Mathematics of Financial Derivatives: Exercise Sheet 4

1. In order to justify the shorthand notation $d W_{1} d W_{2}=0$, show that the Itó integral of two independent Wiener processes W_{1} and W_{2} is zero, that is:

$$
\int_{0}^{t} d W_{1} d W_{2}=0
$$

Hint: Partition the time interval $[0, t]$ into n subintervals of equal length (t / n) and consider $\mathrm{E}\left(I_{n}(t)^{2}\right)$ in the limit $n \rightarrow \infty$, with elementary integrals $I_{n}(t)=\sum_{i=1}^{n}\left(W_{t_{i}}^{(1)}-W_{t_{i-1}}^{(1)}\right)\left(W_{t_{i}}^{(2)}-W_{t_{i-1}}^{(2)}\right)$.
2. a) Using Ito's formula, show that

$$
S_{t}=\left(W_{t}+\sqrt{S_{0}}\right)^{2}
$$

is the solution of the stochastic differential equation

$$
d S_{t}=d t+2 \sqrt{S}_{t} d W_{t}
$$

Hint: A reasonable start off guess for $\int d S_{t}$ is $F\left(S_{t}, t\right)=S_{t}{ }^{1 / 2}$. Apply Itos formula and integrate on both sides.
b) Cross-check your result by applying Itos formula to S_{t} above.
3. a) Using Ito's formula, show that

$$
S_{t}=e^{-\mu t} S_{0}+e^{-\mu t} \int_{0}^{t} e^{\mu s} \sigma d W_{s}
$$

is the solution of the Ornstein-Uhlenbeck SDE

$$
d S_{t}=-\mu S_{t} d t+\sigma d W_{t}
$$

where μ and σ are constants, and W_{t} is a standard Wiener process. Hint: A reasonable start off guess for $\int d S_{t}$ is $F\left(S_{t}, t\right)=e^{\mu t} S_{t}$. Apply Itos formula and integrate on both sides.
b) Cross-check your result by applying Itos formula to S_{t} above. Hint: You may write the process as $S_{t}=e^{-\mu t}\left(S_{0}+X_{t}\right)$ with $X_{t}=$ $\int_{0}^{t} e^{\mu s} \sigma d W_{s}$. Note that $X_{t}=\int_{0}^{t} f(s) d W_{s}$ implies $d X_{t}=f(t) d W_{t}$.
4. The goal of this exercise is to show that the Black-Scholes call option formula

$$
F\left(S_{t}, t\right)=S_{t} N\left(d_{1}\right)-X e^{-r \tau} N\left(d_{2}\right)
$$

with

$$
\begin{gathered}
d_{1}=\frac{\log \left(S_{t} / X\right)+\left(r+\frac{1}{2} \sigma^{2}\right) \tau}{\sigma \sqrt{\tau}}, \\
d_{2}=\frac{\log \left(S_{t} / X\right)+\left(r-\frac{1}{2} \sigma^{2}\right) \tau}{\sigma \sqrt{\tau}}=d_{1}-\sigma \sqrt{\tau} \\
\tau=T-t, \quad \text { and } N\left(d_{i}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d_{i}} e^{-\frac{1}{2} x^{2}} d x, \quad i=1,2
\end{gathered}
$$

satisfies the Black-Scholes PDE:

$$
-r F+r F_{s} S+F_{t}+\frac{1}{2} \sigma^{2} F_{s s} S^{2}=0 .
$$

a) Calculate the partial derivatives

$$
\frac{\partial d_{1}}{\partial S}, \quad \frac{\partial d_{2}}{\partial S}, \quad \frac{\partial d_{1}}{\partial \tau}, \text { and } \frac{\partial d_{2}}{\partial \tau}
$$

b) Show that $S_{t} N^{\prime}\left(d_{1}\right)=X e^{-r \tau} N^{\prime}\left(d_{2}\right)$ where $N^{\prime}\left(d_{i}\right)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} d_{i}^{2}}$ for $i=1,2$ by the fundamental theorem of calculus.
Hint: It is probably easiest to start from the right side.
Use $d_{2}=d_{1}-\sigma \sqrt{\tau}$ and $X=e^{\ln X}$.
c) Show that

$$
F_{s}=N\left(d_{1}\right) \quad \text { and } \quad F_{s s}=\frac{N^{\prime}\left(d_{1}\right)}{\sigma S \sqrt{\tau}}
$$

Hint: Note that F depends upon S also indirectly through $N\left(d_{1}\right)$ and $N\left(d_{2}\right)$. Therefore you need to use your result obtained in b$)$.
d) Show that

$$
F_{t}=-r X e^{-r \tau} N\left(d_{2}\right)-S N^{\prime}\left(d_{1}\right) \frac{\sigma}{2 \sqrt{\tau}} .
$$

Hint: Note that

$$
F_{t}=\frac{\partial F}{\partial t}=\frac{\partial F}{\partial \tau} \cdot \frac{\partial \tau}{\partial t}=-\frac{\partial F}{\partial \tau}
$$

You will several times have to use your result obtained in b).
e) Show that F satisfies the Black-Scholes PDE:

$$
-r F+r F_{s} S+F_{t}+\frac{1}{2} \sigma^{2} F_{s s} S^{2}=0
$$

