6. Probability distributions

6.1. Random Variables

Example. Consider tossing four coins. The
possible outcomes are then

S = {HHHH,HHHT,..., THHH,
HHTT,HTHT,..., TTHH,
HTTT, THTT,..., TTTH,
TTTT)}

Suppose we are interested in the number X
of heads up after 4 coin tosses, such that:

X(HHHH) = 4,
X(HHHT) =... = X(THHH) = 3,
. and so on.

The value of X is determined by the random
coin tossing. A variable whose value is de-
termined by a random experiment is called a
random variable (satunnaismuuttuja). It will
become our mathematical tool for modelling
statistical variables.
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Mathematically a random variable is defined
as a function from the sample space S to the
line of real numbers IR, i.e.,

X:S— R

It is usual practice to distinguish the random
variable from its value. Capital letters (like
X above) for the random variables and lower
case letters (like x) for the values are usual.
Notations like X, Y,... or z, y,... are also
used for random variables. -

Random variables can often obtain values only
in a subset of IR. The set of values that a
random variable may possibly attain is called
range space (arvojoukko) and often denoted
by Sy = X(S) or Qx. For example, Sy =
{0,1,2,3,4} in the coin tossing example above.
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A discrete (diskreeti) random variable can
assume only a countable number of values.

Example. Typical examples of discrete ran-
dom variables are the number of children in
a family, the result of tossing a die, the num-
ber of heads in the previous coin-toss exam-
ple,etc. Also a random variable with range
Z={..—2,-1,0,1,2,...} (the whole num-
bers) is discrete, and the values a discrete
random variable can attain need not neces-
sarily be equidistant.

A continuous (jatkuva) random variable can
take any value in an interval of values, such
as any interval on the real line IR with finite
length (the value set is uncountable).
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The probability distribution (todennakdisyys-
jakauma) of a discrete random variable con-
sist of its attainable values and the corre-
sponding probabilities (pistetodennakdisyys).

Example. In the previous example of 4 coin
tosses, there were 24 = 16 possible outcomes.
We obtain the probability distribution of X
by counting the number of outcomes with
X = 0,1,2,3,4 heads and dividing by the
possible number of outcomes:

z; | 0 1 2
P(X=2) |15 7 3

4
1
16

HHW

Note.

>gesy P(X=z;) = 1, where Sx = X(S), the
set of possible values of the random variable
(arvojoukko).

Mathematically, the probability distribution
of a discrete random variable X is defined
as a function P : 2 — IR satisfying:
(1) P(x;) >0, for all z,,
k

(2) Y P(X=az)=Y p=L

ZCZ'ESX =1
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The cumulative distribution function (kertyma-
funktio) F' of a discrete random variable is:

F(z) =P(X<z)= ) P(X=ua).

T; <T
It has the important properties:

1. F(x) < F(y) if £ <y with
F(—o00) =0 and F(o0) = 1.

2. Pla< X <b)=P(X <b)—P(X < a)
= F'(b) — F(a) for a <b.

3. P(X>2)=1-P(X<z)=1-F(2).

Property 2 implies that for discrete random variables:

P(X=x;) = P(z;—1 <X <z;) = F(x;)—F(z;—1).

Example: (Azcel, Example 3.2) Let

z 0 1 2 3 4 5
P(X=z): 0.1 0.2 03 02 0.1 0.1

Then F(z): 0.1 03 06 0.8 09 1
P(X<3)=F@B)=P0O)+P(1)+P(2)+P(3)=0.38
P(X>2)=P(X>1)=1-F(1)=1-03=0.7
P(1<X<3)=P(0<X<3)=F(3) - F()=0.7.
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Recall that a continuous random variable has
uncountably many attainable values. There-
fore we cannot define the probability distri-
bution of a continuous random variable as a
list of its attainable values and their associ-
ated probabilities, as we did for discrete ran-
dom variables. Instead we define a so called
probability density function (tiheysfunktio) f
as a scaled histogram of infinitely many ob-
servations of the random variable in the limit
of infinitesimal narrow class intervals. The
histogram is scaled in such a way that the
frequency density on the vertical axis is di-
vided by the total number of observations.
This changes the area under the histogram
but not its shape. The probability density of
a continuous random variable has the follow-
ing properties:

(1) f(x) >0 for all x

@ [ f@dz=1,
(the total area under f is 1)

@)P@<X§@=wam@

(the area under f between a and b).
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The cumulative distribution function (kertyma-
funktio) of a continuous random variable is
then defined in anology to the discrete case:

F(z) = P(X < ) = / xoo £(4) dt

T his implies that for continuous random vari-
ables the probability P(X < z) may be found
from the area below the density function f
(and above the x-axis) between —oo and .
T he cumulative distribution function of a con-
tinuous random variable has the same prop-
erties (1—3) as that of a discrete random vari-
able. Additionally for a < b:

Pla< X <b)=Pla< X <b)
=P(a< X <b)=Pla<X<b)
=F(b) — F(a).

This is because for continuous random vari-
ables

P(X=x) = /j f(x)dx = 0.

Note: The definition of the cumulative dis-
tribution function implies by the fundamen-
tal theorem of calculus that for continuous
random variables: F/(z) = f(x).
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Example.

Let
1

Fz) = {g for x € [0, 5],

O otherwise.
This is an example of the (continuous) uni-
form distribution to be discussed soon.
Now, for 0 < x < 5:

P(X<z) P(X<0) P(0<X<z)

F(z) = 71 F(@) d; = ,/ZO f(@) d;—l—rfom F(@) d;

o | t]* z O T
—0+/0§d’5—30—5‘§—5
T herefore:
(O, x <0
F(z) ={%, 0<xz<5
1 x>5,
and, for example:
3 1 2
P(ll<X<3)=FQ3)-F(l)=———=—.
(1<X<H=FR)-F)=_-c=¢
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Statistics of Random Variables

The expected value (odotusarvo) of a
discrete random variable is defined as

p=E[X]= > zP(X =uq).

xeSx
If X is continuous then
@)
= E [X] =/ zf(z) da.
— 00

Generally, if h is a function, and Y = h(X),

Y., h(z)P(X =z), X discrete

E[Y] =E[hR(X)] = { ffooo h(z) f(z)dz, X continuous

The median (mediaani) is the smallest num-
ber M satisfying: F(M) > 1/2.
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Draw independent observations at random
from a population with finite mean p. Then
the law of large numbers (suurten lukujen laki)
asserts that as the sample size increases, the
mean of the sample x gets eventually closer
and closer to the population mean pu.

The variance (varianssi) of a random variable
is defined as

Var[X] = E (X — p)°.
That is
S (z — p)?P(X =), X discrete,

2 _ —_
o° = Var[X] = { ffooo(x _ “)2]0(3;) dx, X continuous.

The standard deviation (keskihajonta) is the
positive square root of the variance

O — \/0'2.
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Example.

T he probability distribution of casting a dice

; '1 2 3 4 5 6

—>»|/1 1 1 1 1 1
P<X_m2)‘666666

IS:

1 1 1 1
O e
5. —4+6-—=—=3.5.
T 6+ §) 6

V(X) =(1 - 3.5)% + (2 - 3.5)%
+ (3 - 3.5)2% + (4 — 3.5)%
+ (5 — 3.5)% + (6 — 3.5)2é ~ 2.9167.
oc=y/V(X)=1.7.
M =3, because F(3) =1/2.
Note. The expected value E(X) need not
necessarily be a value which the random vari-

able X can actually assume, but the median
is always the smallest attainable value of X

satisfying F(X) > 1/2.
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Example.

Consider the uniform distribution:

£(z) = {i for x € [0, 4],

0O otherwise.

E(X) =/Oo :cf(a:)d:c:/c)4;c.ldx:l szr

. 4 427 |,
1/1 1
=-(2-4°-2.0") =2
a4 \2 2
00 4
1
V(X) = / (¢ — w2f(z) de = / (2 —2) 2 do
— 00 0
1 [4 11 4 4
:Z/o (z* — 4z + 4) dm=Z[§m3—§fB2+4fB]O
1/1 4 4
== (z24°-=4°+4.4-0) =-.
4\3 2 3

T he distributions median is M =2, because

o= - [}

F(2) = / 4
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Properties of Expected Value and Variance
1. E(c) = c for ¢ constant,

2. E(cX) = cE(X) for ¢ constant,

3. B(X+Y)=EX)+ E(),

4. E(X-Y)=FE(X)- -E(Y)
for X and Y independent,

5. V(¢c) = 0 for ¢ constant,
6. V(X) = E(X?) — E(X)?,
7. V(aX 4+ b) = a2V (X) for a, b constants,

. VIX4+Y)=VX)+V(X)
for X and Y independent.
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