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0. A Short Review of Probability Theory

Probability Spaces

The sample space −= {ω1, . . . ,ωk} is the set
of all possible outcomes ωi, i = 1,2, ..., k of an

experiment. Subsets of − are called events.

A function P : − → IR is then de¯ned as a

probability measure (for short probability), if

the following conditions hold:

P(A) ≥ 0 for all A ⊂ −(P1)

P(−) = 1(P2)

A,B ⊂ −, A ∩B = ∅ then(P3)

P(A ∪B) = P(A) + P (B)

The following properties of P follow then by

application of elementary set theory (exercise):

a) P(AC) = 1− P (A),
b) P(∅) = 0,

c) P (A ∪B) = P(A) + P (B)− P (A ∩B)



Note that in order for such relations to be

well de¯ned, we must be sure that the empty

set ∅, the complement AC, the union A ∪ B
and the intersection A∩B are subsets of the

sample space − as well. In other words, the

collection of events must be closed under set

operations. A collection of subsets of − that

is closed under set operations is called an

algebra. Formally we de¯ne it as follows:

A collection F = F1, F2, . . . , Fn of subsets of

−= {ω1, . . . ,ωk} is called an algebra on − i®:

− ∈ F(A1)

F ∈ F ⇒ FC ∈ F(A2)

Fi, Fj ∈ F ⇒ Fi ∪ Fj ∈ F(A3)

The empty set ∅ and the intersection Fi ∩ Fj
are then also included in F (exercise). Proba-

bility is then de¯ned as a function P : F → IR

having properties (P1)-(P3) with A,B ⊂ −
replaced by A,B ⊂ F. The triple (−,F , P) is
called a probability space.



Sigma-¯elds

If − is a general continuous space consisting

of in¯nitely many events, then the de¯nitions

of an algebra and a probability measure need

to be generalized as follows:

A collection F = F1, F2, . . . of subsets of − is

called a σ-algebra or σ-¯eld on − i®:

− ∈ F(S1)

F ∈ F ⇒ FC ∈ F(S2)

F1, F2, . . . ∈ F ⇒
∞�
i=1

∈ F(S3)

Probability is then de¯ned as a function P :

F → IR satisfying:

P (A) ≥ 0 for all A ∈ F(P1)

P (−) = 1(P2)

A1, A2, ... ∈ F , Ai ∩Aj = ∅ ∀i W= j(P3)

⇒ P(
∞�
i=1

Ai) =
∞3
i=1

P (Ai)



Conditional Probability

When modelling asset prices over several pe-

riods, we are often in a situation that the

sample space varies through time. For ex-

ample, if we want to model a stock price a

certain time period ahead, then the possible

range of prices that we may reasonably ex-

pect the stock to attain, is certainly much

larger within a years time than within the

next few seconds. The basic building block

for time-varying sample spaces is conditional

probability de¯ned as:

P(A|B) := P(A ∩B)
P (B)

assuming P (B) W= 0

The conditional probability P (A|B) may be
regarded as an ordinary probability with B

as new sample space. This may be seen as



follows:

P (A|B) ≥ 0, because(P1)

P (A ∩B) ≥ 0 and P (B) > 0
P (B|B) = P (B ∩B)

P (B)
=
P (B)

P (B)
= 1(P2)

Let A1, A2 be mutually exlusive(P3)

events, that is A1, A2 ∈ F and

A1 ∩A2 = ∅, then:
P (A1 ∪A2|B) =

P((A1 ∪A2) ∩B)
P(B)

=
P ((A1 ∩B) ∪ (A2 ∩B))

P(B)

=
P (A1 ∩B) + P (A2 ∩B)

P(B)

=
P (A1 ∩B)
P (B)

+
P (A2 ∩B)
P (B)

=P (A1|B) + P(A2|B)

Events A and B are called independent, i®

P(A∩B) = P (A)P (B). This implies that the

conditional probabilities P (A|B) and P(B|A)



reduce to their corresponding unconditional

probabilities, as then, for example:

P (A|B) = P (A ∩B)
P(B)

=
P(A)P(B)

P(B)
= P (A)

Suppose that P = {A1, A2, . . . , An} forms a
partition of the sample space −, that is:

A1∪A2∪. . .∪An = −, and Ai∩Aj = ∅ ∀ i W= j.

Then the law of total probability states that

for any B ⊂ −:
P(B) = P(A1)P(B|A1)+ . . .+P(An)P(B|An)
This may be seen as follows:

P(A1)P (B|A1) + . . .+ P(An)P(B|An)
(Def)
= P(A1)

P (B ∩A1)
P(A1)

+ . . .+ P (An)
P (B ∩An)
P(An)

(P3)
= P((B ∩A1) ∪ . . . ∪ (B ∩An))
=P(B ∩ (A1 ∪ . . . ∪An))

(Def)
= P(B ∩−) = P(B)



Information Structure

Time varying partitions are a convenient tool

to describe how we learn more about the out-

come of an experiment over time. The parti-

tion Pt at time point t splits then the sample
space − according to the outcomes that are

still possible given the information gathered

so far.

Example 1

Suppose a stock price St starts at S0 = 100

and may in the next two periods t = 1,2, ei-

ther fall or rise by 50 currency units. Denote

for convenience:

ω1 = {S0 = 100, S1 = 50, S2 = 0}
ω2 = {S0 = 100, S1 = 50, S2 = 100}
ω3 = {S0 = 100, S1 = 150, S2 = 100}
ω4 = {S0 = 100, S1 = 150, S2 = 200}

The sample space is then−= {ω1,ω2,ω3,ω4}.



As an information tree the structure is

t = 0 t = 1 t = 2

S0 = 100
© ©

© ©
© ©

©* S1 = 150
³ ³

³ ³
³ ³

³1 S2 = 200 ω4
P P P P P P Pq

S2 = 100 ω3
H H H H H H Hj S1 = 50 ³ ³

³ ³
³ ³

³1 S2 = 100 ω2
P P P P P P Pq S2 = 0 ω1

Our information at each time point t = 1,2

is re°ected by the partitions:

P0 = {S0 = 100}= {ω1,ω2,ω3,ω4}= −
P1 = {{S1 = 50}, {S1 = 150}}= {{ω1,ω2}, {ω3,ω4}}
P2 = {{ω1}, {ω2}, {ω3}, {ω4}}

Note that the partition at each time point

is obtained as a further subdivision of the

preceeding partition. This must be so for a

consistent description of a learning process.



For suppose that some subset of the partition

would increase over time. Then, depending

upon wheter such an increased subset is con-

sistent with the corresponding state of the

experiment, this would correspond to either

forgetting a part of the history or even an

inconsistent description of the experiment.

Example 1(continued)

Consider: P I2 = {{ω1}, {ω2,ω3}, {ω4}}.
This would enable us to correctly infer the

possible end values S2 = 0, S2 = 100, and

S2 = 200. But with knowledge of the par-

tition alone (that is without checking the in-

dividual elements inside its subsets) we could

not tell whether the ¯nal state S2 = 100 has

been obtained via S1 = 50 or via S1 = 150.

Consider now: P II2 = {{ω1,ω4}, {ω2}, {ω3}}.
This is obviously an inconsistent description

of the experiment, because based upon the

outcome of S1 we can already rule out one of



the states ω1 and ω4, and in this case we can

even seperate them based upon the value of

S2, since S2({ω1}) = 0 and S2({ω4}) = 200.

If the conditional probabilities given the events

in the preceeding partition are known, we

may use the law of total probability in or-

der to obtain the (unconditional) probability

of an event at each time step.

Example 1(continued)

Suppose the stock price St is equally likely to

rise or to fall at each time step, that is:

P({S1 = 50}|{S0 = 100})
=P({S1 = 150}|{S0 = 100})
=P({S2 = 0}|{S1 = 50}) = . . . =

1

2



Then, by the law of total probability:

P ({S1 = 50})
=P ({S1 = 50}|{S0 = 100})P ({S0 = 100})
=
1

2
· 1 = 1

2
,

P ({S1 = 150})
=P ({S1 = 150}|{S0 = 100})P({S0 = 100})
=
1

2
· 1 = 1

2
,

P ({S2 = 0})
=P ({S2 = 0}|{S1 = 50})P ({S1 = 50})
+P ({S2 = 0}|{S1 = 150})P({S1 = 150})
=
1

2
· 1
2
+ 0 · 1

2
=
1

4
,

P ({S2 = 100})
=P ({S2 = 100}|{S1 = 50})P ({S1 = 50})
+P ({S2 = 100}|{S1 = 150})P({S1 = 150})
=
1

2
· 1
2
+
1

2
· 1
2
=
1

2
,

P ({S2 = 200}) = P ({S2 = 0}) = 1

4
.



Note that to every partition there exists a

unique algebra consisting of all unions of its

sets and their complements. We say then

that a partition P generates the algebra F.
Conversely, we may obtain the generating

partition of F as the collection of the smallest

nonempty sets in F, that is for ¯nite spaces:
P = {A ∈ F : A W= ∅, A∩B = A or ∅ ∀B ∈ F}

Example 1(continued)

The algebras generated by the partitions P0,
P1, and P2 are:
F0 = {∅,−},
F1 = {∅, {ω1,ω2}, {ω3,ω4},−},
F2 = {∅, {ω1}, {ω2,ω3,ω4}, {ω2}, {ω1,ω3,ω4},

{ω3}, {ω1,ω2,ω4}, {ω4}, {ω1,ω2,ω3},
{ω1,ω2}, {ω3,ω4}, {ω1,ω3}, {ω2,ω4}
{ω2,ω3}, {ω1,ω4},−}

Note in the above example that every set

contained in an algebra Ft is also contained



in the following algebra Ft+1, since each par-
tition Pt has been obtained by a further sub-
division of the preceeding partition Pt−1. So
each algebra is a subset of the following al-

gebra (written as Ft−1 ⊂ Ft).

A sequence of algebras IF = {Ft : t = 0,1, . . . T}
having the property Ft−1 ⊂ Ft for all t =
0,1, . . . T is called a ¯ltration. Obviously, ¯l-

trations are good candidates for describing

the learning process of investors regarding

the evolution of security prices over time.



Random Variables

A random variable X is often loosely de¯ned

as any function from the sample space − to

the real line IR (X : − → IR). However, if

we wish to associate probabilities with the

values of a random variable, say P(X = x) :=

P({X = x}), we must ¯rst make sure that the
event {X = x} is actually contained in some
algebra F for all values x the random variable

X may attain.

For that reason we de¯ne a random variable

X on the probability space (−,F , P) as an
invertible function X : − → IR with the im-

portant property that it is measurable with

respect to algebra F (for short F-measurable,
denoted as X ∈ F), that is:

{ω ∈ − : X(ω) = x} ∈ F , for all x ∈ IR.

This means that whichever value x the ran-

dom variable X attains, the corresponding



event ω giving rise to this value through the

transformation X(w) = x, is contained in the

algebra F; thereby allowing us to perform all

the set operations we need in order to have

a well de¯ned probability.

We may then de¯ne an induced probability

for any range of values X I ⊂ IR the random

variable may obtain as:

P (X ∈ X I) := P({ω ∈ − : X(ω) ∈ X I}.

Example 1(continued)

The stock prices St, t = 0,1,2 may all be

regarded as random variables with induced

probabilities:

P (S0 = 100) = P({S0 = 100}) = 1

P (S1 = 50) = P ({S1 = 50}) = 1

2
. . .and so on.



The probability density fX(x) denotes the prob-
ability P (X = x) for discrete random variables
(that is, for r.v.'s attaining only a count-
able number of values), while for continuous
random variables (that is, continuous func-
tions X : −→ IR), it denotes the limit

fX(x) = lim
h→0

P (X < x+ h)− P(X ≤ x− h) = dFX(x)

dx
,

where FX(x) := P(X ≤ x) denotes the
cumulative distribution function of X.

The expected value of X, denoted µX = E(X),

is de¯ned as

µX =

⎧⎨⎩
$∞−∞ xfX(x) dx for X continous,�
x:X(ω)=x xP(X = x) for X discrete.

The expected value has the following prop-

erties:

E(c) = c, if c is a constant,(E1)

E(aX + bY ) = aE(X) + bE(Y ),(E2)

if a, b are constants and X,Y

are random variables.



Two discrete random variables X and Y are

called independent if for all x, y ∈ IR:
P({X = x}∩{Y = y}) = P ({X = x}P ({Y = y})
In that case we have additionally:

(E3) E(XY ) = E(X)E(Y ) for X,Y indep.

The variance of X is de¯ned as

σ2X = V(X) := E(X − µX)2

It has the following properties:

V(X) = E(X2)−E(X)2(V1)

V(c) = 0, if c is a constant(V2)

V(aX + bY ) = . . .(V3)

= a2V(X) + b2V(Y ) + 2abCov(X,Y )

for a, b constants and X,Y r.v.'s

with Covariance

Cov(X,Y ) := E[(X − µX)(Y − µY )]
. . . = E(XY )−E(X)E(Y )



The Set Indicator Function

A particularly easy and useful random vari-

able for our purpose is the indicator function

of set A de¯ned as:

IIA := 1 if ω ∈ A, and 0 otherwise.
It is important for us because we can use it

to describe, to which member of a generating

partition the true state belongs.

The indicator function has the following im-

portant property:

E(IIA) =
3

x:IIA(ω)=x

xP (IIA = x)

= 0 · P(IIA = 0)+ 1 · P(IIA = 1)

= P ({ω ∈ A}) = P (A)



1. Stochastic Processes and Martingales

Stochastic Processes

A sequence of random variables X1,X2, . . . ,XT
de¯ned on the same sample space is called

a stochastic process. In other words, a sto-

chastic process S(t) := S(t,ω) may be de-

¯ned as a real valued function

S(t,ω) : {0,1, . . . , T} ×−→ IR.

Keeping t ¯xed yields the random variable

St(ω) : −→ IR.

Keeping ω ¯xed yields the sample path

Sω(t) : {0,1, . . . , T}→ IR.

A stochastic process S = {S(t) : t = 0,1, . . . , T}
is said to be adapted to the ¯ltration IF =

{Ft : t = 0,1, . . . , T}, if the random vari-

able St(ω) is Ft-measurable for every t =

0,1, . . . , T .



Example 1(continued)

The sequence of stock prices S0, S1, S2 may

be regarded as realizations of a stochastic

process S = {S(t) : t = 0,1,2}. S is adapted

to the ¯ltration IF = {F0,F1,F2}, since all
stock prices S0, S1, S2 are measurable with

respect to their corresponding algebras, for

example S1:

{ω ∈ − : S1(ω) = 50}= {ω1,ω2} ∈ F1
{ω ∈ − : S1(ω) = 150}= {ω3,ω4} ∈ F1

Note, that because F0 ⊂ F1 ⊂ F2, S1 is

also F2-measurable, but not F0-measurable.
That is

{{ω1,ω2}, {ω3,ω4}} ⊂ F2, but
{{ω1,ω2}, {ω3,ω4}} F0,

because when we get to know S1 at time

point t = 1, then we know it still at t = 2,

but do not know it yet at t = 0. This is

why we may call a stochstic process, which

is adapted to IF = {Ft}, observable with re-
spect to information set Ft or {Ft}.



Conditional Expectations

In analogy to the unconditional expectation

as the sum

E(X) =
3

x:X(ω)=x

xP(X = x)

we may de¯ne the conditional expectation of

X given the event A (in the discrete case)

as:

E(X|A) = 3
x:X(ω)=x

xP(X = x|A)

As discussed earlier, conditional probabilities

may be regarded as ordinary probabilities on

the reduced sample space consisting of the

event which it is conditioned upon. This im-

plies, that the conditional expectation E(X|A)
may be regarded as an ordinary expectation

on the reduced sample space A.



In particular, it has the properties (E1) and

(E2) of an ordinary expected value:

E(c|A) = c, if c is a constant,(E1)

E(aX + bY |A) = aE(X|A) + bE(Y |A),(E2)

if a, b are constants and X,Y

are random variables.

As a special case we may choose the expecta-

tion of a random variable X conditional upon

the event that another random variable Y at-

tains a certain value y, that is:

E(X|{Y = y}) = 3
x:X(ω)=x

xP(X = x|{Y = y})

Doing this for all values y which the random

variable Y may attain, we may extend the de-

¯nition of the conditional expectation of X

given the event {Y = y} to the conditional

expectation of X given the random variable Y

as

E(X|Y )(ω) := E(X|{Y (ω) = y}), ∀y : Y (ω) = y



Note that conditioning on a random vari-

able rather than on a single event implies

that E(X|Y )(ω) (or E(X|Y ), for short), un-
like E(X|A), is a random variable itself, as it

depends on ω just like Y (ω) does. This im-

plies that the induced probability of E(X|Y )
is

P(E(X|Y )(ω)) = P(Y = y), ∀y : Y (ω) = y

In our attempt to model stock prices and

what investors think about them, it is of

particular interest to calculate the expected

value of a stock price given its own history,

that is conditional upon the particular set

of the generating partition Pt, that we ex-
perience at the moment. In other words,

denoting the sets of the generating parti-

tion Pt as At,1, . . . , At,n and the correspond-
ing indicator functions IIAt,1, . . . , IIAt,n we are

interested in conditional expectation of the

type E(X|IIAt,i) = E(X|At,i) if At,i is the true
state.



We may do this simulstaneously for all sets

At,i, i = 1, . . . n of the generating partition Pt
by introducing a random variable

It := i, i = 1, . . . n, for IIAt,i = 1

and de¯ning the conditional expectation of

X given information set Ft as
Et(X)(ω) = E(X|Ft)(ω) := E(X|It)(ω),

where It has been de¯ned above and Ft is
the algebra generated by Pt.

The de¯nition above for discrete random vari-

ables can be shown to be consistent with the

following general de¯nition of E(X|Ft) as the
unique random variable satisfying:

a) E(X|Ft) ∈ Ft, (Et(X) is Ft-measurable)
b) E(E(X|Ft)IIAt) = E(XIIAt), ∀At ∈ Ft.

Example 1(continued)

We shall now calculate the probability distri-

butions of E(S2|Fi)(ω) for i = 0,1,2.



The only partitioning set of F0 is −= {ω1,ω2,ω3,ω4}.
Therefore:

E(S2|F0) = E(S2|−) =
3
x
xP ({S2(ω) = x}|−)

=
3
x
x
P({S2(ω) = x} ∩−)

P (−)
=
3
x
x
P({S2(ω) = x})

1

=
3
x
xP(S2 = x) = E(S2) = 0 · 1

4
+ 100 · 1

2
+ 200 · 1

4

=100,

P(E(S2|−)) = P(−) = 1.

P1 = {{ω1,ω2}, {ω3,ω4}}, therefore:
E(S2|{ω1,ω2}) = E(S2|S1 = 50)

=0 · P(S2 = 0|S1 = 50) + 100 · P(S2 = 100|S1 = 50)

=0 · 1
2
+ 100 · 1

2
= 50,

P(E(S2|{ω1,ω2})) = P ({ω1,ω2}) = P (S1 = 50) =
1

2
.

Similarly:

E(S2|S1 = 150) = 150, P (E(S2|S1 = 150)) =
1

2
.



For calculating the probability distributions

of E(S2|F2)(ω), note that for i = 1,2,3,4:

E(S2|ωi) = xP ({S2(ωi) = x}|ωi)
=S2(ωi)P (ωi|ωi) = S2(ωi),

and:

P (E(S2|ωi)) = P(ωi) =
1

2
· 1
2
=
1

4
.

Therefore:

E(S2|{ω1}) = 0, P (E(S2|{ω1}) =
1

4
;

E(S2|{ω2}) = 100, P (E(S2|{ω2}) =
1

4
;

E(S2|{ω3}) = 100, P (E(S2|{ω3}) =
1

4
;

E(S2|{ω4}) = 200, P(E(S2|{ω4}) =
1

4
.

We may deduce from the example above,

that the conditional expectation with respect

to the samllest possible algebra F0 = {∅,−}
always equals the unconditional expectation,

that is E0(St) = E(St).



Furthermore we deduce that the conditional

expectation with respect to the largest possi-

ble algebra at endpoint T equals the random

variable itself, that is ET(ST) = ST .

Finally, it appears from the example above,

that it doesn't matter whether we forecast

S2 directly by calculating it its expected value

E0(S2) = E(S2), or whether we try to fore-

cast it indirectly by forecasting its conditional

expectation at t = 1, since:

E0(E1(S2)) =
1

2
·50+1

2
·150 = 100 = E0(S2).

This result holds in general, since by the law

of total probability we have that:



E0(X) = E(X) =
3

x:X(ω)=x

xP (X = x)

=
3

x:X(ω)=x

x

⎛⎝ n3
i=1

P (X = x|It = i)P(It = i)

⎞⎠
=
3
i

X3
x
xP (X = x|It = i)

~
· P (It = i)

=
3
i

E(X|It = i) · P(It = i)

= E(E(X|It)) = E0(Et(X))

This result may be generalized further by re-

calling that a conditional expectation given

some event A may be always thought of as

an unconditional expectation with A repre-

senting the whole sample space. Reverting

this logic, we may then regard the uncon-

ditional expectation in some sample space −

as a conditional expectation in an even larger

sample space −I (such that − ⊂ −I), given
the event −. In other words, we may gener-

alize the result obtained above:

E(X) = E(X|F0) = E(E(X|Ft)|F0) = E0(Et(X))



for F0 ⊂ F1 into:
E1(X) = E(X|F1) = E(E(X|F2)|F1) = E1(E2(X)).

for F1 ⊂ F2. This important result is called
law of iterated expectations. It can be shown,

that the order of indexes in the iterated con-

ditional expectation does not matter, that is:

E(E(X|F1)|F2) = E(E(X|F2)|F1) = E(X|F1)

Example 1(continued)

We verify the law of iterated expectations for

S2 conditional on F1 and F2:
E(E(S2|F1)|F2) = E(E(S2|F2)|F1) = E(S2|F1)

The probability distribution of E(S2|F1) has
already been calculated above as:

E(S2|F1)(ω) 50 150

P (E(S2|F1)) 1/2 1/2



Let us now calculate the probability distribu-

tion of E(E(S2|F2)|F1):
E(E(S2|F2)|{ω1,ω2})

=0 · P(S2 = 0|S1 = 50) + 100 · P(S2 = 100|S1 = 50)

=0 · 1
2
+ 100 · 1

2
= 50, and similarly:

E(E(S2|F2)|{ω3,ω4}) = 100 · 1
2
+ 200 · 1

2
= 150

The probability distribution of E(E(S2|F2)|F1)
is therefore:

E(E(S2|F2)|F1)(ω) 50 150

P (E(E(S2|F2)|F1)) 1/2 1/2

For calculating the probability distribution of

E(E(S2|F1)|F2)(ω), note that for any B ⊂ A:

P(A|B) = P(A ∩B)
P (B)

=
P (B)

P (B)
= 1



We have therefore:

E(E(S2|F1)|{ω1}) = 50 · P ({ω1,ω2}|{ω1}) = 50

E(E(S2|F1)|{ω2}) = 50 · P ({ω1,ω2}|{ω2}) = 50

E(E(S2|F1)|{ω3}) = 150 · P({ω3,ω4}|{ω3}) = 150

E(E(S2|F1)|{ω4}) = 150 · P({ω3,ω4}|{ω4}) = 150

all with probability P({ωi}) = 1
4, such that:

E(E(S2|F1)|F2)(ω) 50 150

P (E(E(S2|F1)|F2)) 1/2 1/2



Other properties of E(X|Ft)

The following properties of the conditional

expectation with respect to an algebra Ft
ensure that we may take random variables

out of the conditional expectation, if they

are known at time t (that is Ft-measurable).

Speci¯cally, let X1,X2 and Y1, Y2 be random

variables, of which X1 and X2 are Ft-measurable,
that is known at time t. We have then:

E(X1Y1+X2Y2|Ft) = X1E(Y1|Ft)+X2E(Y2|Ft)
Furthermore, if X ∈ Ft, then E(X|Ft) = X.

Finally, if X is independent of X, that is:

P({X = x}|Ft) = P (X = x)∀x ∈ IR, Ft ∈ Ft,
then: E(X|Ft) = E(X).

This means that we may replace the con-

ditional with the unconditional expectation,

if X is unrelated to the information structure

generated by the ¯ltration IF = {F0,F1, . . .FT}.



Martingales

Let S = {S(t) : t = 0,1, . . . , T} be a stochas-
tic process with sample space − and prob-

ability measure P , adapted to the ¯ltration

IF = {Ft : t = 0,1, . . . , T}.

Then S is called a:

{martingale if E(Sω(t+1)|Ft) = Sω(t),

{supermartingale if E(Sω(t+1)|Ft) ≤ Sω(t),
{submartingale if E(Sω(t+1)|Ft) ≥ Sω(t),
for all ω ∈ − and for all t < T .

Note that if S is a martingale: Et(St+1) = St,

we have by the law of iterated expectations:

St−1 = Et−1(St) = Et−1(Et(St+1)) = Et−1(St+1)

Therefore, by applying this procedure s times:

E(Sω(t+ s)|Ft) = Sω(t) for all s ≥ 0, ω ∈ −
That is, the current value of a martingale is

the best forecast of all future values.



Similarly we have for supermartingales

E(Sω(t+ s)|Ft) ≤ Sω(t) for all s ≥ 0, ω ∈ −,
and for submartingales

E(Sω(t+ s)|Ft) ≥ Sω(t) for all s ≥ 0, ω ∈ −.

Inserting the de¯nition of a martingale into

the unconditional expectation and applying

the law of iterated expectations yields:

E(St) = E(Et−1(St)) = E(St−1) = . . . = E(S0)) = S0,

so a martingale is \constant on average".

Similarly we obtain for supermartingales

E(St) = E(Et−1(St)) ≤ E(St−1) = . . . ≤ E(S0) = S0,

and for submartingales

E(St) = E(Et−1(St)) ≥ E(St−1) = . . . ≥ E(S0) = S0.

So supermartingales \decline on average "and

submartingales \increase on average ".



If S is a martingale, then the conditional ex-

pectation of the martingale di®erence,

∆St+1 := S(t+1)− S(t), is zero, because:
Et(∆St+1) = Et(St+1)−Et(St) = St − St = 0

Example 1(continued)

S = {S(t) : t = 0,1,2} is a martingale, since:

E0(S1) =
1

2
· 50+ 1

2
· 150 = 100 = S0, and

E1(S2|S1 = 50) =
1

2
· 0+ 1

2
· 100 = 50 = S1,

E1(S2|S1 = 150) =
1

2
· 100+ 1

2
· 200 = 150 = S1.

Accordingly: E(S0) = E(S1) = E(S2) = 100.

Example 2

The driftless random walk,

St = St−1 + 6t, Et(6t+1) = 0 ∀ω ∈ −, t > 0



is a martingale, because:

Et(St+1) = Et(St) +Et(6t+1) = St.

Example 3

The random walk with drift,

St = µ+St−1+6t, Et(6t+1) = 0 ∀ω ∈ −, t > 0
is a submartingale (respectively supermartin-

gale) for µ ≥ 0 (respectively µ ≤ 0):
Et(St+1) = µ+ St St, for µ 0.

Example 4

If S = {S(t) : t = 0,1, . . . , T} is adapted

to the ¯ltration IF = {Ft : t = 0,1, . . . , T},
then the stochastic process de¯ned by the

sequence of conditional expectations Mt :=

E(ST |Ft) = Et(ST ) is a martingale, beause

by the law of iterated expectations:

Et(Mt+1) = EtEt+1(ST) = Et(ST) =Mt.



Note the dependence of the martingale prop-

erty upon the probability measure P in the

probability spaces (−,Ft, P ), t = 0,1, . . . T .

This will be illustrated in the following:

Example 5

Let St =

⎧⎨⎩St−1 + 1 with probability p;

St−1 − 1 with probability (1− p).

⇒ Et(St+1) = (St+1) · p+ (St − 1) · (1− p)
= St · (p+1− p) + 1 · p− 1 · (1− p)
= St+ (2p− 1)

So St will be a martingale for p= 1/2, a sub-

martingale for p ≥ 1/2, and a supermartin-

gale for p ≤ 1/2.



Continuous-Time Martingales

The concept of a martingale may be extended

into continuous time as follows:

Let F be a σ-algebra and {It ⊂ F , t ≥ 0}
a continuous time ¯ltration, that is an in-

creasing family of sub-sigma-¯elds It ⊂ It+h,
for all t ≥ 0, h > 0. A stochastic process

{St, t ≥ 0} is a martingale with respect to

the family of information sets It and proba-
bility measure P , if for all t > 0,

St is It-adapted (known, given It),(M1)

E(|St|) <∞ (forecasts are ¯nite),(M2)

Et(St+u) := E(St+u|It) = St ∀u > 0(M3)

(latest observation is best forecast

of all future observations);

where all expectations are assumed to be

taken with respect to the probability mea-

sure P .



Super- and submartingales are analogously

de¯ned by replacing (M3) with the condi-

tion Et(St+u) ≤ St for supermartingales and

Et(St+u) ≥ St for submartingales.

We have then for martingale di®erences, like

in the discrete case (¢St+u := St+u − St):
Et(¢St+u) = Et(St+u)−Et(St) = St−St = 0,

that is, future changes in St are unpredictable.

Example 6

We shall soon introduce (generalized) Brown-

ian motion as a continuous time process, start-

ing at 0, with normally distributed and uncor-

related increments, that is X0 = 0,

∆Xt := Xt −Xt−∆t ∼ N(µ∆t,σ2∆t) ∀t,∆t,

and E[(∆Xu−µ∆t)(∆Xs−µ∆t)] = 0 ∀∆t, u W= s.

We have then:



Xt is known at time t (It-adapted). (M1)
E(|Xt|) = µt <∞ for any ¯nite t. (M2)

Et(Xt+u) = Et(Xt+ (Xt+u −Xt))(M3)

= Et(Xt) +Et(¢Xt+u)

= Xt+ µu, for all u > 0.

So Xt is a martingale for µ = 0 and a sub/

(super)-martingale for µ ≥ 0 (µ ≤ 0).

Note that even when µ W= 0, it is easy to

transform Xt into a martingale by subtracting

the deterministic function µt, that is after

de¯ning a new process Zt := Xt − µt we get:
Et(Zt+u) = Et(Xt+u − µ(t+ u))

= Et(Xt+u)− µ(t+ u)

= Xt+ µu− µt− µu
= Xt − µt = Zt



Doop-Meyer Decomposition

The above example was our ¯rst illustration

of the Doop-Meyer Decomposition, that is

the decomposition of a submartingale (for

µ > 0) into a deterministic trend and a mar-

tingale component.

In order to understand the conditions under

which this can be done, we need to shortly

discuss the properties of the sample paths

(trajectories) Sω(t) of a stochastic process

S.

We say that a martingale St is continuous,

if its increments ∆St := St+u − St satisfy for
u→ 0:

P(∆St > 6)→ 0, for all 6 > 0,

meaning that its sample paths Sω(t) are con-

tinuous (with probability one).

If the martingale contains jumps which are

not too concentrated, then it may still be



written as a right-continuous martingale, that

is a martingale whose increments ∆St obey

the same condition

P(∆St > 6)→ 0, for all 6 > 0,

where the limiting sequence u→ 0 is con¯ned

to u > 0 (also written as u ↓ 0 or u → 0+),

that is, the sample paths are continuous from

the right, but not necessarily from the left.

So every continuous martingale is obviously

also right-continuous, whereas the converse

does not hold.

We are now in the position to state a set

of su±cient conditions under which we may

split up a submartingale into a deterministic

trend and a martingale component as follows:

Theorem. Let Xt be a right-continuous submartingale
w.r.t ¯ltration {It}, and E[Xt] < ∞ for all t, then Xt

admits the decomposition

Xt =Mt+At,

where Mt is a right-continuous martingale and At is
an increasing It-measurable process.



Note that the theorem stated above implies

that every discrete process X Iti ∈ {Iti} with
E(X Iti) <∞may be decomposed into a deter-

ministic trend and a martingale component,

since it may always be regarded as a con-

tinuous process that remains constant until

immediately before the next timestep, that

is:

X(ti+ ui) = X Iti, for ti ≤ ti+ ui < ti+1.

Example 5 (continued)

Let St =

⎧⎨⎩St−1 + 1 with probability p;

St−1 − 1 with probability (1− p).
Earlier we found that

Et(¢St+1) = Et(St+1 − St) = 2p− 1.

⇒ Et(¢St+u) = Et(St+u − St) = Et

⎛⎝ t+u3
tI=t+1

¢StI+1

⎞⎠
=

t+u3
tI=t+1

Et(¢StI+1) =

t+u3
tI=t+1

(2p− 1) = (2p− 1)u



Therefore: Et(St+u) = St+ (2p− 1)u.

De¯ne a new process: Zt := St+ (1− 2p)t
⇒ Et(Zt+u) = Et(St+u+ (1− 2p)(t+ u))

= Et(St+u) + (1− 2p)(t+ u)

= St+ (2p− 1)u+ (1− 2p)t+ (1− 2p)u
= St+ (1− 2p)t = Zt

Example 7

Assume generalized Brownian motion with-

out drift, implying:

¢Xt+u := Xt+u −Xt ∼ N(0,σ2u) ∀ t, u ≥ 0
and consider the squared process St := X2t .

Et(¢St+u) = Et(X
2
t+u −X2

t ) = Et((Xt+¢Xt+u)
2 −X2

t )

= Et(X
2
t +2Xt¢Xt+u+ (¢Xt+u)

2 −X2
t )

= 2XtEt(¢Xt+u) +Et(¢X
2
t+u) = σ2u W= 0

De¯ne a detrended process: Zt := St − σ2t
⇒ Et(Zt+u) = Et(St+u − σ2(t+ u))

= Et(St+¢St+u − σ2t− σ2u)
= St+ σ2u− σ2t− σ2u= Zt.



2. Modelling Randomness in Asset Prices

Suppose a stock price S(t ∈ [0, T ]) is ob-

served at n equidistant time points 0 = t0 <

t1 < . . . < tn = T of length h = T/n, that is

tk − tk−1 = h, k = 1, ..., n, such that Sk :=

S(tk) = S(kh).

Denote the price innovation ∆Wk as the un-

predictable component of the price change

∆Sk = S(kh)− S((k − 1)h) that is:
∆Wk := (Sk − Sk−1)− Ek−1(Sk − Sk−1),

where Ek−1(·) denotes the conditional expec-
tation with respect to information set Ik−1.

Note the following properties of ∆Wk:

1. ∆Wk is unpredictable given Ik−1, because:

Ek−1(∆Wk) = Ek−1(Sk − Sk−1)−Ek−1(Sk − Sk−1)
= 0,



2. ∆Wk is a martingale di®erence, that is the accu-

mulated innovation process Wk :=
�k

i=1∆Wi is a
martingale:

Ek−1(Wk) = Ek−1(∆W1 + . . .+∆Wk−1 +∆Wk)

= Ek−1(∆W1 + . . .+∆Wk−1) +Ek−1(∆Wk)

= ∆W1 + . . .+∆Wk−1 + 0 =Wk−1.

3. As a consequence, price innovations are uncorrelated:

Cov(∆Wi,∆Wi+j) = E(∆Wi∆Wi+j)−E(∆Wi)E(∆Wi+j)

=EEi+j−1(∆Wi∆Wi+j) = E(∆WiEi+j−1(∆Wi+j))

=E(∆Wi · 0) = 0

The variance Vk of the price innovations ∆Wk

is Vk := E(∆W2
k ), because E(∆Wk) = 0.

The variance of the accumulated innovation

process Wk =
�k
i=1∆Wi at time tk = kh is

V := V

⎛⎝ k3
i=1

∆Wi

⎞⎠= k3
i=1

V(∆Wi) =
k3
i=1

Vi,

because the increments of ∆Wi are uncorre-

lated (see (V3)).

Merton(1990) showed that Vk is proportional

to h under the following mild assumptions:



(A1): V > A1 > 0 with A1 independent of n,

meaning that there will always be some vari-

ation or randomness involved, no matter at

how small intervals we observe the price process

(volatility is bounded from below by A1).

(A2): V < A2 <∞ with A2 independent of n,

meaning that observing the price process more

and more often does not increase volatility

to such an extend that it becomes in¯nitely

large (volatility is bounded from above by

A2).

(A3): Vk > A3 · Vmax, 0 < A3 < 1, and
Vmax =max{V1, . . . ,Vn} indep. of n,

meaning that volatility is not concentrated in

such a way that any of the subintervals would

be left without volatility.

Under these mild assumptions, the variance

Vk of the price innovations ∆Wk will be pro-

portional to the length of the observation in-

terval h, where the constant of proportional-

ity may depend upon the subinterval k, that

is, Vk = E(∆W2
k ) = σ2kh, which we now show:



Combining (A2) and (A3) yields:

A2
(A2)
> V

(Def)
=

n3
k=1

Vk
(A3)
> nA3Vmax

(Def)
> nA3Vk

⇒ Vk <
A2
nA3

=
A2h

A3T
,

that is Vk is bounded from above by a line

proportional to h.

On the other hand, we know from (A1):

nVmax
(Def)
> V

(Def)
=

n3
k=1

Vk
(A1)
> A1 ⇒ Vmax >

A1
n

This may be combined with (A3) as follows:

Vk > A3 · Vmax ⇒ Vk >
A3A1
n

=
A3A1
T

· h
So Vk is also bounded from below by a line

proportional to h, that is:

A3A1
T

· h < Vk <
A2
A3T

· h.

This implies that for each k we can ¯nd a

constant σ2k ∈
�
A3A1
T , A2A3T

=
, such that:

Vk = E(∆W2
k ) = σ2kh.



The Wiener Process

We saw in Example 2, that the symmetric

random walk St = St−1 + 6t, Et(6t) = 0

is a martingale. We can extend this into

a continuous-time process with the required

properties of price innovations as follows.

Suppose that accumulated price changes

W(t ∈ [0, T ]), to be observed at n equidistant
time points 0 = t0 < t1 < . . . < tn = T ,

of length h = T/n (that is, tk − tk−1 = h,

k = 1, . . . , n), are modelled as the sum of k

independent price innovations ∆Wi, that is,

Wk :=W(tk) =W(kh) =
k3
i=1

∆Wi,

where each of the price innovations ∆Wi has

the following probability distribution,

∆Wi = ±
√
h with probability

1

2
.



The expected value and variance of the price
innovations are:

E(∆Wi) =
1

2
·
√
h+

1

2
· (−
√
h) = 0,

V(∆Wi) = E(∆Wi
2) =

(
√
h)2

2
+
(−√h)2

2
= h.

The expected value and variance of the ac-
cumulated price innovations at time tk are
then:

E(W(tk)) =
k3
i=1

E(∆Wi) = 0,

V(W(tk)) =
k3
i=1

V(∆Wi) = kh.

Now, in order to obtain a process that is con-
tinuous in time, divide each interval into ¯ner
and ¯ner subintervals, that is, let h → 0, or
n→∞ for the whole time span T .

We have then, by virtue of the central limit
theorem:

W(T) =
n3
i=1

∆Wi
d−→ N(0, nh) = N(0, T)



where
d−→ denotes convergence in distribu-

tion for n → ∞, also called weak conver-

gence.

Since we could have used any time interval

[t1, t2] ⊂ [0, T ] to apply the same procedure,
we have also that:

W(t2)−W(t1)
d−→ N(0, t2−t1), 0 ≤ t1 ≤ t2 ≤ T.

To summarize, we have constructed a process

with the following properties:

(B1): W(0) = 0,

(B2): W(t) is continuous,

(B3): Increments of W(t) are independent,

that is, if 0 ≤ t0 < . . . < tn, then W(t1) −
W(t0), . . . ,W(tn)−W(tn−1) are independent;
(B4): If 0 ≤ t1 ≤ t2,
then: W(t2)−W(t1) ∼ N(0, t2 − t1).

A stochastic process with properties (B1){

(B4) is called (standard) Brownian motion.



(Standard) Brownian motion turns out to be

equivalent to the following de¯nition of a

Wiener process.

A Wiener process Wt relative to a family of

information sets {It} (¯ltration) is a stochas-
tic process satisfying:

(W1): W0 = 0,

(W2): Wt is continuous,

(W3): Wt is adapted to the ¯ltration {It},
(W4): For s ≤ t, Wt−Ws is independent of Is,
with E(Wt−Ws) = 0 and V(Wt−Ws) = t− s.

Note that although the de¯nition of a Wiener

process makes no explicit statement about

the distribution of its increments Wt−Ws, we

know that they are normally distributed with

mean 0 and variance t − s from the equiv-

alence of Brownian motion and the Wiener

process. In the following we shall use the

terms Brownian motion and Wiener process

interchangeably.



The Wiener process Wt has the following im-

portant properties:

a) Wt is a martingale w.r.t. ¯ltration {It},
because by application of (W4) for s ≤ t:
Es(Wt −Ws) = E(Wt −Ws) = 0

⇒ Es(Wt) = Es(Ws) =Ws;

b) Wt has independent increments by prop-

erty (B3) of Brownian Motion;

c) E(Wt)
(W1)
= E(Wt −W0)

(W4)
= 0;

d) V(Wt)
(W1)
= V(Wt −W0)

(W4)
= t;

e) Law of iterated logarithms:

lim sup
t→∞

Wt�
2t ln(ln t)

= 1



means that for su±ciently large t:

Wt ≤
�
2t ln(ln t);

f)

lim
t→∞Wt/t = 0

(follows from law of iterated logarithms);

g) Wt
2 − t is an It martingale

(shown in Example 7);

h) Geometric Brownian Motion:

exp{σWt − (σ2/2)t} is an It martingale
(Exercise).

i) Generalized Brownian Motion:

µt+ σWt ∼ N(µt,σ2t), because:

E(µt+ σWt)
(E1,E2)
= µt+ σE(Wt)

c)
= µt,

V(µt+ σWt)
(V2,V3)
= σ2V(Wt)

d)
= σ2t.



Note that this implies also µ¢t+σ¢Wt ∼
N(µ¢t,σ2¢t) with ¢Wt := Wt+¢t −Wt,
because:

µ¢t+ σ¢Wt = µ(t+¢t) + σWt+¢t − (µt+ σWt)

and

µ(t+¢t) + σWt+¢t ∼ N(µ(t+¢t),σ2(t+¢t)).

Therefore by independence (B3),(W4):

µ¢t+σ¢Wt ∼ N(µ(t+¢t)−µt,σ2(t+¢t)−σ2t)

j) Scaling Property of Brownian Motion:

tI = at =⇒ WtI ∼
√
aWt

This may be seen as follows:

Wt ∼ N(0, t) ⇒ WtI=at ∼ N(0, at)
But we have also by application of i):

√
aWt ∼ N(0, at)

Therefore:

WtI=at ∼
√
aWt



Jump Processes

In constructing Brownian motion from the

random walk we achieved the required pro-

portionality of the innovations variance to the

observation interval h, i.e. V(∆Wi) = h, by

choosing the increments ∆Wi as continuous

functions of h (∆Wi = ±√h) with constant

probabilities p= ±1/2.

Choosing ∆Wi as a continuous function of h

was necessary in order to make the sample

paths of Wt continuous. That is, in order to

get

P(W(t+ h)−W(t) > 6)
h→0−→ 0 ∀6 > 0

we needed ∆Wi→ 0 for h→ 0.

Brownian motion meets this requirement, since

E(|∆Wi|) =
1

2

eee√heee+ 1

2

eee−√heee = √h,
which is a continuous function of h.



Now, if we don't insist on price innovations to

be continuous functions of time, we may also

go the opposite way to generate the required

proportionality of innovation variance to the

length of the observation interval by postu-

lating price innovations of ¯xed size (say 1,

for simplicity), but probability of occurrence

that depends upon the length of the obser-

vation interval. We shall do this below.

The result is a process that allows for dis-

continuities in the sample paths, no matter

how small the length of the observation in-

terval is choosen. Such processes are called

jump processes.



The Poisson Process

Merton(1976) suggested to model stock prices

as a combination of a continuous time process

based upon Brownian motion to describe or-

dinary price movements and a jump process

based upon Poisson processes in order to de-

scribe the impact of extraordinary news (rare

events) upon the stock price. We shall now

discuss the jump component of the process.

A stochastic process {Nt}t≥0 is called a
Poisson process with parameter λ

if it has the following properties:

(Po1): N0 = 0,

(Po2): Increments of Nt are independent,

that is, if 0 ≤ t0 < . . . < tn, then we have
Nt1 −Nt0, . . . , Ntn −Ntn−1 are independent;
(Po3): ∆Nt+h := Nt+h−Nt ∼ Poisson(λh) ∀t, h,
that is:

P(∆Nt+h = k) =
(λh)k

k!
e−λh, k = 0,1, . . .



The Poisson process may be regarded as a

counting process with the random variable

Nt representing the number of events (price

innovations) that occur during the time in-

terval [0, t].

The Poisson process has the following impor-

tant properties:

a) During a small interval h, at most one
event occurs with probability ≈ 1.
To see this, expand P(∆Nt+h = k) in a
Taylor series around h= 0 and keep only
up to linear terms in h:

P(∆Nt+h = 0) =
(λh)0

0!
e−λh = e−λh ≈ 1− λh

P(∆Nt+h = 1) =
(λh)1

1!
e−λh = (λh)e−λh ≈ λh

P (∆Nt+h = (k > 1)) =
(λh)k

k!
e−λh ≈ (λh)

k

k!
≈ 0

b) The information up to time t does not

help to predict the occurence of an event

in the next instance; that is we have that



Et(∆Nt+h) = E(∆Nt+h), because ∆Nt+h
is by (Po2) independent of It, generated
by the outcomes of Nt −N0 = Nt.

c) Events occur at a constant rate λ,

that is: E(∆Nt+h) = λh (exercise).

d) E(Nt) = E(Nt −N0) = E(∆N0+t) = λt.

e) V(∆Nt+h) = λh, that is, the variance in-

creases proportional to the length of the

observation interval h with rate λ (exercise).

f) V(Nt) = V(Nt −N0) = V(∆N0+t) = λt.

Note that Nt is not a martingale, since

Et(Nt+u) = Et(Nt+∆Nt+u) = Nt+ λu W= Nt.



However, the compensated Poisson process

Jt := Nt − λt is a martingale, which may be

seen as follows:

Et(Jt+u) = Et(Nt+∆Nt+u − λ(t+ u))

= Nt+ λu− λt− λu
= Nt − λt = Jt.

Furthermore, V(Jt) = V(Nt) = λt.

That is, ∆Jt+h is a martingale di®erence with

variance proportional to the observation in-

terval h, as we required for reasonable price

innovation processes.



Simulating Price Processes

Recall that we introduced the price innova-

tion ∆Wk as the di®erence between price change

∆Sk = S(kh)−S((k−1)h) and its conditional
expectation at time point (k − 1)h, that is:

∆Wk = ∆Sk−Ek−1(∆Sk), k = 1, . . . , n, n =
T

h
.

Now that we identi¯ed the increments of Brown-

ian motion and compensated Poisson processes

as possible candidates for the innovation terms

∆Wk, we may turn the logic around and sim-

ulate sample paths of the price process St at

any observation interval h we want, given the

particular model we choose for ∆Wk.

Speci¯cally, if we de¯ne ak as the conditional

expected price change per unit time at time

point tk = kh, that is:

ak := Ek−1(S(kh)−S((k−1)h))/h= Ek−1(∆Sk)/h,



we get for the resulting price change ∆Sk:

∆Sk = Ek−1(∆Sk) +∆Wk = akh+∆Wk.

Example 8

Suppose we observe a stock price S at monthly

intervals. The current stock price is S0=100

and we expect it to appreciate within T =12

months to S12 = 220 without any seasonal

patterns (that is a := a1 = . . . = a12):

a=
E(ST)− S0

T
=
220− 100

12
= 10.

Assume furthermore that we expect price in-

novations to be governed by Brownian mo-

tion with an annual variance V(WT) = 48.

The monthly variance is then by indepen-

dence of the increments ∆Wt (B3):

σ2 := V(Wt) = V(WT/12) =
1

12
V(WT ) =

48

12
= 4.



Therefore, we may simulate sample paths for

the stock price as:

∆Sk = at+ σ∆Wk = 10 · t+2 ·∆W(1).

In practice this amounts to starting the process

at S0 = 100 and adding for each month the

expected appreciation a = 10 and 2 times

a N(0,1)-distributed random variable, since

∆W(1) ∼ N(0,1).

The above approach may be generalized to

∆St = a(St, t)∆t+ σ(St, t)∆Wt,

since we may decide for new expected one-

period-returns and volatilities of the price in-

novations both for each price St and at each

time point t.



3. Stochastic Calculus

Motivation

Suppose we want to price a derivative, whose

value F is related to the stock price St through

some relation F = F(St, t). Then, if we could

apply the standard calculus of deterministic

functions, we would relate instant changes

in the value of the derivative dF to instant

changes of the stock price dSt and the pas-

sage of time through the total derivative

dF =
∂F

∂St
dSt+

∂F

∂t
dt.

So we need an in¯nitesimal version of the

approximation ∆St = a∆t+ σ∆Wt, where for

simplicity we have assumed the drift parame-

ter a := a(St, t) and the di®usion parameter

σ := σ(St, t) to be constants. In a deter-

ministic setup the in¯nitesimal version of ∆St
would be dSt = a dt+σ dWt, where dWt would

again be obtained as dWt =
∂Wt
∂t dt.



Di®erentiation in Stochastic Environments

Unfortunately the requirement for the vari-

ance of the innovation process ∆Wk,

V(∆Wk) = E(∆Wk
2) = σk

2h,

implies that the derivative of W(t) does not

exist, even if it is a continuous Wiener process.

In order to see this, try to take the limit

lim
h→0

∆Wt+h

h
= lim

h→0
W(t+ h)−W(t)

h
.

As W(t) is a random process, this requires us

to specify which kind of convergence we are

looking for.

We will take the limit in the sense of mean

square convergence, since it turns out to be

the only limit, with respect to which the in-

tegral of a Wiener process can be de¯ned.



We are thus looking for a process At satisfy-

ing

lim
h→0E

w
∆Wt+h

h
−At

W2
= 0,

where limh→0 now denotes the usual limit of

deterministic calculus.

Now, since

E

w
∆Wt+h

h
−At

W2
=E

^w
∆Wt+h

h

W2�
− 2E

w
∆Wt+h ·At

h

W
+E(At)

2,

this requires among others the existence of

E

^w
∆Wt+h

h

W2�
.

But E(∆Wt+h
2)

h→0−→ σt
2h, such that:

E

^w
∆Wt+h

h

W2�
=
E(∆Wt+h

2)

h2
=

σt
2h

h2
=

σt
2

h

h→0−→ ∞.

So there is no such thing as the derivative of

W(t), even when W(t) is continuous Brown-

ian motion.



Integration in Stochastic Environments

We are still trying to give a meaning to the

stochastic di®erential equation (SDE)

dSt = a(St, t)dt+ σ(St, t)dWt.

So far, it doesn't look good because we have

just learnt that a derivative ∂Wt
∂t cannot be

de¯ned, impeding our attempt to de¯ne dWt.

But recall what total di®erentials like dSt are

meant for. In the end, we are not interested

in the instantaneous change of a stock price

dSt corresponding to some instantaneous ran-

dom event dWt after an in¯nitesimal small

time interval dt. In all practical situations

we will rather be interested in a ¯nite stock

price change ∆St due to the accumulation

of random events ∆Wt during the ¯nite time

interval ∆t.

If dWt could be meaningful de¯ned, we would

calculate ∆St = S(t)− S(t−∆t) as

∆St =
8 t
t−∆t

a(Su, u)du+
8 t
t−∆t

σ(Su, u)dWu.



We shall see in the following that both in-

tegrals on the right hand side can be mean-

ingfully de¯ned in stochastic environments.

This allows for the meaningful interpretation

of stochastic di®erential equations as short-

hand notations for the corresponding integral

equations.



Riemann Integrals on Stochstic Processes

Recall the de¯nition of the Riemann integral

in ordinary calculus:8 b
a
f(t)dt= lim

n→∞
n3
i=1

f(τi)¢ti

(if the limit exists), where ¢ti = ti−ti−1, a=
t0 < t1 < · · · < tn = b and max |ti − ti−1| → 0

as n→∞, and ¯nally ti−1 ≤ τi ≤ ti.

In exactly the same way we can de¯ne path-

wise the Riemann integral on the stochastic

process Xt as:

I =
8 b
a
Xt dt = lim

n→∞
n3
i=1

Xτi¢ti,

provided the limit exists and E(I)2 <∞. This
de¯nition may be used to deal with integrals

of the form 8 t
t−∆t

a(Su, u)du.

Note that the Riemann integral on a stochas-

tic process, unlike the usual Riemann inte-

gral, is a random variable, not a number.



The Ito Integral

We shall now deal with integrals of the form8 t
t−∆t

σ(Su, u)dWu.

Recall for that purpose the de¯nition of the

Riemann-Stieltjes integral: Let f and g be

bounded function on [a, b], then with the no-

tations above the Riemann-Stieltjes integral

of f with respect to g is de¯ned as8 b
a
f(x)dg(x) = lim

n→∞
n3
i=1

f(τi)¢gi

(if the limit exists) with ¢gi = g(ti)−g(ti−1),
max |¢gi|→ 0 as n→∞, and ti−1 ≤ τi ≤ ti.

Note. If g is di®erentiable, then8 b
a
f(t) dg(t) =

8 b
a
f(t)gI(t) dt.

Suppose next that f(t) is a stochastic process

and Wt the Wiener process. Then the sto-

chastic integral of f(t) w.r.t Wt is a random



variable de¯ned as

I =
8 b
a
f(t) dWt = lim

n3
i=1

f(ti−1)¢Wti,

where ¢Wti = Wti −Wti−1, and "lim" is the
limit in quadratic mean, i.e.,

lim
n→∞E

⎡⎣ n3
i=1

f(ti−1)¢Wti − I
⎤⎦2 = 0

Note that this time it makes a di®erence how

τi in f(τi) is selected from the sub-interval

[ti−1, ti]. Here we have selected τi = ti−1,
the lower bound, corresponding to the It¶o in-

tegral to be de¯ned shortly. Di®erent selec-

tions of τi result in di®erent values of the sto-

chastic integral. For example, the Stratonovich

integral, de¯ned as

I1
2
= lim

n3
i=1

1

2

D
f(ti) + f(ti−1)

i
(Wti −Wti−1)

is another stochastic integral with values that

are in general di®erent from those of the It¶o

integral, as we shall see soon.



We are now in a position to de¯ne the It¶o

integral as follows:

Consider the stochastic di®erence equation:

¢Sk = a(Sk−1, k)h+σ(Sk−1, k)¢Wk, k = 1, . . . , n

where ¢Wk =Wk−Wk−1 is a Wiener process

with zero mean and variance h and let

1. σ(St, t) be non-anticipating, that is both

It-adapted and independent of all future in-
crements ¢WtI with t

I > t, and
2. σ(St, t) be non-explosive, that is:

E

^8 T
0
σ(St, t)

2 dt

�
<∞.

Then the It¶o integral

I =
8 T
0
σ(St, t)dWt

is de¯ned as the mean square limit:

lim
n→∞E

⎡⎣ n3
k=1

σ(Sk−1, k)¢Wk − I
⎤⎦2 = 0.



Properties of the Ito Integral

Let L denote the set of It¶o integrable sto-

chastic processes, i.e., if f ∈ L then $ t0 f(u) dWu

exists.

(1) Linearity:

If f, g ∈ L then8 t

0

(af(u)+ bg(u)) dWu = a

8 t

0

f(u)dWu+ b

8 t

0

g(u) dWu,

where a, b ∈ IR are constants.

(2) Addidivity with respect to subintervals:

If 0 ≤ s ≤ t then8 t
0
f(u) dWu =

8 s
0
f(u) dWu+

8 t
s
f(u) dWu

The following properties of the It¶o integral

require use of the fact that E(In− I)2 n→∞−→ 0

implies F(In)
n→∞−→ F(I) which again implies

E(Inp)
n→∞−→ E(Ip) for any p= 1,2, . . ..



(3) Zero mean: E
�$ t
0 f(u) dWu

=
= 0.

To see this, recall that independence of f(u)
from all future increments ¢WuI>u implies:

E[f(ti−1)(Wti−Wti−1)] = E [f(ti−1)]E [(Wti −Wti−1)] = 0.

for all partitions 0 = t0 < t1 < · · · < tn = t.

Therefore,

E

^
n3
i=1

f(ti−1)(Wti −Wti−1)

�
=

n3
i=1

E[f(ti−1)]E[(Wti−Wti−1)] = 0,

Now, by de¯nition of the It¶o integral:

lim
n→∞E

w
In −

8 t
0
f(u) dWu

W2
= 0

with In =
n3
i=1

f(ti−1)(Wti −Wti−1)

and we have just shown that E(In) = 0 ∀n
implying that limn→∞E(In) = 0.

Therefore:

E

}8 t
0
f(u) dWu

]
= lim

n→∞E(In) = 0.



(4) Variance: V
�$ t
0 f(u) dWu

=
=
$ t
0E[f(u)

2]du.

Denote fi = f(ti). Then

V

^
n3
i=1

fi−1(Wti −Wti−1)

�
= E

^
n3
i=1

fi−1(Wti −Wti−1)

�2
=

n3
i=1

E [fi−1(Wti −Wti−1)]
2

+2

n−13
i=1

n3
j=i+1

E
J
fi−1fj−1(Wti −Wti−1)(Wtj −Wtj−1)

o
=

n3
i=1

E[f2i−1]E
J
(Wti −Wti−1)

2
o

+2

n−13
i=1

n3
j=i+1

E [fi−1fj−1(Wti −Wti−1)] E
J
(Wtj −Wtj−1)

o
=

n3
i=1

E [fi−1]2 E
J
(Wti −Wti−1)

2
o
=

n3
i=1

E [fi−1]2¢ti

Thus, by de¯nition of the Riemann integral

V

}8 t
0
f(u) dWu

]
= E

^w8 t
0
f(u) dWu

W2�

= lim
n→∞E[In(t)

2] = lim
n→∞

n3
i=1

E[f(ti−1)2]¢ti

=
8 t
0
E[f(u)2] du.



(5) Covariance: Using the same approach as
above, we can show (exercise):

Cov

w8 t

0

f(u) dWu,

8 t

0

g(u) dWu

W
= E

}w8 t

0

f(u) dWu

Ww8 t

0

g(u) dWu

W]
=

8 t

0

E[f(u)g(u)]du

(6)
$ t
0 f(u)dWu is a martingale.

This is seen as follows:

Et

}8 t+¢t

0

f(u) dWu

]
(2)
= Et

}8 t

0

f(u) dWu+

8 t+¢t

t

f(u) dWu

]
= Et

}8 t

0

f(u) dWu

]
+Et

}8 t+¢t

t

f(u) dWu

]
=

8 t

0

f(u) dWu

because
$ t
0 f(u) dWu is It-measurable, and by

independence (of the increments of Wt) and
property (3)

Et

^8 t+¢t
t

f(u) dWu

�
= E

^8 t+¢t
t

f(u) dWu

�
= 0



"Magnitudes" of dt and dWt

From the Riemann integral we ¯nd that8 t
0
du= t

Consider next the "integral"8 t
0
(du)2

Using an analogy with the de¯nition of the

Riemann integral, let 0 = t0 < t1 < · · · tn = t

be a partition of the interval [0, t] such that

ti − ti−1 = t/n. Then8 t
0
(du)2 = lim

n→∞
n3
i=1

(ti − ti−1)2

= lim
n→∞

n3
i=1

w
t

n

W2
= lim

n→∞
t2

n

= 0.

These results suggest that for the in¯nitesi-

mal increment dt it is reasonable set (dt)2 =

0. In fact for any a > 1, using the above

integral approach, we have (dt)a = 0.



Let us next consider dWt.

By de¯nition of the It¶o integral8 t
0
dWu =Wt,

which suggests that dWt is a random variable.

From the properties (3) and (4), we can de-

duce E[dWt] = 0 and

V

}8 t
0
dWu

]
= V[Wt] = t =

8 t
0
du,

which suggests that V[dWt] = dt.

Finally, because the increments of the Wiener

process are normally distributed, we can (sym-

bolically) denote

dWt ∼ N(0, dt).

I.e., dWt can be considered as a normally dis-

tributed random variable with mean zero and

variance dt (standard deviation
√
dt).



Consider next (dWt)
2. Above we observed

that (dt)2 = 0.

Interpreting (dWt)
2 through the It¶o integral,

consider again

In(t) =
n3
i=1

(Wti −Wti−1)
2.

The expected value of In(t) is t. It is a good
candidate for the It¶o integral. The quadratic
mean becomes

E [In(t)− t]2 = E[In(t)]2 − 2tE[In(t)] + t2

= E[In(t)]2 − t2,
because E[In(t)] =

�n
i=1E(Wti − Wti−1)

2 =�n
i=1(ti − ti−1) = t.

Now (assume again that ti − ti−1 = t/n)

E[In(t)]2 = E

^
n3
i=1

(Wti −Wti−1)
2

�2

=

n3
i=1

E(Wti −Wti−1)
4

+2

n−13
i=1

n3
j=i+1

E
J
(Wti −Wti−1)

2(Wtj −Wtj−1)
2
o



Now, using E(X4) = 3σ4 for any X ∼ N(0,σ2)
and the properties of the Wiener process:

E[In(t)]2 =
n3
i=1

3(ti − ti−1)2

+2
n−13
i=1

n3
j=i+1

(ti − ti−1)(tj − tj−1)

= 3n

w
t

n

W2
+ 2

n(n− 1)
2

w
t

n

W2

= 3
t2

n
+
n− 1
n

t2.

Thus in all

E[In(t)−t]2 = 3
t2

n
+
n− 1
n

t2−t2→ 0, as n→∞,
i.e., 8 t

0
(dWu)

2 = t =
8 t
0
du.

Thus we have an important additional result:

(dWt)
2 = dt.



How about dt dWt?

Using again the integral approach, consider

n3
i=1

¢ti¢Wti :=
n3
i=1

(ti − ti−1)(Wti −Wti−1).

The increments ¢Wti are independent, so

E

X
n3
i=1

¢ti¢Wti

~2

=E

⎛⎝ n3
i=1

¢ti
2¢Wti

2 + 2

n−13
i=1

n3
j=i+1

¢ti¢tj¢Wti¢Wtj

⎞⎠
=

n3
i=1

¢ti
2E(¢Wti

2) + 2

n−13
i=1

n3
j=i+1

¢ti¢tjE(¢Wti)E(¢Wtj)

=

n3
i=1

¢ti
3 =

n3
i=1

w
t

n

W3
=
t3

n2
→ 0 as n→∞.

Thus we can state8 t
0
du dWu = 0.

so that we get

dt dWt = 0.



We summarize our results in the following

multiplication table for in¯nitesimal increments:

× dt dWt

dt dt dt= 0 dt dWt = 0
dWt dWtdt= 0 dWtdWt = dt

Note that (dWt)
2 is not the same as dW2

t !

As a matter of fact, we have not even yet

de¯ned the meaning of dW2
t . Returning to

our original goal of relating changes in asset

prices to increments of Brownian motion by

means of stochastic di®erential equations a

meaningful interpretation of df(Wt) may be

found by means of the stochastic integral

equation 8 t
0
df(Wu) =

8 t
0

df

dWu
dWu.

So in order to ¯nd
$ t
0 dWu

2 we need to calcu-

late8 t
0

dWu
2

dWu
dWu =

8 t
0
2Wu dWu = 2

8 t
0
Wu dWu.



In evaluating I
(0)
n =

�n
i=1Wti−1(Wti −Wti−1)

we use the following trick:

Wti−1 =
1

2
(Wti+Wti−1)−

1

2
(Wti −Wti−1),

(Wti+Wti−1)(Wti −Wti−1) =Wti
2 −Wti−1

2.

Therefore, using tn = t and Wt0 =W0 = 0:
n3
i=1

Wti−1(Wti −Wti−1) =
1

2

n3
i=1

(W 2
ti −W 2

ti−1)−
1

2

n3
i=1

(Wti −Wti−1)
2

=
1

2
W 2
t −

1

2

n3
i=1

(Wti −Wti−1)
2.

When discussing the meaning of (dWt)
2, we

had found that the sum on the right hand

side converges in mean square to t. Thus:

I0(t) :=
8 t
0
WsdWs =

1

2
(W2

t − t).

Note: This is not an application of a relation

similar to deterministic calculus

(Wrong!) lim(X + Y ) = lim(X) + lim(Y ),

where "lim" denotes the limit in quadratic

mean, because in general, this identity does

not hold for convergence in quadratic mean!



Instead, we deduce mean square convergence

of I
(0)
n to I0(t) from mean square conver-

gence of Xn =
�n
i=1(Wti − Wti−1)

2 to t as
follows:

E

w
1

2
(W 2

t −Xn)− 1
2
(W 2

t − t)
W2

=

w
−1
2

W2
E(Xn−t)2 n→∞−→ 0.

Similarly, if we select the end points Wti of

the subintervals, we get (exercise):

I1(t) := lim
n3
i=1

Wti(Wti−Wti−1) =
1

2
(W2

t + t).

Recall that I0 is a martingale whereas I1 is

not, none of which equals the integral func-

tion in deterministic calculus
$
x dx = 1

2x
2.

The Stratonovich integral is

I1
2
(t) = lim

n3
i=1

1

2
(Wti +Wti−1)(Wti −Wti−1)

=
1

2
lim

n3
i=1

(W 2
ti −W 2

ti−1) =
1

2
W 2
t =

1

2
(I1 + I0).

i.e., the same as the Riemann integral.



Ito's Lemma

Let us return to our original goal to relate the

instantaneous change in the price of some

derivative F = F(St, t) to instant changes in

the price St of the underlying asset, whose in-

crements at discrete observation intervals are

given by the stochastic di®erence equation:

¢Sk = akh+ σk¢Wk, k = 1, . . . , n;

where we have written ¢Sk = Stk − Stk−1,
ak = a(Stk−1, tk), σk = σ(Sk−1, tk), ¢Wk =

Wtk−Wtk−1, and we have partitioned the ob-
servation interval [0, T ] of St as before into

0 = t0 < t1 < · · · < tn = T with

h= tk − tk−1 =
T

n
, k = 1, . . . , n.

We have meanwhile learnt that the only mean-

ingful interpretation of the in¯nitesimal ver-

sion of ¢Sk: dSt = a(St, t) dt+ σ(St, t) dWt,

(called It¶o process) is to take it as a short-

hand notation for the integral equation8 t
0
dSu =

8 t
0
a(Su, u) du+

8 t
0
σ(Su, u) dWu.



Our goal is to relate dF(St, t) to dSt.

The standard approach of using the total

derivative dF = Fs dSt+ Ft dt with Fs and Ft
denoting the partial derivatives

Fs =
∂F(St, t)

∂St
, Ft =

∂F(St, t)

∂t

does not work in stochastic environments as

such, but needs to be modi¯ed as follows.

Consider the Taylor series expansion to sec-
ond order of an in¯nitely di®erentiable func-
tion f : x→ IR around x0 ∈ IR:
f(x) = f(x0) + f I(x0)(x− x0) + 1

2
f II(x0)(x− x0)2 +R,

where the remainder R does not exceed the

last explicitely calculated addend of the sum

(here: |R| ≤ |12f II(x0)(x− x0)2|).

In our case of two variables the Taylor ex-
pansion to second order is:

F(Stk, tk) = F(Stk−1, tk−1) + Fs¢Sk+ Fth+
1
2
Fss (¢Sk)

2

+1
2
Ftt h2 + Fst h¢Sk+R.



With ¢Fk := F(Stk, tk) − F(Stk−1, tk−1), we
get by subtracting F(Stk−1, tk−1) on both sides:

¢Fk = Fs¢Sk+ Fth+
1
2Fss (¢Sk)

2

+1
2Ftt h

2 + Fst h¢Sk+R.

As n→∞, h= tk−tk−1→ dt,¢Sk → dSt, and

¢Fk → dF , and R→ 0 because it consists of

terms (¢tk)
m and (¢Wk)

m with m ≥ 3. So
we get

dF(St, t) = Fs dSt+ Ft dt+
1
2Fss (dSt)

2

+1
2Ftt (dt)

2 + Fst dt dSt.

Using (dt)2 = dt dWt = 0 and (dWt)
2 = dt

from the calculation rules for di®erentials, we
obtain:

(dSt)
2 = (a(St, t) dt+ σ(St, t) dWt)

2

= a2(St, t)(dt)
2 + 2a(St, t)σ(St, t)dt dWt+ σ2(St, t)(dWt)

2

= σ2(St, t) dt.



Similarly we obtain:

dt dSt = dt (a(St, t)dt+ σ(St, t) dWt)

= a(St, t)(dt)
2 + σ(St, t) dt dWt

= 0.

After inserting these expressions for (dSt)
2

and dt dSt we get:

dF = Fs dSt+ Ft dt+
1

2
Fssσ

2(St, t) dt

Replacing dSt with its It¶o representation yields

dF(St, t) = Fs [a(St, t)dt+ σ(St, t)dWt]

+Ft dt+
1
2Fssσ

2(St, t) dt,

which yields Ito's di®erential equation:

dF =

}
Ft+ a(St, t)Fs+

1

2
σ2(St, t)Fss

]
dt+ σ(St, t) dWt

The result is summarized as It¶o's Lemma:



It¶o's Lemma: Let F(St, t) be a twice di®eren-

tiable function of t and of the random process

St with It¶o di®erential equation

dSt = at dt+ σt dWt, t ≥ 0,
with at = a(St, t) and σt = σ(St, t) continu-

ously twice-di®erentiable (real valued) func-

tions. Then

dF = Fs dSt+ Ft dt+
1

2
Fssσ

2
t dt,

or, after substituting for the right hand side

of dSt above

dF =
w
Fs at+ Ft+

1

2
Fssσ

2
W
dt+ Fsσt dWt,

where

Fs =
∂F

∂St
, Ft =

∂F

∂t
, and Fss =

∂2F

∂S2t
.

The major usage of the It¶o formula in ¯-

nance is to ¯nd the (It¶o) stochastic di®er-

ential equation (SDE) for the ¯nancial deriv-

ative once the (It¶o) SDE of the underlying

asset is given.



Example 9

Let F(Wt, t) =W2
t .

We may use dF = Fs dSt + Ft dt+
1
2Fssσ

2
t dt

with at = 0 and σt = 1, such that St = Wt.

Therefore:

dF(Wt, t) = Fw dWt+ Ft dt+
1

2
Fww dt

Now:

Fw = ∂W2/∂W = 2W

Ft = ∂W2/∂t = 0

Fww = ∂2F/∂W2 = 2

Therefore:

dF(Wt, t) = 2Wt dWt+ dt.

Thus the drift parameter of F is a(F, t) = 1

and the di®usion parameter is σ(F, t) = 2Wt.



Example 10.

F(Wt, t) = 3+ t+ eWt.

⇒ dF(Wt, t) = Ft dt+ Fw dWt+
1
2
Fww dt

= dt+ eWt dWt+
1
2
eWt dt

=
D
1+ 1

2
eWt

i
dt+ eWt dWt.

Example 11. Consider geometric Brownian motion

St = S0e
{(µ−1

2
σ2)t+σWt},

where S0 is a constant. Using It¶o with σ(Wt, t) = 1:

dSt = ∂St
∂Wt

dWt+
∂St
∂t
dt+ 1

2
∂2St
∂W 2

t

dt

= S0σe
{(µ−1

2
σ2)t+σWt} dWt+ (µ− 1

2
σ2)S0e

(µ−1

2
σ2)t+σWt dt

+1
2
σ2S0e

(µ−1

2
σ2)t+σWt dt

= Stσ dWt+ (µ− 1
2
σ2)St dt+

1
2
σ2St dt

= St(µdt+ σ dWt),

or
dSt

St
= µdt+ σdWt,

or

dSt = µStdt+ σStdWt.

Comparing to the general form dSt = a(St, t)dt+σ(St, t)dWt

we ¯nd that a(St, t) = µSt, and σ(St, t) = σ St.



It¶o's formula as an integration tool

Suppose our task is to evaluate8 t
0
Ws dWs.

Make a guess

F(Wt, t) =
1

2
W2
t .

Then using It¶o

dF(Wt, t) =Wt dWt+
1

2
dt.

The integral form is

1

2
W 2
t = F(Wt, t) =

8 t

0

dF(Ws, s) =

8 t

0

Ws dWs+
1

2

8 t

0

ds.

So 8 t
0
Ws dWs =

1

2
W2
t −

1

2
t.

The start o® point here is to make a \good

guess".



Example 12 (Integration by parts)

Consider the It¶o integral8 t
0
s dWs.

Make a start o® guess

F(Wt, t) = tWt.

Then

dF (Wt, t) =Wt dt+ t dWt,

and

tWt =
8 t
0
dF(Ws, s) =

8 t
0
Ws ds+

8 t
0
s dWs.

So 8 t
0
s dWs = tWt −

8 t
0
Ws ds.



Example 13 (Geometric Brownian motion)

Consider

dSt

St
= µdt+ σ dWt

X
⇒
w
dSt

St

W2
= σ2 dt

~
.

Let

F(St, t) = lnSt.

Then

dF(St, t) = Ft dt+ Fs dSt+
1
2
Fss(dSt)2

= 1
St
dSt − 1

2
1
S2t
(dSt)2

= µdt+ σ dWt − 1
2
σ2 dt

= (µ− 1
2
σ2) dt+ σ dWt.

We get

lnSt − lnS0 =
$ t
0
dF(Su, u)

=
$ t
0
(µ− 1

2
σ2)du+

$ t
0
σ dWu

= (µ− 1
2
σ2)t+ σWt.

So adding lnS0 on both sides and taking the

exponential yields:

St = S0e
(µ−12σ2)t+σWt.



Integral form of It¶os Lemma

Consider again It¶os formula:

dF = Fs dSt+ Ft dt+
1

2
Fssσ

2
t dt.

We know that this is shorthand notation for

the integral equation:8 t
0
dF(Su, u) = F(St, t)− F(S0,0)

=
8 t
0
Fs dSu+

8 t
0

}
Fu(Su, u) +

1

2
Fss(Su, u)σ

2
u

]
du

Rearranging terms in this integral form yields:8 t
0
FsdSu = [F (St, t)− F(S0,0)]

−
8 t
0

}
Fu(Su, u) +

1

2
Fss(Su, u)σ

2
u

]
du,

which represents the stochastic integral
$
FsdS

as a function of integrals with respect to

time.



Multivariate It¶o formula

Consider a 2×1 vector of stochastic processes
obeying the following SDE:

w
dS1(t)
dS2(t)

W
=

w
a1(t)
a2(t)

W
dt+

w
σ11(t) σ12(t)
σ21(t) σ22(t)

Ww
dW1(t)
dW2(t)

W

or:

dS1(t) = a1(t) dt+ σ11(t) dW1(t) + σ12(t) dW2(t)

dS2(t) = a2(t) dt+ σ21(t) dW1(t) + σ22(t) dW2(t),

where it is assumed that the Wiener processes

W1(t) and W2(t) are independent.

Suppose F(S1(t), S2(t), t) is a twice di®eren-

tiable real valued function.

Using Taylor expansion and taking limit in the
same manner as in the univariate case yields
(with (dt)2 = 0, dt dS1 = 0, and dt dS2 = 0)

dF = Ft dt+ Fs1 dS1 + Fs2 dS2

+1
2

J
Fs1,s1(dS1)

2 + Fs2,s2(dS2)
2 + 2Fs1,s2dS1dS2

o
.



The independence of W1 and W2 implies that

dW1 dW2 = 0 (exercise).

Therefore

(dS1)
2 = σ211 dW1(t)

2+σ212 dW2(t)
2 = (σ211+σ

2
12) dt,

(dS2)
2 = σ221 dW1(t)

2+σ222 dW2(t)
2 = (σ221+σ

2
22) dt,

and

dS1 dS2 = σ11σ21 dW1(t)
2 + σ12σ22 dW2(t)

2

= (σ11σ21 + σ12σ22)dt.

Using these in the multivariate It¶o formula

dF = Ft dt+ Fs1 dS1 + Fs2 dS2

+1
2

J
Fs1,s1(dS1)

2 + Fs2,s2(dS2)
2 + 2Fs1,s2dS1dS2

o
.

gives dF as a function of dW1 and dW2.



Example 14

Consider interest rate derivatives. Assume

that the yield curve depends on two state

variables, a short rate rt, and a long rate

Rt. Denote the price of the derivative as

F(rt, Rt, t). Assume

drt = a1(t) dt+σ11(t) dW1(t)+σ12(t) dW2(t),

and

dRt = a2(t) dt+σ21(t) dW1(t)+σ22(t)dW2(t).

Straightforward application of the It¶o formula gives

dF = Ft dt+ Fr drt+ FR dRt

+1
2

J
Frr(σ211 + σ212) + FRR(σ221 + σ222) + 2FrR(σ11σ21 + σ12σ22)

o
dt,

Note that shocks to the short and the long rate are
correlated in this model, because:

Cov(drt, dRt) = Cov(σ11dW1 + σ12dW2,σ21dW1 + σ22dW2)

= E [(σ11dW1 + σ12dW2)(σ21dW1 + σ22dW2)]

= σ11σ21E(dW1)
2 + σ12σ22E(dW2)

2

= [σ11(t)σ21(t) + σ12(t)σ22(t)] dt.



4. Pricing Derivatives with PDE's

Partial Di®erential Equations

We shall in the following sketch the line of

thoughts that led to the invention of the

well known Black-Scholes option pricing for-

mula. In the preceeding chapter we have

learnt that we may use It¶os lemma in order

to transform the stochastic di®erential equa-

tion (SDE) for the underlying assets price St
into another SDE for the price of the corre-

sponding derivative contract Ft(St, t), where

in both SDE's randomness enters through

the same Wiener process Wt. We may then

construct a replicating portfolio (which is in

mathematical terms just a linear combina-

tion of the two SDE's), in order to elimi-

nate all randomness in the value of the repli-

cating portfolio, which should then yield the

return of a riskfree investment by the no-

arbitrage assumption. Mathematically this

corresponds to reducing the SDE into a non-

stochstic partial di®erential di®erential equa-

tion, PDE for short.



So our strategy in pricing Ft follows the fol-

lowing scheme:

SDE for St
Ito−→ SDE for Ft

noarbitrage−→ PDE for Ft

The PDE for Ft is then solved by using the

boundary conditions of the derivative con-

tract, which impose certain values upon Ft at

speci¯c timepoints t (for example expiration

date T ) and/or speci¯c prices S (for example

strike price or exercise price X).

Example 15

Boundary conditions for a call option with

exercise price X

F(ST , T ) = max(ST −X,0).
Generally F(St, t) is unknown.

Other examples for boundary conditions are:

St, Ft ≥ 0 ∀ 0 ≤ t ≤ T, F(S, t) = G(S, T ),

where G could be any known function.



Construction of risk-free portfolios

We consider now the reduction of two sto-

chastic di®erential equations (SDE's) for the

underlyings price St and the derivative price

Ft into a non-stochastic partial di®erential

equation for Ft.

Construct a portfolio Pt with θ1 units invested

in F and θ2 units invested in S:

Pt = θ1F(St, t) + θ2St.

Following It¶os lemma it evolves as:

dP =
∂P

∂t
dt+

∂P

∂F
dF +

∂P

∂S
dS

+
1

2

∂2P

∂F 2
(dF)2 +

1

2

∂2P

∂S2
(dS)2 +

∂2P

∂F∂S
dF dS

Next we assume (erroneously) that θ1 and

θ2 are constants, that is, both independent

of t and St. Such an assumption holds only

over in¯nitesimal time intervals, which makes

everything what follows only approximate.



If we nevertheless assume θ1 and θ2 to be

constants, then all partial derivatives above

equal zero, except:

dP

dF
= θ1 and

dP

dS
= θ2.

so

dP = θ1dF + θ2dS.

Now let St follow an It¶o process:

dS = a(St, t) dt+ σ(St, t)dWt,

then using It¶os lemma:

dF = (Ft+
1

2
σ2t Fss)dt+ Fs dS,

and dP = θ1 dF + θ2 dS becomes

dP = θ1(Ft+
1

2
σ2t Fss) dt+ (θ1Fs+ θ2)dS.

Note that we can eliminate the term propor-

tional to dS, by making the following special

choice for the porftolio weights θ1 and θ2.

Set:

θ1 = 1 and θ2 = −Fs.



Then:

dP = (Ft+
1

2
σ2t Fss) dt,

that is, the hedge portfolio P = F − FsS is

risk-free! But in an arbitrage-free market a

riskless investment should earn the riskfree

interest rate (henceforth denoted as r), that

is, under continuous compounding:

Pt = P0 exp(rt),

the total di®erential of which is (standard

calculus applies!):

dP =
∂P

∂t
dt= rP0e

rtdt = rP dt.

Equating the formulas for dP we get

r P dt= (Ft+
1

2
σ2t Fss) dt,

implying:

rP = Ft+
1

2
σ2t Fss,

or, after inserting P = F − FsS:

r(F − FsS) = Ft+
1

2
σ2t Fss.



Arranging the terms gives a standard partial

di®erential equation:

−r F + r FsS+ Ft+
1

2
σ2t Fss = 0

to be solved. The solution depends on the

di®usion term σt := σ(St, t) of the It¶o process

St and on the boundary conditions. Note for

later reference, that the solution does not

depend upon the drift term a(St, t) of the It¶o

process dS = a(St, t)dt+ σ(St, t)dWt.

For example, geometric Brownian motion with

the boundary conditions of the European op-

tion leads to the Black-Scholes formula. But

American options have di®erent solutions, for

which no closed form is known (unless it is

an American call for which the boundary con-

ditions coincide with those of the European

option, because early exercise is suboptimal).



Example 16 Black-Scholes call option formula

Assume the boundary condition of an Euro-

pean call option with strike price X, that is:

F(ST , T ) = max(ST −X,0),
and geometric Brownian motion (GBM):

dSt = µSt dt+ σSt dWt.

This implies

a(St, t) = µSt and σt := σ(St, t) = σSt,

such that we need to solve the so called

Black-Scholes PDE,

−r F + r FsS+ Ft+
1

2
σ2FssS

2 = 0,

which we obtain by inserting σt = σSt into

−r F + r FsS+ Ft+
1

2
σ2t Fss = 0.

(note once again that we did not need to

make use of our knowledge about the drift

term, that is, a(St, t) = µSt.)



The Black-Scholes PDE

−r F + r FsS+ Ft+
1

2
σ2FssS

2 = 0

is solved by the famous Black-Scholes call

option formula (exercise):

F(St, t) = StN(d1)−Xe−rτN(d2),

where

d1 =
log(St/X) + (r+ 1

2σ
2)τ

σ
√
τ

,

d2 =
log(St/X) + (r − 1

2σ
2)τ

σ
√
τ

= d1 − σ
√
τ ,

N(di) =
1√
2π

8 di
−∞

e−
1
2x
2
dx

are the values of the standard normal cdf at

di, i = 1,2, and τ = T − t is the time to

maturity.



Furthermore, it satis¯es the relevant bound-

ary condition F(ST , T) = max(ST −X,0), as
may be seen by considering the limiting be-

haviour of Ft as τ → 0, for S > X and S < X
seperately is follows:

S > X : d1, d2
τ→0−→ ∞

⇒ N(d1), N(d2)
τ→0−→ 1

⇒ F(St, t)
τ→0−→ ST −X,

S < X : d1, d2
τ→0−→ −∞

⇒ N(d1), N(d2)
τ→0−→ 0

⇒ F(St, t)
τ→0−→ 0,

which may be summarized as:

F(ST , T ) = max(ST −X,0).

Note that the Black-Scholes formula holds

only for this particular boundary condition

(with a similar formular for the corresponding

put option with a boundary condition of the

form F(ST , T) = max(X − ST ,0)). In general
it is not possible to ¯nd analytical expressions

for the solutions of the Black-Scholes PDE

under arbitrary boundary conditions.



The role of dividends

If St pays constant dividends δ per time unit,

then the return of the hedge portfolio P =

F − FsS entails price appreciation of both

the stock and dividends, which by the no-

arbitrage assumption has to equal the risk-

free rate times portfolio value. That is, the

return of the hedge portfolio is

dP + δ dt= rPdt

and the PDE becomes

−rF + rFsS+ δ+ Ft+
1

2
Fssσ

2 = 0.

Thus the constant dividends cause no extra

problems. However, if dividends follow a ran-

dom process themselves, then the PDE ap-

proach does not work in the general case,

unless one assumes dividends and stock price

to follow the same random process, because

a linear combination of two SDE's cannot

eliminate more than one random process.



Exotic Options

There are lots of di®erent kinds of options,

like lookback options, Asian, Knock-In, Knock-

out, ladder, multiasset, etc.

In each of these the PDE is basically the

same, but boundary conditions change, which

lead to di®erent solutions of the PDE. For

example:

Floating lookback: The payo® is ST −Smin, if positive,
where Smin = mint∈[0,T ]{St}.
Fixed lookback: The payo® is Smax − X, if positive,
where Smax = maxt∈[0,T ]{St} and X is the strike price.

Ladder options: Several thresholds, such that if the
underlying price reaches these thresholds, the return
of the option is "locked in".

Trigger options: option comes into life ¯rst after the
underlyings price has crossed a certain threshold.

Knock-out Options: Option expires as soon as the
underlyings price has crossed a certain threshold.

Asian options: The payo® depends upon the average

price of the underlying asset.



Solving PDE's in practice

Consider again the PDE in the framework of

Black-Scholes (St is assumed to be geometric

Brownian motion):

Ft+ rFsS+
1

2
Fssσ

2S2 = rF, S ≥ 0, 0 ≤ t ≤ T.

Closed form solutions, like the B-S call price,

cannot often be found, or the solution is dif-

¯cult.

Numerical solutions give values for F(S, t) for

(discrete) combinations (Si, tj) of the stock

price S and time variable t.

Finite di®erence methods approximate the rel-

evant PDE by a set of di®erence equations

and solve these equations iteratively from the

boundary conditions.



Finite Di®erence Methods

To solve the PDE numerically, one approx-

imates the PDE with ¯nite increments ¢S

and ¢t. Partitions for the range of S and t

are needed:

1. Select grid size for ¢S and ¢t.

2. Select an appropriate range for S, Smin ≤ S ≤ Smax.
3. Determine the boundary conditions.

4. Determine the value of F(S, t) at the grid points.

Suppose that the life of the option is T . Di-

vide it into n subintervals ¢t = T/n. In the

same manner divide the \reasonable" range

of the stock price into m subintervals ¢S =

Smax/m. Then we have a grid (tj, Si) where

tj = j¢t and Si = i¢S, i = 0,1, . . . ,m,

j = 1, . . . , n, i.e., time is running as

0,¢t,2¢t, . . . , (n− 1)¢t, T
and S as

0,¢S,2¢S, . . . , (m− 1)¢S, Smax.



The Implicit Finite Di®erence Method

The idea is to replace the partial derivatives

in the relevant PDE with their discrete ap-

proximations at points Fij = F(Si, tj). For

the ¯rst order partial derivatives the choices

are

Backward di®erence:

∂F

∂S
≈ Fi,j − Fi−1,j

¢S
.

Forward di®erence:

∂F

∂S
≈ Fi+1,j − Fi,j

¢S
.

Central di®erence:

∂F

∂S
≈ Fi+1,j − Fi−1,j

2¢S
,

which is the average of the previous two.

The second derivative is approximated by

∂2F

∂S2
≈
^
Fi+1,j − Fi,j

¢S
− Fi,j − Fi−1,j

¢S

�
1

¢S

=
Fi+1,j − 2Fi,j + Fi−1,j

(¢S)2
.



In the imlicite ¯nite di®erence method we use

the forward di®erence for ∂F/∂t and the cen-

tral di®erence for ∂F/∂S. Inserting these into

the Black-Scholes PDE

Ft+ r FsS+
1

2
σ2FssS

2 = r F

with Si = i¢S we arrive at

Fi,j+1−Fi,j
¢t + r i¢S

Fi+1,j−Fi−1,j
2¢S

+1
2σ
2(i¢S)2

Fi+1,j−2Fi,j+Fi−1,j
(¢S)2

= rFi,j

for i = 1,2, . . . ,m− 1 and j = 0,1, . . . , n− 1.
Rearranging terms and noting that the ¢S

terms cancel out, we get

aiFi−1,j + biFi,j + ciFi+1,j = Fi,j+1

where

ai = 1
2i
p
r − iσ2

Q
¢t,

bi = 1+
p
r+ i2σ2

Q
¢t,

ci = −12 i
p
r+ iσ2

Q
¢t.

This relates F for any gridpoint to its value

at the same and the two neighbouring stock-

prices from the preceeding timepoint.



To illustrate the method consider an Ameri-

can put on a non-dividend paying stock.

The value of the put at time T (= tn) is

max(K − ST ,0), where ST is the stock price

at time T and K is the strike price. Thus

Fi,n = F(i¢S, tn) = max(K − i¢S,0),(T)

i = 0,1, . . . ,m.

The value of the put for S = 0 is K. So

(0) F0,j = K, j = 0,1, . . . , n.

When the stock price goes to in¯nity, the

value of the put approaches zero. Thus we

approximate

(max) Fm,j = 0, j = 0,1, . . . , n.

Equations (0), (max) and (T) de¯ne the val-

ues of the put option along the three edges

S = 0, S = Smax, and t = T of the grid

(ti, Sj), i = 0,1, . . . ,m, j = 0,1, . . . , n.



To ¯ll the remaining nodes of the grid, we

start from the points T −¢t with j = n− 1,
where the di®erence equations for the price

F of the derivative read

aiFi−1,n−1 + biFi,n−1 + ciFi+1,n−1 = Fi,n

for i = 1,2, . . . ,m − 1. The right-hand sides
of these are known from the boundary condi-

tions (T). Furthermore, from (0) and (max):

F0,n−1 = K

Fm,n−1 = 0.

So we end up with m−1 simultaneous equa-
tions with m− 1 unknowns:

F1,n−1, F2,n−1, . . . , Fm−1,n−1.

Given the solutions for Fi,n−1, if Fi,n−1 <

K − i¢S, then early exercise at time T −¢t
is optimal and Fi,n−1 is set equal to K− i¢S.
The nodes with T − i¢t, i = 2,3, . . . ,m, are

handled in a similar way, eventually giving

F0,1, F0,2, . . . , F0,n−1, one of which is the op-
tion price of interest.



The relationship of the neighboring option
prices in the implicit method is

Fi+1,j

Fi,j

Fi−1,j

P P P P P P P

³ ³
³ ³

³ ³
³
Fi,j+1

Figure. Relationship of the derivative price at time t + ¢t to

three values of derivative at time t in the implicit method.

Thus in the implicit method the value at time

t depends directly on its two neighbors, and

hence indirectly (implicitly) on all option val-

ues at that time step.

The advantages of the implicit method are

that it is robust, and it always converges to

the solution of the di®erential equation as

¢S and ¢t approach to zero. The disad-

vantage is that it is pretty tedious to pro-

gram, because m−1 simultaneous equations
need to be solved. A considerable simpli¯ca-

tion is reached in the explicit ¯nite di®erence

method, which relates F to its value at the

same and the two neighbouring stockprices

at the following time point.



Explicit Finite Di®erence Method

To simplify the calculations of the implicit

method, let us assume additionally that the

∂F/∂S and ∂2F/∂S2 are the same at grid

points (i, j) and (i, j+1), such that we may

replace our earlier approximations

∂F

∂S
≈ Fi+1,j − Fi−1,j

2¢S
and

∂2F

∂S2
≈ Fi+1,j − 2Fi,j + Fi−1,j

(¢S)2

by

∂F

∂S
≈ Fi+1,j+1 − Fi−1,j+1

2¢S
and

∂2F

∂S2
≈ Fi+1,j+1 − 2Fi,j+1 + Fi−1,j+1

(¢S)2
.

Inserting these into the Black-Scholes PDE

Ft+ r FsS+
1

2
σ2FssS

2 = r F



we get in a similar manner as for the implicit

¯nite di®erence method:

Fi,j = a∗i Fi−1,j+1 + b∗i Fi,j+1 + c∗i Fi+1,j+1
with

a∗i = − i¢t

2(1+ r¢t)

p
r − σ2i

Q
b∗i =

1

1+ r¢t

p
1− σ2i2¢t

Q
c∗i =

i¢t

2(1+ r¢t)

p
r+ σ2i

Q

Example 17. Consider an American put op-

tion with T = 1/3 years, i.e., 4 months,

K = 21, r = 10% p.a., and

dSt = µSt dt+ σSt dWt

where σ = 30% p.a. Then we know

F(ST , T) = max(21− ST ,0)
F(St, t)→ 0 as St gets large.

and

F(0, t) = 21

for all t.



4. Equivalent Martingale Measures

Motivation

Recall from the discrete one-period model

that an arbitrage-free market ensures the ex-

istence of a risk-neutral probability measure

Q(ω), that is a function Q : −→ IR with

Q(ω) > 0 ∀ω ∈ −, 3
ω∈−

Q(ω) = 1, EQ(¢S∗) = 0,

where ¢S∗ denotes the discounted price dif-
ference S(t1)/(1+ rf)−S(t0), and EQ(·) de-
notes the expectation operator with the true

probabilities P(ω) replaced by the risk-neutral

probabilities Q(ω).

This led to the risk-neutral valuation principle,

which we could use to price any attainable

contingent claim X as the expected value of

the riskfree discounted payo® X∗, where the
expectation had to be taken again with re-

spect to the risk-neutral probability measure

Q, that is: X0 = EQ(X∗).



Probability Measures

In order to extend the risk-neutral valuation

principle into the multiperiod framework with

continuous time and continuous prices, let us

¯rst take a closer look at probability mea-

sures of continuous random variables.

As an illustration consider the probability den-

sity f(z) of a standard normal distribution,

f(z) =
1√
2π
e−

1
2z
2
.

Then the probability of ¯nding the random
variable Z near a speci¯c value ¹z is

P

w
¹z − 1

2
¢ < Z < ¹z+

1

2
¢

W
=

8 ¹z+1

2
¢

¹z−1

2
¢

1√
2π
e−

1

2
z2dz.

which is a real number (between zero and

one). Thus the probability associates a real

number (in this case between zero and one)

to intervals on real line, or more generally to

(Borel) sets. Such functions are called mea-

sures in mathematics or measure functions.



Because ¢ is small8 ¹z+1
2¢

¹z−12¢
1√
2π
e−

1
2z
2
dz ≈ 1√

2π
e−

1
2¹z
2
8 ¹z+1

2¢

¹z−12¢
dz

=
1√
2π
e−

1
2¹z
2
¢.

For in¯nitesimal ¢, denoted as dz we denote

the associated measure by dP (z) or simply

dP . Thus in the above case, we have

dP (z) = P

w
¹z − 1

2
dz < Z < ¹z+

1

2
dz

W
=

1√
2π
e−

1
2z
2
dz

Generally, if P is a probability measure, we

have 8 ∞
−∞

dP = 1.

With these notations, e.g.,

E[X] =
8 ∞
−∞

x dP(x).

So the expected value is mathematically an

integral with respect to probability measure.



The Fundamental Theorem of Asset Pricing

We consider next the generalization of the

risk neutral valuation principle to continuous

random variables in continuous time.

A probability measure ~P is called a martingale

measure for the discounted price process ~St =

e−rtSt, if ~St is a martingale under ~P , that is:

E
~P
t [e
−r(t+u)St] = e−rtSt, whenever u ≥ 0

where r is the riskfree rate, and E ~P
t indicates

that the expectation is taken with respect to

probability measure ~P .

The fundamental theorem of asset pricing es-

tablishes then the equivalence of the absence

of arbitrage opportunities and the existence

of a martingale measure for the discounted

price process, just like the existence of a risk-

neutral probability measure was equivalent to

the absence of arbitrage opportunities in the

discrete one-period model.



The absence of arbitrage opportunities under

presence of a martingale measure ~P for the

discounted price process ~St leads then to the

risk-neutral valuation principle in very much

the same way as in the discrete one-period

model, that is:

Xt = E
~P
t

�
e−rτXT

=
with τ = T − t

is the arbitrage-free price at time t of any

random payo® XT at expiration date T .

Thus a martingale measure can be viewed as

a representation of the market's current opin-

ion on the evolution of values of underlying

assets and the prices of all derivatives con-

tingent to them. Consequently the knowl-

edge of the martingale measure is all that is

needed, in principle, to value whatever deriv-

ative securities.

Then given a stock price process St with

probability measure P the goal is to ¯nd the

martingale measure ~P .



The Radon-Nikodym Derivative

Before considering how to change the prob-

ability measure of a stochastic process (in

order to transform it into a martingale and

apply the risk-neutral valuation principle), let

us ¯rst ¯gure out how to transform probabil-

ity measures of continuous random variables.

As an example, consider again a N(0,1) dis-

tributed random variable Z with probability

measure

dP(z) =
1√
2π
e−

1
2z
2
dz,

and de¯ne a transformation function

ξ(z) = ezµ−
1
2µ
2
.

Then d~P (z) = ξ(z)dP (z) is again a probabil-

ity measure, because:

d~P(z) =
1√
2π
e−

1
2z
2+zµ−12µ2dz = 1√

2π
e−

1
2(z−µ)2dz,

which is the probability measure of a N(µ,1)

distributed random variable.



Furthermore, we can recover the original prob-

ability measure dP (z) by multiplying d~P (z) by
1

ξ(z)
= e−zµ+

1
2µ
2
:

d~P (z)

ξ(z)
=

1√
2π
e−

1
2z
2+zµ−12µ2dz e−zµ+

1
2µ
2

=
1√
2π
e−

1
2z
2
dz = dP (z)

So we have just shown, that there exists a

function ξ(z), such that if we multiply the

probability measure of a standard normal ran-

dom variable with it, we obtain a new prob-

ability. The transformed random variable is

again normal but has a di®erent mean, and

the transformation is reversible.

Before stating the general condition, under

which such a transformation can be made,

let us ¯rst introduce some notation. For that

purpose, recall that by the fundamental the-

orem of calculus:

F(z) =
8 z
a
f(x)dx ⇒ dF(z)

dz
= f(z).



We apply this to the transformed probability
measure ~P :

~P(z) =

8 z

−∞
d~P(x) =

8 z

−∞
ξ(x)dP (x) ⇒ d~P(z)

dP(z)
= ξ(z).

This justi¯es calling the transformation func-

tion ξ a derivative of ~P with respect to P . In

mathematical measure theory this is known

as the Radon-Nikodym derivative. Similarly,

we may express the inverse transformation as

the derivative of P with respect to ~P :

dP(z)

d~P(z)
=

1

ξ(z)
.

Obviously, in order to ¯nd a transformation

from P to ~P and vice versa we need:

~P (dz) > 0 if and only if P (dz) > 0

(because otherwise we would have to divide

by zero in at least one transformation).



The Radon-Nikodym Theorem states that the

condition

~P (dz) > 0 if and only if P (dz) > 0

is not only necessary but also su±cient to

grant the existence of the Radon-Nikodym

derivative ξ (and its inverse 1/ξ).

If P and ~P satisfy the above mentioned condi-

tion of the theorem, they are called equivalent

probability measures, in the sense that it is

always possible to transform P into ~P and

vice versa by:

d~P(z) = ξ(z)dP (z), dP (z) =
1

ξ(z)
d~P (z).

Note for later reference, that an equivalent

way of writing down this transformation is:

~P(A) =
8
A
d~P(z) =

8 ∞
−∞

IIAd~P(z)

=
8 ∞
−∞

IIAξ(z)dP (z) = EP(IIAξ) ∀A ∈ F ,
where IIA is the indicator function of event

A and F is the (sigma-)algebra, upon which

Z is de¯ned.



The Girsanov Theorem

The following theorem is essential for chang-

ing the probability measure if continuous sto-

chastic processes.

Theorem (Girsanov) Let W(t),0 ≤ t ≤ T be

a standard Wiener process on a probability

space (−,F , P). Let F(t),0 ≤ t ≤ T be the

accompanying ¯ltration, and let X(t),0 ≤ t ≤
T be a stochastic process adapted to this

¯ltration. For 0 ≤ t ≤ T , de¯ne

~W(t) =W(t)−
8 t
0
X(u) du,

ξ(t) = exp

w8 t
0
X(u) dWu − 1

2

8 t
0
X(u)2 du

W
,

and de¯ne a new probability measure

~P(A) =
8
A
ξ(T)dP (z) = EP(IIAξ(T )) ∀A ∈ F .

Then ~Wt is a standard Wiener process under

the new probability measure ~P , provided that

E

}
e
$ t
0X(u) du

]
<∞, t ∈ [0, T ].



Note that the transformation process ξ is a

martingale with E(ξ(t)) = 1 ∀ t ∈ [0, T ]. In

order to see this, note ¯rst that8 0
0
X(u) dWu =

8 0
0
X(u)2 du= 0.

Therefore

ξ(0) = exp

w8 0

0

X(u) dWu − 1
2

8 0

0

X(u)2 du

W
= e0 = 1.

In order to show that E(ξ(t)) = 1 ∀ t ∈ [0, T ]
it su±ces then to show that ξ is a martingale.

To see this, de¯ne

A(t) =
8 t
0
X(u)2 du, B(t,Wt) =

8 t
0
X(u) dWu

implying

dA(t) = X(t)2 dt, dB(t,Wt) = X(t) dWt,

and apply It¶os lemma

dξ =
∂ξ

∂t
dt+

∂ξ

∂B
dB+

1

2

∂2ξ

∂B2
(dB)2.



Using ∂ξ
∂t =

∂ξ
∂A

∂A
∂t we obtain

dξ(t) = −1
2
ξ(t)X2(t)dt+ ξ(t)X(t)dWt+

1

2
ξ(t)X2(t)dt

= ξ(t)X(t) dWt,

such that

ξ(t)− ξ(0) =
8 t
0
dξ(s) =

8 t
0
ξ(s)X(s) dWs.

Therefore

ξ(t) = 1+
8 t
0
ξ(s)X(s) dWs.

Recall now, that
$
ξ(s)X(s) dWs, like any other

It¶o-integral, is a martingale, that is:

Et

X8 t+u
0

ξ(s)X(s) dWs

~
=
8 t
0
ξ(s)X(s) dWs.

Therefore:

Et[ξ(t+ u)] = Et

X
1+

8 t+u
0

ξ(s)X(s) dWs

~

= 1+
8 t
0
ξ(s)X(s) dWs = ξ(t),

that is, ξ(t) is a martingale.



In order to gain some intuition for the mean-

ing of the process X(t) in the Girsanov theo-

rem, let us assume that X is a constant, say

X = µ. We obtain then by evaluating the

integrals in ξ(t):

ξ(t) = exp

}
µW(t)− 1

2
µ2t

]
,

in particular for t = 1, where W(t) =W(1) ∼
N(0,1):

ξ(1) = exp

}
µW(1)− 1

2
µ2
]
,

which is identical to the Radon-Nikodym deriv-

ative we used in order to transform the N(0,1)-

distributed r.v. Z into a N(µ,1)-distributed

r.v. ~Z. Furthermore, going back to the Gir-

sanov theorem for X = µ:

~W(t) =W(t)− µt.
We observe that X(t) introduces a general

drift in the Girsanov theorem, just like µ shifted

the mean in the Radon-Nikodym derivative.

However, X(t) is an It-adapted process, al-
lolwing for fairly complicated drifts.



Although X(t) introduces a drift into ~W(t),
according to the Girsanov theorem, this drift
is removed under the new probability measure
~P . We may verify this for our special case
X = µ by calculating the expected value of
~W(T) under the new probability measure ~P :

E
~P
D
~W(T)

i
=

8 ∞
−∞

~W(T ) d~P =

8 ∞
−∞
(W(T)− µT)ξ(T) dP

=

8 ∞
−∞
(w − µT) exp

w
µw − 1

2
µ2T

W
1√
2πT

exp

w
−w

2

2T

W
dw

=
1√
2πT

8 ∞
−∞
(w − µT) exp

w
−(w − µT )

2

2T

W
dw

=
1√
2πT

8 ∞
−∞

y exp

w
−y

2

2

W
dy = 0,

where we have used that the probability mea-

sure of the N(0, T)-distributed random vari-

able W(T) is

dP(W(T)) =
1√
2πT

exp

X
−w

2

2T

~
dw,

and we have substituted y(w) = w − µT .

So there is indeed no drift in the process
~W(t) = W(t) − µt under the new probabil-

ity measure ~P .



Application: Geometric Brownian Motion

Let

St = S0 exp

l
(µ− σ2

2
)t+ σWt

M
.

Then

Zt := ln

X
St

S0

~
= (µ− σ2

2
)t+ σWt

with probability measure

dP(z) =
1√
2πσ2t

exp

l
−[z − (µ−

σ2

2
)t]2

2σ2t

M
dz = f(z)dz,

because Zt ∼ N((µ− σ2

2 )t),σ
2t).

By substituting z(y) = ln y we ¯nd for the

probability measure of Yt = eZt = St/S0:

dP(z(y)) =
dP

dz

dz

dy
dy = f(z(y)) · 1

y
dy

=
1√

2πσ2ty
exp

⎧⎨⎩− 1

2σ2t

^
ln y − (µ− σ2

2
)t

�2⎫⎬⎭ dy
= f(y) dy



where f(y) denotes the probability density

function of a lognormally distributed random

variable Yt ∼ ¤((µ− σ2

2 )t),σ
2t).

Substituting y(s) = s/S0 yields for the prob-
ability measure of St = S0Yt:

dP(y(s)) =
dP

dy

dy

ds
ds= f(y(s)) · 1

S0
ds

=
1√

2πσ2ts
exp

⎧⎨⎩− 1

2σ2t

^
ln

X
s

S0

~
− (µ− σ2

2
)t

�2⎫⎬⎭ ds
= f(s) ds

St is not a martingale under this measure, be-
cause recalling that exp(σWt− σ2

2 t) is a mar-
tingale with respect to P we ¯nd:

EPt (St+u) = EPt

X
S0e

µ(t+u)e−
σ2

2 (t+u)+σWt+u

~

= S0e
µ(t+u)EPt

X
e−

σ2

2 (t+u)+σWt+u

~

= S0e
µ(t+u)e−

σ2

2 t+σWt

= eµuS0e

p
µ−σ22

Q
t+σWt

= eµuSt.



But the discounted process ~St = e−rtSt would
be a martingale if µ = r, because then:

EPt
p
e−r(t+µ)St+u

Q
= e−r(t+µ)EPt (St+u)

=e−r(t+µ)eµuSt = e−rte−(µ−r)uSt = e−rtSt.

However, in the real world we have usually

µ > r, because investors require a positive

risk premium for risky investments. Luckily

the Girsanov theorem tells us, that we can

¯nd a probability measure ~P , that transforms

the drift term in such a way that ~St becomes

a martingale.



For that purpose, rewrite Zt = (µ−σ2

2 )t+σWt

in the following way:

Zt = (r − σ2

2
)t+ σWt+ (µ− r)t

= (r − σ2

2
)t+ σ ~Wt

with

~Wt =Wt − 1
σ
(r − µ)t,

that is,

~Wt =Wt −
8 t
0
X(u) du

with

X(u) =
1

σ
(r − µ).

The Girsanov theorem tells us then that ~Wt

is a standard Wiener process under the new

probability measure

d~P ( ~w) =
1√
2πt

exp

X
− ~w

2

2t

~
d~w,



implying that exp(σ ~Wt − σ2

2 t) is a martingale

with respect to ~P .

We have therefore, referring to our earlier

calculation of EPt (St+u):

E
~P
t (St+u) = E

~P
t

p
S0e

Zt+u
Q

=E
~P
t

X
S0e

(r−σ22 )(t+u)+σ ~Wt+u

~
=eruSt,

such that

E
~P
t (~St+u) = E

~P
t

p
e−r(t+u)St+u

Q
= e−r(t+u)E ~P

t (St+u)

= e−r(t+u)eruSt
= e−rtSt = ~St,

implying that the discounted process ~St is a

martingale under the new probability measure

~P .



Risk-neutral valuation in practice

In practice, this calls for the following strat-

egy in pricing derivatives, where the under-

lying may be assumed to follow geometric

Brownian motion:

1. Simulate GBM with drift µ replaced by

the riskfree rate r.

2. Using many simulations, take the average

of the derivatives payo® XT at expiration T

as an approximation for E
~P (XT ).

3. Discount the result with the risk-free rate

to get an approximation for X0 = e−rtE~P(XT).

Example 17

Risk-neutral valuation by Monte-Carlo sim-

ulation of a European call with 6 months

to maturity, strike-price X = 50, stock-price

S = 47, risk-free rate r = 5%, and volatility

σ = 30%.


