimate of the residual variance

σ2
u = Var[u].

We find easily that

(3) R̄2 = 1 −
n− 1

n− 2
(1 −R2).

One finds immediately that R̄2 < R2.
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Example 2.2: In the previous example R2 = 0.164758

and adjusted R-squared, R̄2 = 0.163164. The R2 tells

that about 16.5 percent of the variation in the hourly

earnings can be explained by education. However, the

rest 83.5 percent is not accounted by the model.
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2.4 Units of Measurement and Functional Form

Scaling and translation

Consider the simple regression model

yi = β0 + β1xi + ui(29)

with σ2
u = Var[ui].

Let y∗i = a0 + a1yi and x∗i = b0 + b1xi, a1 6= 0

and b1 6= 0. Then (29) becomes

y∗i = β∗0 + β∗1x∗i + u∗i ,(30)

where

β∗0 = a1β0 + a0 −
a1

b1
β1b0,(31)

β∗1 =
a1

b1
β1,(32)

and

σ2
u∗ = a2

1σ2
u.(33)
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Remark 2.7: Coefficients a1 and b1 scale the measure-
ments and a0 and b0 shift the measurements.

For example, if y is temperature measured in Celsius,
then

y∗ = 32 +
9

5
y

gives temperature in Fahrenheit.
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Example 2.3: Let the estimated model be

ŷi = β̂0 + β̂1xi.

”Demeaned” observations:

y∗i = yi − ȳ and xi − x̄. So a0 = −ȳ, b0 = −x̄, and a1 = b1 = 1.

Because β̂0 = ȳ − β̂1x̄, we obtain from (31)

β̂∗0 = β̂0 − (ȳ − β̂1x̄) = 0.

So

ŷ∗ = β̂1x
∗.

(Note β̂1 remains unchanged).

If we further define a1 = 1/sy and b1 = 1/sx, where sy

and sx are the sample standard deviations of y and x,
respectively. Applying the transformation yields stan-
dardized observations

y∗i =
yi − ȳ

sy

and

x∗i =
xi − x̄

sx
.

Then again β̂0 = 0. The slope coefficient becomes

β̂∗1 =
sx

sy
β̂1,

which is called standardized regression coefficient.

As an exercise show that in this case β̂∗1 = rxy, the

correlation coefficient of x and y.
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Nonlinearities

Logarithmic transformation is one of the most

applied transformation for economic variables.

Table 2.1 Functional forms including log-transformations

Dependent Independent Interpretation
Model variable variable of β1

level-level y x ∆y = β1∆x

level-log y log(x) ∆y = (β1/100)%∆x

log-level log(y) x %∆y = (100β1)∆x

log-log log(y) log(x) %∆y = β1%∆x

Can you find the rationale for the interpreta-

tions?

Remark 2.8: Log-transformation can be only applied

to variables that assume strictly positive values!
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Example 2.4 Consider the wage example (Ex 2.1).

Suppose we believe that instead of the absolute change
a better choice is to consider the percentage change
of wage (y) as a function of education (x). Then we
would consider the model

log(y) = β0 + β1x + u.

Estimation of this model yields

Dependent Variable: LOG(WAGE)

Method: Least Squares

Sample: 1 526

Included observations: 526

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.583773 0.097336 5.997510 0.0000

EDUC 0.082744 0.007567 10.93534 0.0000

R-squared 0.185806     Mean dependent var 1.623268

Adjusted R-squared 0.184253     S.D. dependent var 0.531538

S.E. of regression 0.480079     Akaike info criterion 1.374061

Sum squared resid 120.7691     Schwarz criterion 1.390279

Log likelihood -359.3781     F-statistic 119.5816

Durbin-Watson stat 1.801328     Prob(F-statistic) 0.000000
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That is
̂log(y) = 0.584 + 0.083x(34)

n = 526, R2 = 0.186. Note that R-squares of this

model and the level-level model are not comparable.

The model predicts that an additional year of edu-

cation increases on average hourly earnings by 8.3%.
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Remark 2.9: Typically all models where transforma-
tions on y and x are functions of these variables alone
can be cast to the form of linear model. That is, if
have generally

g(y) = β0 + β1h(x) + u,(35)

where g and h are functions, then defining y∗ = g(y)
and x∗ = h(x) we have a linear model

y∗ = β0 + β1x
∗ + u.

Note, however, that all models cannot be cast to a
linear form. An example is

cons =
1

β0 + β1income
+ u.
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2.5 Expected Values and Variances of the

OLS Estimators

Unbiasedness

We say generally that an estimator of θ̂ of a

parameter θ is unbiased if E[θ̂] = θ.

Theorem 2.1: Under the classical assump-

tions 1–5

E[β̂0] = β0 and E[β̂1] = β1.(36)

Proof: Given observations x1, . . . , xn the expectations
are conditional on the given xi-values.

We prove first the unbiasedness of β̂1. Now

β̂1 =

∑
(xi−x̄)(yi−ȳ)∑

(xi−x̄)2

=

∑
(xi−x̄)yi∑
(xi−x̄)2

=

∑
(xi−x̄)β0∑
(xi−x̄)2

+ β1

∑
(xi−x̄)xi∑
(xi−x̄)2

+

∑
(xi−x̄)ui∑
(xi−x̄)2

= β1 + 1∑
(xi−x̄)2

∑
(xi − x̄)ui.

(37)
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That is, conditional on x = xi:

(38) E[β̂1|xi] = β1 +

∑
(xi − x̄)∑
(xi − x̄)2

E[ui|xi] = β1

because E[ui|xi] = 0 by assumption 4. Because this
holds for all xi we get also unconditionally

(39) E[β̂1] = β1 +

∑
(xi − x̄)∑
(xi − x̄)2

E[ui] = β1

Thus β̂1 is unbiased.

Proof of unbiasedness of β̂0 is left to students.
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Variances

Theorem 2.2: Under the classical assumptions 1 through
5 and given x1, . . . , xn

(40) Var[β̂1] =
σ2
u∑n

i=1(xi − x̄)2
,

(41) Var[β̂0] =

(
1

n
+

x̄2∑
(xi − x̄)2

)
σ2
u.

and for ŷ = β̂0 + β̂1x with given x

(42) Var[ŷ] =

(
1

n
+

(x− x̄)2∑
(xi − x̄)2

)
σ2
u.

Proof: Again we prove as an example only (40). Us-
ing (37) and the properties of variance with x1, . . . , xn
given

(43)

Var[β̂1] = Var

[
β1 + 1∑

(xi−x̄)2

∑
(xi − x̄)ui

]
=

(
1∑

(xi−x̄)2

)2∑
(xi − x̄)2Var[ui]

=

(
1∑

(xi−x̄)2

)2∑
(xi − x̄)2σ2

u

=
σ2
u

∑
(xi−x̄)2

(
∑

(xi−x̄)2)
2

= σ2
u∑

(xi−x̄)2
.
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Remark 2.10: (41) can be written equivalently as

Var[β̂0] =
σ2

u

∑
x2

i

n
∑

(xi − x̄)2
.(44)
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Estimating the Error Variance

Recalling from (11) the residual ûi = yi − ŷi

is of the form

ûi = ui − (β̂0 − β0)− (β̂1 − β1)xi.(45)

This reminds us about the difference between

the error term ui and the residual term ûi.

An unbiased estimator of the error variance

σ2
u = Var[ui] is

σ̂2
u =

1

n− 2

n∑

i=1

û2
i .(46)

Taking the (positive) square root gives an es-

timator for the error standard deviation σu =
√

σ2
u,

called usually the standard error of regression

σ̂u =

√
1

n− 2

∑
û2

i .(47)

29



Theorem 2.3: Under the assumption (1)–(5)

E[σ̂2
u] = σ2

u,

i.e., σ̂2 is an unbiased estimator of σ2
u.

Proof: Omitted.
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Standard Errors of β̂0 and β̂1

Replacing in (40) and (41) σ2
u by σ̂2

u and tak-

ing square roots give the standard error of β̂1

and β̂0

se(β̂1) =
σ̂u√∑

(xi − x̄)2
(48)

and

se(β̂0) = σ̂u

√√√√1

n
+

x̄2

∑
(xi − x̄)2

.(49)

These belong to the standard output of re-

gression estimation, see computer print-outs

above.
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