VAASAN YLIOPISTO

HENDRIK LUIT WIETSMA

On Unitary Relations between
Krein Spaces

ACTA WASAENSIA NO 263

MATHEMATICS 10

UNIVERSITAS WASAENSIS 2012



Reviewers Professor Vladimir Derkach
Donetsk National University
Department of Mathematics
83055 Donetsk
Ukraine

Professor Harald Woracek

Vienna University of Technology

Institute for Analysis and Scientific Computing
1040 Vienna

Austria



Julkaisija Julkaisuajankohta

Vaasan yliopisto Kesakuu 2011
Tekija(t) Julkaisun tyyppi
Hendrik Luit Wietsma Monografia

Julkaisusarjan nimi, osan numero
Acta Wasaensia, 263

Yhteystiedot ISBN

Vaasan Y liopisto 978-952-476-405-6
Teknillinen tiedekunta ISSN

Matemaattisten tieteiden yksikko 0355-2667, 1235-7928
PL 700 Sivumaara | Kieli
65101 Vaasa 158 Englanti

Julkaisun nimike
Krein-avaruuksien vélisista unitaarisista relaatioista

Tiivistelma

Operaattoriteorian alueella on kehitetty useita menetelmia tavallisten ja osittais-
differentiaaliyhtéléiden reuna-arvo-ongelmien indusoimien (itseadjungoitujen)
reaalisaatioiden tutkimiseksi, kuten redusoivat operaattorit, reuna-arvoavaruudet,
(yleistetyt) reunakolmikot ja splitatut Dirac-rakenteet. Hiljattain on osoitettu, etta
kaikille edellda mainituille menetelmille voidaan antaa tulkinta Krein-avaruuksien
moniarvoisten unitaaristen operaattoreiden eli unitaaristen relaatioiden avulla.
Tama seka J.W. Calkinin varhainen julkaisu ovat muodostaneet laht6kohdan nyt
késilla olevalle tutkimukselle, jossa tarkastellaan Krein-avaruuksien vélisid uni-
taarisia relaatioita.

Tutkimuksessa kehitetddn kaksi geometrisluontoista menetelmaa, jotka tuottavat
alempaa Yyksityiskohtaisempaa tietoa Krein-avaruuksien vélisistd unitaarisista
relaatioista, niiden rakenteesta ja keskeisista kuvausominaisuuksista seka toisaalta
isometristen ja unitaaristen relaatioiden valilla vallitsevista eroavuuksista. L&hto-
kohtana néille menetelmille tutkimuksessa tarkastellaan unitaaristen relaatioiden
kayttaytymistd tiettyjd maksimaalisuusominaisuuksia omaavien aliavaruuksien
suhteen ja johdetaan tdman jalkeen kumpaankin menetelmaan liittyen unitaarisille
relaatioille lohkomuotoiset esitykset, joita voidaan pitédd tdman tutkimustyon kes-
keisind péatuloksina. Namé& esitykset mahdollistavat unitaaristen relaatioiden
hankalasti hallittavien ominaisuuksien — jotka johtuvat Krein-avaruuksien unitaa-
risten relaatioiden epéjatkuvuudesta — aiempaa syvéllisemman ymmartamyksen.
TyoOssd osoitetaan muun muassa kuinka J.W. Calkinin edelld mainitun julkaisun
paéatulokset voidaan todistaa helposti mainittujen lohkoesitysten avulla. Tyon tu-
loksia sovelletaan my6s laajoihin epdjatkuvien isometristen ja unitaaristen ope-
raattoreiden luokkiin, joita tyypillisesti esiintyy osittaisdifferentiaaliyhtéldiden
alueella tehtdvassa tutkimuksessa.

Asiasanat

Operaattoreiden laajennusteoria, isometrinen relaatio, unitaarinen relaatio, Krein-
avaruus, tavallinen ja osittaisdifferentiaaliyhtéld, reunakolmikko, kvasireunakol-
mikko, Weyl funktio.
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Abstract

In order to study (selfadjoint) realizations of ordinary and partial differential
equations, different operator-theoretical objects have been introduced; for in-
stance, reduction operators, boundary value spaces, (generalized) boundary tri-
plets and split Dirac structures. Recently it was shown that all those objects can
be interpreted as unitary multi-valued operators (unitary relations) between cer-
tain Krein spaces. Motivated thereby, and by an early paper of J.W. Calkin, the
author has investigated unitary relations between arbitrary Krein spaces.

In this dissertation two geometrical approaches to unitary relations between Krein
spaces are developed and used to obtain further information about the structure
and the essential mapping properties of unitary relations, as well as to describe the
difference between isometric and unitary relations. A starting point for both ap-
proaches is an investigation of the behavior of unitary relations with respect to
special types of maximal subspaces. As a consequence, block representations for
unitary relations are established. Those representations, which are the main con-
tribution of this dissertation, provide a deeper understanding of the unbounded
behavior of unitary relations between Krein spaces. For example, the derived rep-
resentations lead to simple proofs for the main statements in Calkin’s above men-
tioned paper. The obtained results are also applied to a large class of unbounded
unitary and isometric operators which naturally occur in the study of partial dif-
ferential equation.
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1 INTRODUCTION

The subject of this dissertation is unitary relations betweeiirkgpaces. As is well
known, unitary operators between Hilbert spaces are bounded everywhere defined
isometric operators with bounded everywhere defined inverses. K&, jf-,-);}
and{$., (-,-)2} are Hilbert spaces, thdi is a unitary operator froni$, (-, )1}

to {9, (+,-)2} ifand only ifran U = $, and

(f,91=(UfUg), Vf,ge€domU = 9.

Unitary operators between Kirespaces were initially introduced as everywhere de-
fined isometric operators with everywhere defined inverse, see (A&iZokhvi-

dov 1989: Ch. 11,85 and the remarks to that section). l.e.{&;, [, ];} and
{Ra, [, ]2} are Kré@n spaces, thel is a unitary operator betwedtR,, |-, -];} and
{Ra, [,-]2} ifand only ifran U = K, and

[f.9h =[Uf,Ugle, Vf,g€domU = &;.

Such unitary operators, which are here called standard unitary operators, are closely
connected to unitary operators between Hilbert spaces. In particular, they behave
geometrically essentially the same as those unitary operators. R. Arens (1961)
introduced an alternative, very general, definition of unitary relations (multi-valued
operators): a relatioff between Krén spaces isinitary if

Ut =0t

where the adjoint is taken with respect to the underlying indefinite inner products,
cf. Yu.L. Shmuljan (1976) and P. Sorjonen (1980). Note that all standard uni-
tary operators satisfy the above equality. With this definition unitary relations are
closed, however, they need not be bounded nor densely defined and they can be
multi-valued. Therefore their behavior differs essentially from Hilbert space uni-
tary operators.

Example 1.1.Let B be a closed relation in the Hilbert spag®, (-, -)} and on$?
define the indefinite inner produet -, - > by

<{f, Y Ae. g}y >=il(f.d)=(f" 9. f.f. 9.9 €89

Then{$?, < -,- >} is a Krdn space and@ defined onH? as

U{fl,fg} = {Bfl, (B*)ilfg}, f1 € dom B, f2 € ran B*
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is a unitary relation i $?, < -,- >} with ker U = ker B x mul B* andmul U =
mul B x ker B*. Clearly,U has closed domain (and range) if and onlysifand
B~! have closed domain. Moreovér,is a unitary operator with a trivial kernel if
and only ifker B = {0} = mul B anddom B = $ = tan B. In particular, if B
satisfies the preceding conditions, tiémas an operator block representation:

U B 0 ’
0 B~

where the representation is with respect to the decompositior of 2.

Motivation

The motivation for the present study of unitary relations betweennkspaces
comes from the extension theory of symmetric relations in Hilbert anthisgaces.
Therein unitary relations naturally appear, although usually under a different name.
In particular, this work was motivated by the rediscovery of J.W. Calkin’s 1939 pa-
per on extension theory by V. Derkach, the recent investigations of extension theory
in connection with partial differential equations by J. Behrndt and M. Langer, see
(Behrndt& Langer 2007), and by the recent papers of V. Derkach, S. Hassi, M.
Malamud and H.S.V. de Snoo where unitary relations betweeinkagaces ap-
peared in the setting of extension theory, see (Derkach et al. 2006; 2009). In order
to make this motivation more concrete, a short overview of the extension theory
of symmetric relations is presented. This overview at the same time shows how
unitary relation appear/can be used in a more practical setting.

Maximal symmetric extensions of (unbounded) symmetric operators in (separable)
Hilbert spaces have initially been studied by J. von Neumann in the late twenties.
He used the Cayley transform to obtain a formula which expresses the domain of
the adjointS* of a symmetric operata$ in terms of the domain of the symmetric
operator and its defect spaces:

domS* =dom S+ {f;: (S*—0)fi =0} +{f_i: (S"+1)f; =0},

see (von Neumann 1930: Satz 29). The above expression is now known as the
von Neumann formula and has formed the basis for the early investigations of ex-

tensions of symmetric operators. In particular, J. von Neumann showed that the
defect numbers of a symmetric operator, which can be defined by means of the von
Neumann formula, characterize which type of maximal symmetric extensions an

(unbounded) symmetric operator has.
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Motivated by questions connected with selfadjoint realizations of partial differen-
tial equations, cf. Example 1.5 below and see (Calkin 1939b), the investigations
of maximal extension of symmetric operators was continued by J.W. Calkin almost
a decade later. As the main tool in his investigations J.W. Calkin introduced re-
duction operators for the adjoint of symmetric operators (in Hilbert spaces), see
(Calkin 1939a); these operators can in fact be interpreted as unitary operators be-
tween Krén spaces, see (HagsiWietsma 2012: Proposition 2.7). For instance, us-
ing bounded reduction operators an elegant and complete description was given for
all the maximal symmetric extensions of a symmetric operator, see (Calkin 1939a:
Theorem 4.1); that result would only later be rediscovered, see (Gorb&ctdt-
bachuk 1991). Moreover, using unbounded reduction operators J.W. Calkin studied
maximal extensions of a symmetric operator whose graph is contained in a dense
subspace of the graph of the adjoint of the symmetric operator; this is a problem
which naturally occurs in connection with partial differential equations. As in the
case of bounded reduction operators, he showed that there are two possibilities:
Either each maximal symmetric extension of a symmetric operator has the same
defect numbers or there exist maximal symmetric extensions with "arbitrary” de-
fect numbers. J.W. Calkin also investigated the structure and mapping properties
of reduction operators. Of particular interest is his domain decomposition of such
operators, see (Calkin 1939a: Theorem 3.5); that decomposition is the central result
in the aforementioned paper.

The parametrization of selfadjoint extensions of symmetric operators resurfaced
in the book of N. Dunford and J.T. Schwartz (1963). Recall therefore that one
can associate to ordinary differential equation a symmetric operator, the so-called
minimal operator, and that its adjoint is called the maximal operator. Wanting to
apply the spectral theory of selfadjoint operators to this setting, they needed to
describe the selfadjoint restrictions of the maximal operator. This they in fact did
by means (of systems) of so-called boundary values for the maximal operator, see
Example 1.2 below.

Example 1.2.In the Hilbert spacd ?(z), where: = [0, 1], consider the following
differential expression

(f) (@) = f"(x) + f(z), =€

To study this differential equation, a maximal and minimal operdtgy, and T in,
are associated to it:

Thaxf = Lf, domTmax={f € L*(2) : £f € L*(1), f, [ € ACic(2)}

and

Twinf = Lf, domTmin = {f € domTyax: f(0) = f'(0) = f(1) = f'(1) = 0},
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see e.g. (Behrndt et al. 2011b). Boundary values for this setting, in terms of Dun-
form and Schwartz (1963), would be for example

arf = f(0) or axf=f(1), doma; =domay = dom Tax.
Note that it can be shown that the operatodefined as
Af =(f, domA={f € domTmax: a1(f) = 0= as(f)}.

is a selfadjoint restriction df 4.

In the seventies V.M. Bruck and A.N. Kochuhedependently introduced so-called
boundary value spaces (BVS'’s) to describe the selfadjoint extensions of densely de-
fined symmetric operators in Hilbert spaces with equal defect numbers, see (Gor-
bachuk& Gorbachuk 1991) and the references therein. For a densely defined sym-
metric operatolS, this BVS is a triple{H, 'y, I'; }, where’H is a auxiliary Hilbert
space, often called the boundary space,landndI’; are mappings defined on the
domain of S* and mapping ontd{. As a consequence of their structure, BVS’s
would later usually be called ordinary boundary triplets. By means of these objects
the selfadjoint extensions ¢f can be parameterized by selfadjoint relation&{in

Example 1.3. For the situation in Example 1.2 a possible choice of a boundary
triplet {H, Ty, T'1 } for Thaxis

f(0) f'(0)
=C?, To{f, T = andl'; {f, T, = — (11
H ) O{fa maxf} (f/(l) l{fu maxf} f(l) ( )
Note that with this definition the selfadjoint extensidnof 71, in Example 1.2
is the restriction ofl 1, to ker I'y and thatl’ = I'y x I'; is a (bounded) reduction
operator forTax in the terminology of J.W. Calkin.

Not only was the boundary triplet introduced to describe selfadjoint extensions of
symmetric operators, it was also used to describe maximal dissipative and accumu-
lative extensions of symmetric operators and to describe spectral properties of those
extensions. In order to obtain the latter results the so-called characteristic function
of a symmetric operator was introduced by A.N. Kochulsee (Gorbachuk et al.
1989) and the references therein. In the middle of the eighties V. Derkach and
M.M. Malamud investigated the Cayley transform of this characteristic function,
see (Derkaci: Malamud 1985; 1991), and showed that this transform is a so-
called Q-function for the symmetric operator; tha@gdunctions had been studied
earlier by M.G. Krén and H. Langer. In the literature of boundary triplets this trans-
formed characteristic function is nowadays called the Weyl function (associated to
a boundary triplet).
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Later V. Derkach and M.M. Malamud generalized the concept of a boundary triplet
to the concept of a generalized boundary triplet, see (Derkabtalamud 1995).

This generalization allows for the realization of a greater class of functions as
Weyl functions and also allows for the applicability of boundary triplet methods
to a larger class of problems (without regularizing). For instance, the closure of
the triplet {L?(092),T'y, —Tz} from Example 1.5 below is a generalized bound-
ary triplet which is not an ordinary boundary triplet, see (Beh&adtanger 2007:
Proposition 4.6). There is however a price to pay for using generalized boundary
triplets instead of ordinary boundary triplets, the latter are bounded (with respect to
the appropriate topologies) while the former are not.

In the present millennium the aforementioned two authors together with S. Hassi
and H.S.V. de Snoo developed the boundary triplet approach by, among other things,
incorporating Krén space terminology and methods into it, see (Derkach et al.
2006; 2009). In particular, they showed that ordinary boundary triplets, and their
various generalizations, can be seen as unitary relations betweém sfraces
whose inner products have a specific, fixed, structure.

Example 1.4. Recall that for a Hilbert spacg, (-,-)s}, $H2 equipped with the
indefinite inner produck -, - >, defined by

< {f>fl}7{gvg/} >5’):i[<fag/)ﬁ - (f/mg)ﬁ]u f7f/>g7g/ S 57)7

becomes a Kii@ space. With this notation consider the mapging I'y x I'; from
L3([0,1]) x L*([0,1]) to C*, wherel, andl'; are as in (1.1). Theh is a (bounded)
unitary operator from the Kfa space{L*([0, 1]) x L*([0,1]), < -, >12(j0,1})} Onto
the Krdn space{C? x C2, < -, >¢2}.

In order to apply boundary triplet type techniques to partial differential equations,
J. Behrndt and M. Langer generalized the concept of a generalized boundary triplet
to the concept of a quasi-boundary triplet in their 2007 paper. Quasi-boundary
triplets can not be interpreted as unitary operators betweem lsp@aces. How-
ever, they can be interpreted as a special type of isometric operators betwé&en Kre
spaces, which are closely related to unitary operators betweén $fyaces. Quasi-
boundary triplets naturally appear in the setting of partial differential equations as
the following example taken from (Behrn&tLanger 2007) shows.

Example 1.5.Let 2 be a bounded domain i&* with C*°-boundaryd$2 and define
the differential expressiohas

2 2

(€)w0) = 53l 00) + s fn), (o) €
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i.e.,/is the Laplacian iR%. With ¢ associate a maximal operafbrand a minimal
operatorS in the Hilbert spacd.?(2) via

Tf=1(f, domT = H*(A)

and
Sf=1f, domS:{fEHQ(A):f’aQIO:%

3
o0N

where H?(A) is the Sobolev space of order two. Define the mappingandT’;
from L?(Q) x L*(Q) to L?(9Q) via
of

Po{f.Tf} = floa and TW{f,Tf}=- 2

, fedomT.
o0

ThenkerI'y N kerI'; = gr S and with these operators the Laplace (or Green’s)
identity takes the following form:

(Tf,9)a— (f,Tg)a= TH{f,Tf},Tolg, Tg})oa — (Lol f, Tf},T1{g, Tg})oq-

The above equality is precisely saying thhat= 'y x I'; is an isometric operator
from the Krén space L?(Q2) x L*(Q2), < -, - >2(q) } to the Krén space{ L?(92) x
L*(09Q), < -,- >12000)}, See Example 1.4 for the notation. Moreover, it can be
shown thatanT" = L?(99Q) x L?*(992) and thatA y defined via

Anf=Tf, domAy={f€domT :To{f,Tf} = floa =0}

is a selfadjoint extension of the symmetric operaforAs a consequence of these
properties{ L*(09), Ty, '} is a quasi-boundary triplet for the adjoint 8f More-
over, the closure df is a unitary operator betwe€l.?(Q2) x L?(Q2), < -, >12(q)}
and{L*(09) x L*(0%), < -,- >12(s0)}, see (Behrnd&: Langer 2007: Proposition
4.6).

Other extensions of the concept of a boundary triplet have been made by V.A.
Derkach, who introduced boundary triplets in Krespaces so as to be able to
study extension theory of symmetric operators iniKigpaces, see (Derkach 1995;
1999), and by V. Mogilevskii, who introduced D-boundary triplets to investigate
extensions of symmetric operators with unequal defect numbers, see (Mogilevskii
2006). Also those objects can be interpreted as unitary operators betwden Kre
spaces. Note also that for instance the notion of a (split) Dirac structure, which
appears in system theory, can be interpreted as a unitary relation, see (Behrdnt et
al. 2010: Proposition 4.6).
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Aims

The main aim of this dissertation is to obtain a better understanding of the structure
and geometrical behavior of unitary relations betweeniKepaces; in particular,

of unitary relations with an unbounded operator part or, equivalently, with a non-
closed domain. More specifically, it is first of all attempted to understand how much
(special types of) isometric relations differ from unitary relations (here a relation
V between Krén spaces is isometric If € V) and how unitary relations with

a closed domain differ from those with a non-closed domain. The second major
aim of this dissertation is to investigate the essential mapping properties of unitary
relations. In particular, an aim is to obtain conditions for the pre-image of a neutral
subspace under a unitary relation (or, more generally, under an isometric relation)
to be (hyper-)maximal neutral.

Outline

Following is an outline of this dissertation which consists out of nine chapters,
including this introduction, and an appendix.

The second chapter contains preparations for the later chapters. In particular, there
the basics of Krim spaces are recalled and the Krepace notation that will be

used in this dissertation is fixed. Thereafter a special class of maximal semi-definite
subspaces is introduced and characterized. This is followed by a short section on
decompositions of a subspace with respect to another subspace and a section on
multi-valued operators. The final section of this chapter contains some representa-
tions of semi-definite subspaces by means of multi-valued operators.

In the third chapter the basic properties and characterizations of (maximal) iso-
metric and unitary relations are given. In particular, it is shown that the behavior of
unitary relations with respect to their kernel, multi-valued part and closed uniformly

definite subspaces contained in their domain and range is of a simple nature.

Thereupon, in Chapter 4, special classes of unitary relations are investigated. More
specifically, unitary relations with a closed domain and standard unitary operators
are considered and, moreover, two types of isometric (unitary) relations having a
simple block representation are introduced. Those latter isometric (unitary) rela-
tions, which will be called archetypical isometric (unitary) relations, will play a big
role in the later chapters; they, and their composition, essentially show what kind
of geometrical behavior unitary relations can exhibit.
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In the fifth chapter it is shown how unitary relations are characterized by means of
their behavior with respect to uniformly definite subspaces. In particular, it is there

shown that unitary relations can essentially be characterized by one identity; the
so-called Weyl identity. Using this approach a known quasi-block representation

for unitary operator is obtained which is thereafter extended to a quasi-block repre-
sentation for maximal isometric operators. Also some applications of this approach
to unitary relations are presented there.

Thereafter, complementing the fifth chapter, the behavior of unitary relations with
respect to hyper-maximal semi-definite subspaces is investigated in the sixth chap-
ter. In particular, there it is shown that unitary relations contain hyper-maximal
semi-definite subspaces in their domain (and range).

Extending upon the results from Chapter 6, block representations for unitary rela-
tions, and also for certain types of isometric relations, are presented in the seventh
chapter. Those block representations will be expressed in terms of the archetypical
isometric operators introduced in the fourth chapter. In particular, it is shown that
the obtained block representations for unitary operators are a useful tool by giving
simple proofs for the most important statements from (Calkin 1939a).

In the eight chapter a classification from (Calkin 1939a) is considered; that classifi-
cation was introduced by J.W. Calkin in order to describe the maximal neutral sub-
spaces contained in the domain of an unbounded unitary operator (betwaan Kre
spaces). In Chapter 8 that classification is extended, further implications of it are
stated and new characterizations for it are given. In particular, a characterization of
the classification in terms of a block representation for unitary operators is given.

Finally, Chapter 9 contains a summary of obtained results. In particular, there it is
shown how the above formulated aims have been fulfilled. Furthermore, to indicate
the applicability of the results the bibliography is followed by an appendix in which
part of the obtained results are applied to different types of boundary triplets.
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2 PRELIMINARIES

This chapter containing preliminary results consists out of five sections. In the
first section some elementary facts aboutiigpaces are recalled from (Aziz&v
lokhvidov 1989) and (Bogar 1974), and the Kifia space notation used in this dis-
sertation is fixed. Thereupon in the second section the notion of hyper-maximality
of a neutral subspace in a Knespace is recalled from (Azizd lokhvidov 1989)

and that notion is extended to all semi-definite subspaces of la Kpaces; such
subspaces will be naturally encountered when unitary relations are considered, see
Chapter 6. The most important property of hyper-maximal semi-definite subspaces
is that they induce a orthogonal decomposition of the space. In the third section the
abstract equivalents of the von Neumann formulas, used in the analysis of symmet-
ric operators, are identified/stated. The fourth section contains a short introduction
to multi-valued operators, which are also called linear relations. In the last sec-
tion of this chapter representations of semi-definite subspaces by means of (Hilbert
space) relations are presented. Two types of angular representation are given: The
traditional representation with respect to a canonical decomposition of the space,
see (Azizow lokhvidov 1989: Ch. 1§8), and a second representation with respect

to hyper-maximal neutral subspaces.

2.1 Basic properties of Kra spaces

A vector spacef with an indefinite inner produdt, -] is called aKrein spaceif
there exists a decomposition &finto the direct sum of two subspaces (linear sub-
sets)fT and®~ of 8 such tha{ ™, [-,-]} and{&~, —[-, -]} are Hilbert spaces and
[ft, /7] =0, ft € KT andf~ € & ; a decompositiomR"[+]R~ of K is called a
canonical decompositioaf {&, [-,-]}. (Here the sum of two subspac®s and9t

is said to bedirectif 9t N 91 = {0}, in which case the sum is denoted Py+M0.)
The dimensions of™ and &~ are independent of the canonical decomposition of
{&,[-,-]} and are denoted by" andk~, respectively.

For a Kran space{ &, |-, -]} there exists a linear operatpoin £ such that{ &, [j-, |}

is a Hilbert space and with respect to its inner prodtiet j—! = j. Any mapping

j satisfying the preceding properties is calleflindamental symmetof { &, |-, |}
Conversely, if{9, (-,-)} is a Hilbert space andis a fundamental symmetry in

{9, (-,)}, then{$, (j-,-)} is a Krén space. Each fundamental symmetry induces

a canonical decomposition and, conversely, each canonical decomposition induces
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a fundamental symmetry. However, all the norms generated by the different funda-
mental symmetries are equivalent. Hence a subspace of tfie pace{ &, |-, |}

is calledclosedif it is closed with respect to the definite inner prodijet:| for one

(and hence for every) fundamental symmetry{ &f[-, -] }.

Example 2.1.Let {$, (-, -)} be a Hilbert space and definen $? as
j{fvf,}:i{_f/7f}7 faf,EfJ-

Thenj is a fundamental symmetry in the Hilbert spde¢, (-,-)},i.e.j =)~ =j*.
Hence, with the sesqui-linear form -, - > defined onf? by

<{f, 11 9.9y >= {511 =il(fg) = (9l £ 1 9.9 €9,

{$? < -,- >} is a Krdn space for which is a fundamental symmetry. Note that
if &*[+]&" is the canonical decomposition §6? < -,- >} corresponding to the
fundamental symmetrjyy then

Rt =ker(G—1)={{f,if}: f€H};
R =ker(j+1)={{f—if}: fenH}

For a subspac€ of the Krén space{&, [, ]} the orthogonal complemerdf £,
denoted byelt, is the closed subspace {f, [-, -]} defined as

g —{feR:[f,g]=0, Vge £}.

If j is a fixed fundamental symmetry ¢R, |-, -|}, then thej-orthogonal comple-
ment of £, i.e. the orthogonal complement with respecfjto], is denoted bye*.
Clearly, £+ = jgt = (j€)*. For subspace®t andN of the Kréin space &, [+, -]}
with a fixed fundamental symmetijjthe notatiordt[+|9 and9t & N is used to
indicate that the sum @t and9t is orthogonal ojj-orthogonal, respectively. Note
that

M Aot = @ + o and o + o c omnoy™ . (2.1)

Lemma 2.2 below gives a condition for the inclusion in (2.1) to be an equality, see
(Kato 1966: Ch. IV: Theorem 4.8).

Lemma 2.2. Let9t and91 be closed subspaces of the Krepace({ &, [+, ]}. Then
M + MNis closed if and only i + N is closed.

Moreover, if either of the above equivalent conditions holds, then

M+ o = (mnon),
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A projection P or P onto a closed subspace of the Krespace{R, |-, -]} with
fundamental symmetryis calledorthogonalor j-orthogonalif

K =ker P[+Jran P or KR=kerP ®ranP,

respectively. Recall in this connection tHaer P, [+, -]} and{ran P, [, -]} are Krén
spaces, see (Azizo& lokhvidov 1989: Ch. 1, Theorem 7.16). Note that for a
canonical decompositioR*[+]R~ of { R, |-, -]}, with associated fundamental sym-
metryj, the projections®* and P~ onto " and &, respectively, are orthogonal
andj-orthogonal projections. For a subspatthose projections satisfy

gtlngt=gtepPre and gHng =g P ¢ (2.2)

A subspaceg of {8, [, -]} is calledpositive negative nonnegativenonpositiveor
neutralif [f, f] > 0, [f,f] < O, [f,f] = 0, [f,f] < 0or]f, f] = 0 for every
f € £\ {0}, respectively. A positive or negative subspates calleduniformly
positiveor negativeif there exists a constant > 0 such thatljf, f] < «[f, f] or
if, f1 < —alf, flforall f € £\ {0} and a fundamental symmetypf { &, [-, -]},
respectively. Note that a subspagef {&, [-, -]} is neutral if and only if¢ C gl4l.
This observation together with (2.2) yields the following result.

Proposition 2.3. (Azizov& lokhvidov 1989: Ch. 1, Corollary 5.8) Let be a
neutral subspace of the Kirespace( &, [, | }. Then{glt]/clos (£), [-, ]} is a Krein
space.

Furthermore, a subspace{®, |-, -|} having a certain property is said to imaximal

with respect to that property, if there does not exist an extensions of it having the
same property. A subspace is sai@ssentialljhave a certain property if its closure
has the indicated property.

Remark 2.4. In this dissertation the notatioff), (-,-)} and{R, [-,-]} is always
used to denote Hilbert and Krespaces, respectively. To distinguish different
Hilbert and Krén spaces subindexes are uséd; R, 9., Rs, etc.. Closed sub-
spaces of R;, [, :];}, which are themselves Kire spaces with the inner product
-, -];, are denoted bg; or ;. A canonical decomposition qfR;, [, ];} is denoted
by & [+]&;, its associated fundamental symmetry is denoted},bgnd P;" and
P always denoted the orthogonal projection ofAfoand&;", respectively.

1The indefinite inner product on the quotient space, induced by the indefinite inner product on
the original space, is always indicated by the same symbol.
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2.2 Hyper-maximal semi-definite subspaces
Recall the following characterizations of maximal nonnegative and maximal non-

positive subspaces, see (Bé@gri974: Ch. V, Section 4).

Proposition 2.5. Let £ be a nonnegative (nonpositive) subspacg ®f[-,-|} and
let &1 [+]R~ be a canonical decomposition ff, [-, -]} with associated projections
Pt and P~. Then equivalent are

(i) £is a maximal nonnegative (nonpositive) subspacgff-, -|};
(i) PtE€=R" (P L=8"),
(i) £is closed and2!*! is a nonpositive (nonnegative) subspace 8f[-, -]};
(iv) £ is closed andg! is a maximal nonpositive (nonnegative) subspace of

{R> [7]}

Next recall that a (neutral) subspa¢®f { &, [, -|} is calledhyper-maximal neutral

if it is simultaneously maximal nonnegative and maximal nonpositive, see (Azizov
& lokhvidov 1989: Ch. 1, Definition 4.15). Equivalentlg, is hyper-maximal
neutral if and only if¢ = g, cf. Proposition 2.5. l.e., if is a fundamental
symmetry for{ &, [-, -]}, then£ is hyper-maximal neutral if and only i has the
following orthogonal decomposition:

R=£diL. (2.3)

The following result gives additional characterizations of hyper-maximal neutral-
ity by means of a canonical decomposition of the correspondininksgace, see
(Azizov & lokhvidov 1989: Ch. 1, Theorem 4% Theorem 8.10).

Proposition 2.6. Let £ be a neutral subspace dff, [-,-]} and letRT[+]R~ be
a canonical decomposition dfR, |-, -]} with associated projection®* and P~.
Then equivalent are

(i) £is hyper-maximal neutral;
(i) PT€=R/"andP £ =8/,

(ii)y Ug defined viggrUe = {{PTf,P~f} € &T x K : f € £} is a standard
unitary operator from{ ", [-, -]} onto{&~, —[-, -] }.
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Note thatU in Proposition 2.6 (iii) is called the angular operator w.At! of £,

see Section 2.5 below. As a consequence of Propositionk2.6= &~ if there

exists a hyper-maximal neutral subspace{# [-,-]}. The converse also holds:

If k* = k—, then there exist hyper-maximal neutral subspace&fin-, -]}, see
Example 2.7 below. By definition hyper-maximal neutral subspaces are maximal
neutral subspaces, the converse does not in general hold as the next example shows.

Example 2.7.Let {9, (-,-)} be a separable Hilbert space with orthonormal basis
{en}n>0, €n € 9. Define the indefinite inner produgt -] on 2 by

LY Ag g = (f9)—(f.d), f.f.9.9 €9

Then{$?,[-,-]} is a Krdn space. Now define the subspateand£, of & as
£, =span{{e,,e,} :n €N} and £, =span{{e,, e} :n c N}

Then £, and £, are maximal neutral subspaces {0§%, [, ]}, but only £, is a
hyper-maximal neutral subspace{c$, |-, -|}.

The above example can be modified to show that there also exist different types of
maximal nonpositive and nonnegative subspaces dinkggaces. Hence the notion
of hyper-maximality can meaningfully be extended to semi-definite subspaces.

Definition 2.8. Let £ be a nonnegative or nonpositive subspacésf-, ]}. Then
£ is calledhyper-maximal nonnegativ@ hyper-maximal nonpositivié £ is closed
and £ is a neutral subspace R, [, -]}

Some alternative characterizations for semi-definite subspaces to be hyper-maximal
semi-definite are provided by the following proposition.

Proposition 2.9. Let £ be a nonnegative (nonpositive) subspacgff-, -|} and let
K*[+]R~ be a canonical decomposition ¢R, |-, -]} with associated fundamental
symmetry and projections”™ and P~. Then equivalent are

(i) £is hyper-maximal nonnegative (nonpositive);
(i) Lisclosedgt C gandpP—gt = g (PHelH = g*);
(i) Lisclosedand = £ + ¢n /T (€= cH + gnKr);
(iv) £is closed and induces the following orthogonal decompositioft of

R=gHa(Lenig) eiet
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Proof. The statement will only be proven in the case tlBas a nonnegative sub-
space, the other case can be proven by similar arguments.

() = (ii): Since £ is neutral,e) ¢ ¢™ — closg = £, Nextletf~ ¢
A~ o P gt = clos(£) N &, see (2.2). Sinc& is by assumption closed and
nonnegative, it follows that~ = 0, e, P gl = g,

(ii) = (iii): It suffices to prove the inclusiog C £ + £ N &*. Hence, letf € £
be decomposed agt + f~, where f* € &*. Then the assumptiof~ ¢l =
A~ implies that there exists @" € &' such thatg® + f~ ¢ €M and, hence,
f—(gt+f)=fF—gt € £n K", because by assumptiah! C £.

(i) = (iv): Sinceg is closed,£ N 8" = £NjLis a closed subspace. Moreover,
since£ is nonnegative, the second assumption in (iii) implies thé the orthog-
onal sum ofg¢l and £ N &*. In other words,2*! is a hyper-maximal neutral
subspace of the Kfe spacel 8 & (£NjL), [, -]}. Hence, (2.3) implies (iv).

(iv) = (i): The decomposition in (iv) implies that N ;£ is closed and the assump-
tion that £ is nonnegative implies that N j£ C K&". Consequently, the decom-
position in (iv) implies thatc! is a hyper-maximal neutral subspace of theiKre
space{ RS (£NjL), [, -]}, see (2.3). Henceg is a maximal neutral subspace of
{&,[,:]} and, consequently, (i) holds, becauses by assumption closed. l

Recall that by definitiort!*! is a maximal neutral subspacegfis a hyper-maximal
semi-definite subspace. Proposition 2.9 shows that the converse also hdds: if

a maximal neutral subspace, theh! is a hyper-maximal semi-definite subspace.
Corollary 2.10 below shows that hyper-maximal semi-definite subspaces can also
be characterized by means of projections associated with canonical decompositions
of the space. Note that different from the case of hyper-maximal neutral subspaces,
see Proposition 2.6, here conditions on one pair of projections do not suffice.

Corollary 2.10. Let £ be a semi-definite subspace{dt, [-,:]}. Theng is hyper-
maximal semi-definite if and onlyf+ £ = & and P~ £ = &~ for every canonical
decompositiomR T [+]R~ of {&, [, -]} with associated projection8* and P~.

Proof. To prove the statement w.l.0.g. assume thé nonnegative.

Let £ be hyper-maximal nonnegative and J&t[+]&~ be a canonical decomposi-
tion of { &, [-, -]} with associated projection3™ and P~. Then Proposition 2.9 (iv)
implies thate Njg = £ N &* is closed and that!!! is a hyper-maximal neutral
subspace of the Kie spacg RS (£N3L), [, -]}. Hence, P Ll = g* o (£njL),
see Proposition 2.6, and*! + £Njg¢ C £, becausel is by assumption closed.
These observations show that the stated characterization holds.
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Conversely, ifPT¢ = & and P~ £ = K for every projectionP" and P* as

in the statement. TheR*£ = & implies thatg is maximal nonnegative, and
hence closed, and thdt"! is a maximal nonpositive subspace, see Proposition 2.5.
Suppose thaf < £l is such thatf, f] < 0, then there exists a canonical de-
compositionk; [+]R; of {&,[-,:]} such thatf € K., see (Bogar 1974: Ch. V,
Theorem 5.6). l.ef € HNR, = & © P £, see (2.2), which is in contradiction
with the assumption tha®, £ = &, . Consequently£*! is neutral and, hence

is a hyper-maximal nonnegative subspace. l

Corollary 2.10 shows that hyper-maximal nonnegative (nonpositive) subspaces are
also maximal nonnegative (nonpositive), justifying the terminology. It also shows
that in a Krén space{&, [-, ]} with k* > k= or k* < k= every hyper-maximal
semi-definite subspace is nonnegative or nonpositive, respectively =4k, then

a hyper-maximal semi-definite subspace can be neutral, nonnegative or nonpositive.

Example 2.11. With the notation as in Example 2.79%, [-,-]} is a Krdén space
with k™ = k™. In this Krdn spaceg, is a hyper-maximal neutral subspace, whilst
2[2“ is a hyper-maximal nonpositive subspace.

2.3 Abstract von Neumann formulas

Let £ be a neutral subspace of the Krespace{{, |-, |} with a canonical decom-
position®*[+]R . Then the(abstract) first von Neumann formula holds:

e = clos (2)[@] (e n &)@l (eH n &™), (2.4)

see (Azizov& lokhvidov 1989: Ch. 1, 4.20) and (2.2). Note that (2.4) is noth-
ing else than the canonical decomposition for theiiigpace{ £t © £, (i-,)}
induced by the canonical decompositi@n[+]&~ of {&, [-,:]}. As a consequence

of the first von Neumann formula and Lemma 2.3, the notion of defect numbers
for neutral subspaces of Krespaces as introduced below is well-defined, see (Az-
izov & lokhvidov 1989: Ch. 1, Theorem 6.7). This definition extends the usual
definition of defect numbers for symmetric relations, see Appendix A.

Definition 2.12. Let £ be a neutral subspace éR, [-, -]} and let&"[+]R be a
canonical decomposition dfg, |-, -]}. Then the defect numbers (£) andn_(£)
of £ are defined as

ny (L) =dim(¢Hn/7) and n_(L) = dim(gH N &").
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The following generalization of theecond von Neumann formudall be useful in
the analysis of unitary relations.

Proposition 2.13. Let £ and 9t be subspaces dfR, |-, -]} such thatht C £ and
let P be an orthogonal projection ig&, [-,-]}. Then

PL=PM ifandonlyif £ =9+ £NkerP. (2.5)

Furthermore, ift is closed,P£ = P9t and (I — P)MY + (I — P)(£Nker P)H
is closed, then

(i) £nker Pis closed if and only it is closed,;

(i) clos (£ Nker P) = (clos £) Nker P.

Proof. Clearly, if £ = 9t + £ Nker P, thenPL£ = PON. To prove the converse
let f € £, then the assumption th&tg = P9t implies that there exists @< 9
such thatPf = Pg, i.e. f — g € ker P. Since by assumptio®t C £, f — ¢

is also contained itt, i.e. f — g € £ N ker P. These arguments show thé&tC

M + £ Nker P. Since the reverse inclusion clearly holds, this completes the proof
of (2.5).

(): If £is closed, thert N ker P is clearly closed. To prove the converse note
first thatran P C (£ N ker P)*. Therefore the assumption th@ — P)Mm +

(I — P)(£Nker P)His closed implies thaitlt! + (£ Nker P)H is closed. This
fact together with the assumptions t#at and £ N ker P are closed implies that
M+ £ Nker Pis closed, see Lemma 2.2. Consequently, the closednessoiv
follows from (2.5).

(ii): The assumption®’£ = P9t andMt C £ yield by (2.5) that

£ =M+ (£Nker P) C M+ clos (£ Nker P) C clos (L).
Since M + clos (£ N ker P) is closed (see the proof of (i)), taking closures in
the above equation yields thalos (£) = 9t + clos (£ N ker P) and therefore
P(clos£) € PM. Now, (2.5) implies thatlos (£) = 9 + (clos £) N ker P,

Le.,
M + clos (£ Nker P) = clos (£) = M + (clos £) Nker P.

From this it follows that (ii) holds. O

Letj be a fundamental symmetry éR, [-,-]}. Then observe thatl — P)9m +
(I — P)(£nker P)H is closed, if the following inclusion holds

(I — PYmH D ((I — P)(& Nnker P)*)t Nker P
= jclos (£ Nker P) Nker P + (jran P) N ker P.
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Corollary 2.14. Let £ and "t be subspaces dff, [-, -]} such thatht C £ and let
K*[+]R~ be a canonical decomposition ¢8R, [-, -]} with associated projections
PtandP~. Then

P £=P M ifandonlyif €=M+ L£NK";
Pt =P ifandonlyif £=M+LNAK".

Furthermore, ift is closed,P~ £ = P~9t andclos (£ N &T) C P9, then

() £n K" isclosed if and only it is closed;

(i) clos(£NRKRT) = (clos £) N RT;
and if M is closed,P*£ = PTOM andclos (£ N &™) € P~M, then

() £n K isclosed if and only it is closed;

(i) clos(£NKR™) = (clos€)NK.

Proof. The observation preceding this statement shows that the condition that the
subspacgl — P)MM + (I — P)(£Nker P)M is closed forP = P~ or P = P,

if clos (£ N &) C P orclos (£ N &™) € P~MI, respectively. Hence, this
statement follows from Proposition 2.13 by takifgo be P~ and P ]

Note that if £ is a subspace ofR, |-, -]}, then the conditiong®~ £ = P~9t and

clos (ENR*T) C Pl are satisfied for any hyper-maximal nonpositive subspace
M C £, and the condition™€ = P9 andclos (£ N &™) € P~MH are
satisfied for any hyper-maximal nonnegative subspgce £.

2.4 Multi-valued operators in Kfe spaces

Recall that a mapping/ from a setX to setY is called a multi-valued mapping if
Hzx := H(x) is a subset ot for everyz € X. Using this concepH! is called a
(linear) multi-valued operatofrom { &y, [-, -]1 } to { Ry, [, -]o} if H is alinear multi-
valued mapping from a subspacefyf called the domain off or dom H for short,
to K, such that

H(f+cg)=Hf+cHg, f,ge€domH, ceC,
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see (Cross 1998). Heré f + cH g is the sum of subspaces 8, i.e., Hf +cHg =
{f+c¢ : f € Hf andg’ € Hg}. For a (linear) multi-valued operatéf and a
subspacel C dom H, the subspacé/ (£) of &; is defined as

H(E) ={f € R :3If e Lst f e Hf}

Using this definition, the range, the multi-valued part and the kernel of a multi-
valued operatof! are defined as follows:

ran H = H(dom H), mulH = HO, kerH ={fecdomH:Hf=mulH}.

Since a multi-valued operator is linear, for a fixed fundamental symnjgetoy

{8, [, ]2} there exists for every € dom H a uniquef’ € (mul H)*2 such that

Hf = f'+mul H. A (single-valued) linear operator which on the basis of the
preceding observation can be associated to a multi-valued operator, will be called
an operator partof a multi-valued operatoff (w.r.t. j;) and is denoted by/,. In
particular,H f = H,f + mul H, f € dom H, and, henceH = H, if and only if

mul H = {0}. In that case the multi-valued operator is an ordinary (linear) operator
and the above definitions of the domain and kernel reduce to their usual form. A
multi-valued operator is calledosedif an operator part is a closed operator and
mul H is closed subspace (§R,, [+, -]2}). The graph of a multi-valued operatar

is the subspacer H of R, x K, defined as

gt H={{f,f'} € R xRy:fedomHandf € Hf}.

Conversely, with each subspaceff x K, a multi-valued operator can be associ-
ated. Recall that subspacesfif x K, are called (linear) relations, see e.g. (Arens
1961). Here, following Cross (1998), the term relation will be used as a synonym
for a multi-valued operatér

The inverse of a relatiof is the relationd —! defined as
H'f ={fch :fcHf}Y, fcdomH ' :=ranH.
Clearly,(H )™ = H,ker H = mul H~!, mul H = ker H~! and
H'Hf =f+kerH, fedomH, HH'f'=f+muH, f eranH.
The adjoint of a relatior{ is the relation ! whose graph is given by

g HU = {{f.f'} € o x &1 : [ gh = [£.0. V{g.0'} € e H).

2t is emphasized that here the multi-valued operator (relation) and its graph will not be iden-
tified; a multi-valued operator (relation) is always to be understood as a multi-valued mapping be-
tween two spaces and its graph is used to describe the geometrical properties of this mapping.
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If {&,[-,-]1} and{R,, [-,-]} are Hilbert spaces, then the usual notatthis used
for the adjoint of a relatio/. From the above definition of the adjoint of a relation
it follows immediately that

(dom A)H = mul HY and  (ran H)H2 = ker M. (2.6)

For relations7 andH from £&; to &, the notation + H is used to denote the sum
of relations:

(G+H)f=Gf+Hf, fé&domGnNdomH.

Moreover, the notatiod’ C H is used to denote thdf is an extension ofs, i.e.
gr G C gr H. In particular, with this notation

G=H ifandonlyif GCH, domH CdomG, mulH CmulG (2.7)
or, by passing to the inverses,
G=H ifandonlyif G CH, ranH CranG, ker H C kerG. (2.8)

If G isarelation from{ &y, -, -]} to {Re, [, ]2} andH is arelation from{ Ry, [-, -]2}
to {Rs, [, -]3}, then their composition is the relatidghG defined as

(HG)f ={f' € Ry : g€ Gf st.f € Hg}, fe€ G '(ranGNdomH).

The following basic facts about relations can essentially be found in e.g. (Arens
1961); for the last statement in Lemma 2.15 below see also (Derkach et al. 2009:
Lemma 2.9).

Lemma 2.15. Let G be a relation from{ &y, [-, ]:} to {Rs, [-,-]o} and letH be a
relation from{ Ry, |-, ]2} to {83, [-,-]s}. Then

(H) = ()", (HG) =G and GMEY C (HG)

Moreover, if G is closed,ran GG is closed anddom H C ranG or H is closed,
dom H is closed andan G C dom H, thenGHHI = (HG)H,

In particular, as a consequence of Lemma 2.15, the notdfior is used as a
shorthand notation fo@'H[*})_1 = (H~HH,

Let P, be a projection in(&;, [-,-];}, for i = 1,2, then the projectior?, x P» in
R x Ry isdefined agPy x P)(f1 X f2) = PLfix Pyfo, f1 € Ry andf, € K. From
gr H C dom H x ran H for arelationd from K; to R,, it follows immediately that
(P, x Py)grH C (P, x Py)(dom H x ran H). Characterizations for when the
inverse inclusion holds are provided by the following statement.
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Proposition 2.16. Let H be a relation from{ &, [-,]:} to {fy, [+, -]»} and letP; be
an orthogonal projection i{&;, [-,-];}, for i = 1, 2. Then equivalent are

() (P x Py)(dom H x ran H) C (P, x Py)gr H,;
(i) Pidom H = PyH '(ran H Nker P);
(iiiy Poran H = P,H(dom H N ker P);
(iv) dom H = H !(ran H Nker P») + (dom H Nker P,);

(v) ran H = H(dom H Nker P;) + (ran H N ker Py).

Proof. (i) = (ii): If (i) holds, then for everyf, € P,dom H there existy f, f'} €
gr H such thatP, f = f; and P f' = 0. Thereforef’ € ran H N ker P, and hence
Pydom H C PyH ' (ran H Nker P). Since the inverse inclusion clearly holds, this
shows that (ii) holds.

(i) < (iv): Let f € dom H, then by (ii) there existgg,¢'} € gr H such that
Pig = P, fandg’ € ran H Nker P,. Hencef = g+ h, whereh = f — g € dom H
andP,h = Py(f—g) = 0,i.e.,dom H C H!(ran HNker P,)+ (dom HNker P,).
Since the inverse inclusion clearly holds, this proves the implication from (ii) to (iv).
The reverse implication is direct.

(i) < (v): This is similar to the equivalence of (ii) and (iv).
(iv) < (v): This follows by applyingd and H .

(i) & (i) = (i): If f € Pidom H and f’ € Pran H, then by (ii) there exists
{g9,9'} € gr H such thatP,g = f, P,¢’ = 0 and by (iii) there exist§h,h'} € gr H
such thatP,h = 0 and P,h' = f'. Hence{g + h,¢' + W'} € gr H, Pi(g + h) =
Pg= fandPy(g + 1) =Pk = f. O

This section is concluded by stating a several properties of operator ranges which
will be used throughout the dissertation. Therefore recall that a subspace of a
Hilbert space is called amperator rangef it is the range of a bounded (or, equiva-
lently, of a closed) operator in that space. Most of the below stated operator range
results can be found from (Fillmote Williams 1971); it is however worth mention-
ing that statements (iii) and (vi) (in the separable case) of Proposition 2.17 go back
to Calkin (1939a: Lemma 3.& Lemma 4.2). For the proof of (vi) Calkin used the

well-known part of Proposition 2.17 (v), which goes back to von Neumann (1929).

Proposition 2.17. Let{$, (-, -)} be a Hilbert space. Then the following statements
hold:
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() if 2, C $Hand#, C $H are operator ranges, the®; + %, and %, N %- are
also operator ranges;

(i) it 2 C % is an operator range such thatos#Z = $, then there exists
a nonnegative selfadjoint operatd® in {9, (-,-)} such thatdlom B = $,
ran B = # andker B = {0};

(i) if Z C $is an operator range which does not contain an infinite-dimensional
closed subspaces, thefis a "compact operator range”: IfB is an operator
in {$, (-,+)} such thatan B = %, thenB is a compact operator;

(iv) if 2, C $ is the operator range of a compact operator atdd C § is an
operator range such thaflos (%, + %») = $, where%, is nonclosed or the
co-dimension o7, is infinite, thenz, + %, # $;

(v) if #, C $isanonclosed operator range ag#, (-, -)} is a separable Hilbert
space, then there exists an operator raggeof a noncompact operator with
clos (%) = $ such that

H N Ky ={0} and clos (% + X>) #+ H;

(vi) if #Z C $ is a nonclosed operator range such théts (Z) = $, then there
exists an infinite-dimensional closed subspgce $ such thatZN £ = {0}.

Proof. (i): These two statements can be found in (Fillm&r&Villiams 1971: The-
orem 2.2& Corollary 2 on p. 260).

(i): If Z is an operator range, then the polar decomposition of closed operators
implies that there exists a bounded nonnegative selfadjoint opdsatof$, (-, )}

such thatZ = ran B. Hence, the fact that (ii) holds, follows now from the assump-
tion thatclos (#) = tan B = 9, see (2.6).

(iii): For this statement see (Calkin 1939a: Lemma 3.1) or (Fillmor&/illiams
1971: Theorem 2.5).

(iv): To prove (iv) assume the converse, i.e. that+ %, = $. Then by (Fillmore

& Williams 1971: Theorem 2.4) there exist closed disjoint subspa@es” #;
and91, C %, such thatht, + 971, = . Now by either of the assumptions on

%o In (iv) it follows that 9t; must be an infinite-dimensional subspace. Stite

is contained in the range of a compact operator, that is not possible, see (iii). This
contradiction shows tha®; + %- # $.

(v): The first part of this statement is the contents of (Fillm&r&Villiams 1971
Theorem 3.6) and the second part of it follows from an inspection of that proof.
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That proof consists out of two parts: First a dense operator r&figeconstructed
such thatZ N V. = {0} for a unitary operato¥’ in {9, (-,-)} and secondly it

is shown that there exists a unitary operdiorin {9, (-, )} such thatV %, C Z.
From these two fact it follows that the first assertion in (v) holds by tak#do be
W~V _.Z. Hence, to show that the second assertion in (v) holds it suffices to show
that.Z + V(Z) # $ and thatclos . = $. Therefore note tha¥’ andV are in
(Fillmore & Williams 1971: Theorem 3.6) constructed as countably infinite sums:
Z = @2, % andV = @, Vi, where.Z, is the operator range of a compact
operator in an infinite-dimensional Hilbert sp&cg;, (-, -) } with clos %, = $, and

V; is a unitary operator id$9;, (-,-)}. Clearly, fromclos %, = $;, it follows that
clos . = $. Moreover, since; is the operator range of a compact operator,
(iv) implies that.Z;, + V., # $; and, hence,Z + V.2 # $. Note also that
the above construction shows tha@ = W~V _Z is not the operator range of a
compact operator, becaus@ contains by construction infinite-dimensional closed
subspaces, cf. (iii).

(vi): Let B be a bounded nonnegative selfadjoint operatofsin(-,-)} such that
Z = ran B, see (ii). Moreover, le{ E, },cr be its spectral family and defing, =
EQ*”HBH — EQ*"*1||B||a n e N, then

ran B = {Z o Gy €ranF, and > 4"(¢n, ) < oo} : (2.9)
n=0 n=0

see (Fillmore& Williams 1971: proof of Theorem 1.1). To prove that (vi) holds
two disjoint cases are considered.

Case 1:There exist infinitely many Hilbert spacésan F,,, (-, -) } which are infinite-
dimensional. Then lefn, }rcn be a subsequence Bfsuch that{ran F,,, , (-, )} is
an infinite-dimensional Hilbert space, and {et,, }:cv be an infinite orthonormal
sequence ifran F,, , (-,-)}. Definey; = 372 27" ¢! ,i € N, theny; ¢ ran H
by (2.9) whilsty; € §, because

[e.e] o0 o0

(i) = (27", 27l ) = Y AT <Y 4 <o
k=0 k=0 k=0
Since theybilk are orthogonal by constructio,:= span {1, 1», ...} is an infinite-
dimensional closed subspace such thatran B = {0}.

Case 2:There do not exist infinitely many Hilbert spacgan F,, (-, -)} which are
infinite-dimensional. TherB is the orthogonal sum of a compact operator and a
bounded and boundedly invertible operator. W.l.0.g. assumefthatan (every-
where defined) compact operator{if, (-,-)}. Sinceran B = §) andran B # §,

{9, (-,-)} must be an (infinite-dimensional) separable Hilbert space and, hence, the
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existence of an infinite-dimensional closed subspasech that Nran B = {0}
follows from (v) and (iii). [

Corollary 2.18. Let H be a closed unbounded operatorify, (-, -) } withdom H =
$H,ran H = $H andker H = {0}. Then for every) < m < X, there exists am:-
dimensional closed subspage, of § such that

9 = clos (H*(£%)).

Proof. Note first that the assumptions dih imply that /* is an operator with
ran H* = $ and that by Proposition 2.17 (vi) (applied to the operator ratage H)
there exists forn as in this statement a closed subsp8geC $ such thatg,, N
dom H = {0}. Now letg € $ be orthogonal td7—*(£:.), then

0=(g9,H*f)=(H "g.f), Vfeg,.

This implies thatH ~'g € dom H N £,, = {0}. Consequentlyy = 0 and, hence,
§ = clos (H™*(£12)). O

2.5 Angular and quasi-angular operators

In this section first the concept of an angular operator for (semi-definite) subspaces
of a Krein space is shortly recalled; for details see (AziZoMokhvidov 1989:

Ch. 1,88). That overview is followed by an other manner of characterizing semi-
definite subspace of a Kirespace by means of operators.

Let 87 [+]R~ be a canonical decompositionff, -, -]}, then the angular operators
K™ andK~ of a subspacég of & w.r.t. & and&~ are the relations from™ to &~
and from&~ to & defined via

er K™= {{P*f, P f}:feg} and grK :={{P f P'f}:feg}
respectively. In other wordgy* and K~ are such that
L=g K" ={f"+(K"),f":ff €edom K"} + mul K*;
L=g K ={f"+(K )of :f €domK }+mulK",

wheremul K = £N K~ andmul K~ = £N K. Proposition 2.19 below contains
the characterizations of semi-definite subspaces by means of angular operators.

Proposition 2.19. Let £ be a subspace dff, [-,:]} and letK* and K~ be the an-
gular operators of w.r.t. & and &, respectively, for a canonical decomposition
A [+]&] of {&, [, -]}. Then the following equivalences hold:
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(i) the subspaceg is a (closed, maximal) neutral or hyper-maximal neutral sub-
space of{ &, [-, -]} if and only if K or (K~)~! is a (closed, maximal) iso-
metric or unitary operator from (the Hilbert spacé€R™, |-, |} to (the Hilbert
space{ 8, —[, ]}, respectively;

(ii) the subspacel is a (closed, maximal) (uniform) nonnegative subspace of
{R,[,-]} ifand only if K* is a (closed, everywhere defined) (uniform) con-
traction from{&*,[-,-]} to {8, [, -]}

(iii) the subspacel is a (closed, maximal) (uniform) nonpositive subspace of
{&,[-,-]} ifand only if K~ is a (closed, everywhere defined) (uniform) con-
traction from{&~, —[-, ]} to {R", [-,-]}.

Moreover, the angular operator fogl! w.rt. &~ or &% is (K*)* or (K~)*, re-
spectively. Here the adjoint is taken as a relation fréar", |-, -]} to {&~, —[-, -]}
or as a relation from{ &, —[-, -]} to {&", [, -]}, respectively.

Proof. The equivalences in (i)-(ii) can all be found in (Azizévlokhvidov 1989:
Ch. 1,8§8) and there also special cases of the last statement can be found. For
completeness, a proof for the general case of the last statement is included here.

Let K+ be the angular operator for the subspfaer.t. Rt. If g = gt +¢— € £,
g € AT andg™ € &, then

O=[f+K"f,g"+g ]=[fg"]+[K"f.g7), VfePL

This shows thayt = (K*)*g~. Conversely, ify™ = (K)*g~, then reversing the
above arguments shows that + ¢~ € ¢4, Consequently( K *)* is the angular
operator forg* w.r.t. &-. O

Above semi-definite subspaces have been characterized by means of a canonical
decomposition of the space. Next a characterization of semi-definite subspaces by
means of a neutral decomposition of the space is presented. More precisely, let
{&, [-,-]} be a Krén space for which is a fundamental symmetry and assume that
there exists a hyper-maximal neutral subsp@ten {8, [-,-]}. Then recall that

M induces an orthogonal decomposition of the space into hyper-maximal neutral
subspacesk = 91 @ jN. If £is now a subspace &, then itsquasi-angular
operator w.r.t.9 is the relationA in the Hilbert spacdd, [j-, -]} defined via

gt A= {{Pmf,iPmif}: f € L}, (2.10)
wherePyy is the orthogonal projection onfdt w.r.t. [j-, -]. l.e., A is such that

L={f—jiAf: fedom A} ={f —jiA,f : f € dom A} +j(mul A),
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wheremul A = £ N 9. Proposition 2.20 below contains a characterization of
the different types of semi-definite subspagem terms of their associated quasi-
angular operators. Therefore recall that a relafibin { R, [-, ]} is calleddissipa-
tive or accumulativef

Im[f,f]>0 or Im[f,f]<0, V{f,f'}e€gH,

respectively. A dissipative or accumulative relatidgns calledmaximal dissipative

or maximal accumulativé it has no proper dissipative or accumulative extensions,
respectively. In particular, a dissipative or accumulative relafibim a Hilbert
space( 9, (-, -)} is maximal dissipative or maximal accumulative if and only i€
p(A) for a (and hence for every) € C_ or A € C, respectively.

Proposition 2.20. Letj be a fundamental symmetry £R, [-, -]} and assume that
there exists a hyper-maximal neutral subspa@iein {&, [-,-]}. Moreover, letg
be a subspace ot with quasi-angular operatod w.r.t. 9. Then the following
equivalences hold:

(i) the subspaceg is a (closed, maximal) neutral or hyper-maximal neutral sub-
space of{ &, [-,-]} if and only if A is a (closed, maximal) symmetric or self-
adjoint relation in the Hilbert spacédn, -, -|}, respectively;

(i) the subspacg is a (closed, maximal) nonnegative or nonpositive subspace of
{&,[-,-]} ifand only if A is a (closed, maximal) dissipative or accumulative
operator in{9M, |-, -]}, respectively.

Moreover, the quasi-angular operator 8f- w.r.t. 9t is A*,

Proof. First the final assertion is shown to hold. Therefore observe that by defini-
tiong —jig’ € £, g, ¢’ € M, if and only if

0=1[f—jif" g —jig] = [f, —jig1 + [-iif', 9] = —i((Gf', 9] — [if. 9'])
forall {f, f'} € gr A. This shows thay —jig’ € £+ ifand onlyif {g, ¢’} € gr A*.

l.e., the final assertion holds. Clearly, (i) follows immediately from the proven
assertion. Next assume this a nonnegative subspace, then

0<[f=jif',f =iif ] =il=f" fl = ilf, =i f ] = 2Im ((if', f])

forall {f, f'} € gr A. l.e.,Ais adissipative relation in the Hilbert spag#t, [j-, -] }.

The converse is proven by reserving the above arguments. Furthermore, it is clear
that £ and A are closed simultaneously, see Section 2.4, anddlmts a nonnega-

tive extension if and only ifA has a dissipative extension. m
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3 BASIC PROPERTIES OF UNITARY RELATIONS

Basic properties of isometric and unitary relations are presented here. More pre-
cisely, in the first of the five sections of this chapter the definition of isometric and
unitary relations are stated and some basic characterizations of them are recalled.
In the second and third section, the behavior of isometric and unitary relations with
respect to special subspaces is investigated. More specifically, first the kernel and
multi-valued part of isometric relations are investigated and, secondly, the behavior
of isometric relations with respect to the closure of subspaces is investigated. In that
connection it is shown that basically only for uniformly definite subspaces one can
say something in general about the closedness of their image after mapping them
by a (closed) isometric relation. In the fourth section it is shown how from isomet-
ric relations the kernel, multi-valued part and closed uniformly definite subspaces
contained in their domain, which were studied in the preceding sections, can be
removed. Thereby one remains with the more involved part of isometric relations.
Finally, in the fifth section maximal isometric relations are shortly considered.

3.1 Isometric and unitary relations

ArelationU from {81, [, |1} to {fy, [, |2} is calledisometricor unitary if
vtcuH or Ut=uM, (3.1)

respectively, see (Arens 1961). An isometric relation is catedimalisometric,
if it has no proper isometric extension. The above definition says that a relation
from {&, [, ]1} to {&, [+, ]2} is isometric if and only if

[f7 g]l = [flvg/]Za V{f, f/}7{gag/} € ng

Hence, polarization yields thaf is isometric if and only ifif, f]1 = [f', f']2, for
all {f, f'} € grV. Furthermore, (3.1) implies that unitary relations are maximal
isometric relations in a special sense.

Proposition 3.1. Let U be a relation from{ &y, [-,-]:} to {Ra, [-,:]2}. ThenU is
unitary if and only ifU is isometric and if f, f'} € & x Ks is such that

[.fa g]l - [f/>g/]2> v{gag/} € gr U7

then{f, f'} € grU.
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Proof. If {f, '} € & x &, satisfies the stated condition, thefi, f} € gr UM by
the definition ofU1*l. Hence the equivalence follows directly from the definition of
unitary relations, see (3.1). O

Since(U™) ~' = (U~Y)M, the definitions of isometric and unitary relations in (3.1)
imply that a relation is isometric or unitary if and only if its inverse is isometric or
unitary, respectively. In particular, the action of an isometric or a unitary relation
and their inverse are of the same type and, hence, the structure of their domain and
range is of the same type. Since the adjoint of a relation is automatically closed,
(3.1) also implies that every unitary relation is closed and that a relation is isometric
if and only if its closure is isometric.

For Krein spaceq &y, [-, -]1} and{R,, |-, -|]»} the notation-, -]; _» iS used to denote
the indefinite inner product af; x K, defined by

[fl X f2,91 X 92]1,—2 = [f1,91]1 - [f2,gz]27 J1,91 € Ry, f2, 92 € Ro. (3.2)

With this inner product{&; x Ry, [-, |1 -2} is a Kran space and for a relatiol
from &, to &, one has thatgr H)*1-2 = gr H—F. The preceding observation
yields the following result which can be partly found in (Shmul’jan 1976).

Proposition 3.2. Let U be a relation from{ &, [, ]1} to {Rs, [, ]2}. ThenU is
a (closed, maximal) isometric or unitary relation if and onlyifU is a (closed,
maximal) neutral or hyper-maximal neutral subspace{8f x Rs,[-,:]1 -2}, re-
spectively.

In light of Proposition 2.6 and the discussion following tit, Proposition 3.2 implies
that if U is a unitary relation from{ &, [+, -, } to { &, [, ]2}, then
k4 ky = ki + ki

The following statement, which generalizes an equivalence in Proposition 2.6, can
be interpreted as an inverse to Proposition 3.2; it shows how hyper-maximal neutral
subspaces can be interpreted (nonuniquely) as unitary relations.

Proposition 3.3. Let £ be a subspace ofR, [-,]} and let P be an orthogonal
projection in{R, [,:]}. Theng is a (closed, maximal) neutral or hyper-maximal
neutral subspace dff, |-, -} if and only if the relation’. defined via

grUc:={{Pf,(I-P)f}: f €&}

is a (closed, maximal) isometric or unitary relation, respectively, from tharKre
space{ran P, [-, -]} to the Krén space{ker P, —[-, -},
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Proof. If £ is neutral, then forf,g € £
0=[f9]=[U—-P)f+Pf (I-P)g+Pgl=[Pf Pgl+[(I—P)f (I-P)gl,

i.e. Ug is an isometric relation. Reversing the above argument showsCtinat
neutral if Ug is an isometric relation. From the fact that a relation is closed if and
only if its graph is closed it follows immediately th&tandU. are simultaneously
closed. Furthermore, by the proven equivalence it is also cleartican be ex-
tended neutrally if and only i/ can be extended isometrically.

Hence it only remains to prove thatis hyper-maximal neutral if and only e
is a unitary relation between the indicated Krepaces. Therefore assume tBat
is hyper-maximal neutral and I, ¢’} € ran P x ker P be such thatPf, g] =
—[(I = P)f,g] forall f € £ Then[f,g+¢] = 0forall f € &, ie. g+
g € £, becauset is hyper-maximal neutral. Hendé; is a unitary relation, see
Proposition 3.1. Conversely, ife is a unitary relation, the is hyper-maximal
neutral by Proposition 3.2. l

Combing the preceding two propositions with Proposition 2.6 shows that with each
unitary operator between Kirespaces one can associate a unitary relation between
Hilbert spaces; that association is a so-called Potapov-Ginzburg transformation, see
(Azizov & lokhvidov 1989: Ch. 5§1) or Proposition 4.14 below.

3.2 Kernels and multi-valued parts of isometric relations

For an isometric relatiol” from { &y, [, -]1} to {8, [-, |2} (2.6) becomes
ker V' C (dom V)H' and mulV C (ran V)M, (3.3)

Hence, in particularker V and mul V' are neutral subspaces 68, [-,-]:} and
{Rs, [, ]2}, respectively. For a unitary relatidn from {&;,[-,-];} to {&s, [, ]2}
the inequalities in (3.3) become equalities:

ker U = (dom U)*  and mulU = (ran U)H2, (3.4)

Lemma 3.4 below contains a useful consequence for an isometric relation if equality
holds in (3.3) for one of the inclusions therein.

Lemma 3.4. Let V' be an isometric relation froM &y, [-,:]1} to {Ro, [+, -]2} with
ker V = (dom V) and let& [+]&; be a canonical decomposition ff;, [+, -]; }
with associated orthogonal projectio#%™ and P, . Then

PfdomV =& and P, domV = K.
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Proof. The assumptioker IV = (dom V)4]* together with (2.2) implies that
domV N &R =K ©1 PlkerV and domV NK = K, ©; P, ker V.

Sinceker V' C dom V/, the conclusion follows from the preceding equalities.[]

Next a condition is given under which the inequalities in (3.3) become equalities
given that equality holds in either of the two inclusions, cf. (Derkach et al. 2006:
Section 2.3).

Lemma 3.5. LetV be an isometric relation from&, |-, |1} to {Rs, [, ]2}. Then

mul V' = (ran V)l

ker V = (dom V)l*h
(dom V) C dom V/

if and only if
(ran V)2 C ranV y {
Proof. SinceV ! is an isometric relation if and only If is an isometric relation, it
suffices to prove only one implication. Therefore assumelthalt’ = (dom V)1
and that(ran V)2 C ran V. Then, clearly(dom V)*'* C dom V. Moreover, the
assumptiorker VV = (dom V))l*I* and an application of Lemma 3.8 below yield

mul V =V (ker V) = V((dom V)*") = (V(dom V)2 nran v
= (ran V)2 nran V.

Hence, the assumptidnan V)12 C ran V yieldsmul V' = (ran V)4, O

A further condition for the equalititer V' = (dom V)I* to hold is contained in the
following statement.

Lemma 3.6. Let VV be an isometric relation fror &y, [-,]1} to {Rs, [, -]} and
assume that there exists a hyper-maximal semi-definite subgpatéf,, |-, -|:}
such that® C dom V. Thenker V = (dom V)t if and only ifj; £Ndom V +ker V/
is an essentially hyper-maximal semi-definite subspacgref|-, ];} for a (and
hence for every) fundamental symmetref { R, [, -]1 }.

Proof. Note first thatker V' C £, because the hyper-maximality 8fimplies that
gl C ¢ and (3.3) implies thaker V' C (dom V). Since £ being hyper-
maximal semi-definite is closed, the inclusiker V' C £ implies thatker V' is

closed. Using this observation and the hyper-maximalityZ oit follows that &,

has the following;-orthogonal decomposition:

R =ker V(€ cker V)@ (£N51.L) @131 (€1 ©1ker V) @1 jiker V, (3.5)
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cf. Proposition 2.9 (iv). HenceJomV C (ker V)1 and (ker V)1 have the
decompositions:

domV =ker V @, (M o1 ker V) @1 (£N1j18) @1 124 Ndom V),
(ker V)HI' = ker V @, (€41 01 ker V) @1 (£1718) @1 i1 (€11 64 ker V).

Sinceker V is closedker V = (dom V)41 if and only if (ker V)1 = dom V.
Hence, the above two formula lines show thatV = (dom V)t if and only
if clos (ji €4 Ndom V) = j; €M o jiker V. Sincej, £ ©1 jikerV = (€N
i1€8) @ j1 (L &4 ker V), it follows from (3.5) together with Proposition 2.9 that
the statement holds. O

This section is concluded with necessary and sufficient conditions for an isometric
relation to be unitary which can be found in (Sorjonen 1980: Proposition 2.3.1).

Proposition 3.7. Let U be an isometric relation fro{ &, [-, -1} to {Ro, [+, ]2}
ThenU is a unitary if and only ifdlom UM C ran U and (dom U)*h C ker U or,
equivalentlyran U C dom U and (ran U)*)2 € mul U.

Proof. If U is a unitary relation, then (3.1) and (3.4) imply thiatn U = ran U
and (dom U)Hr = ker U, respectively. Conversely, sinééis isometricU ' C
U, see (3.1). Moreover, the assumptions imply thah U* C dom U~! and
thatmul U = (dom U)Hr C ker U = mulU~, see (2.6). Hence, the equality
U~ = UM holds, see (2.7). 1.elJ is unitary.

The second equivalence is obtained from the first by passing to the inversés.

3.3 Isometric relations and closures of subspaces

A standard unitary operatd/ from {&, [-, -1} to {fq, [, -]»} satisfies for every
subspace of &, the following equality:

Uet) = (u(e)k. (3.6)

Since a unitary relation between Knespaces need not be everywhere defined,
(3.6) does not in general hold for unitary relations betweerrkKspaces. Instead a
weaker form of (3.6) holds for all isometric relations.

Lemma 3.8. LetV be an isometric relation fronRy, |-, |} to {Rs, |-, ]2} and let
£ CdomV. Then

V(e ndom V) = (V(£)*? nran V.
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Proof. If ' € V (£ ndom V), then there exists A € £' N dom V such that

f' € Vf.Inparticular,[f, h], = 0 forall h € £. SinceV is isometric, this implies

that[f’,h], = 0 forall ' € V(&),i.e.,f € (V(£)"” nran V. This shows that
V (£H ndom V) C (V(£))M2 nran V. The inverse inclusion follows from the
proven inclusion by applying it t&" ! andV(£). O

If U is a standard unitary operator frofRy, [-, -]1 } to { s, [, -]2}, then (3.6) implies
that U(clos £) = clos (U(£)) for any subspace& of &,. This equality does not

in general hold for unitary relations, and a similar result only holds for certain
subspaces. For instanceVifis an isometric relation frofiRy, -, -]1 } to {Ra, [, -2}
andker V C £ C dom V' is such that

clos £ = (€4 ndom V)H and clos (V(£)) = (V(£)H2 nran V),
Then applying Lemma 3.8 twice yields
V(clos (£)Ndom V') = (clos V(£)) Nran V.

The above example indicates that the behavior of isometric relations with respect to
the closure of subspaces is in general not easy to describe. However, for uniformly
definite subspaces this behavior is specific.

Proposition 3.9. Let V' be a closed isometric relation betweés, [-,];} and
{R2,[,-]2} and let® C dom V' be a uniformly definite subspace £, [, |: }.
Then the following statements hold:

(i) if © = clos (®) Ndom V, thenV (D) is closed;
(i) ® is closed if and only i’ (®) + [mul V] is a closed uniformly definite
subspace of (mul V)2 /mul V, [+, -], }.
Proof. To prove the statements w.l.0.g. assuméo be uniformly positive and let
j1 andj, be fundamental symmetries @R, [, -]} and{R., [, :]o}, respectively.

() : Let f7 € clos(V(®D)), then there exists a sequentgf,, f!}}.>0, Where
fn € ®andf! € Vf,, suchthatf’ = lim,,_.., f/, in the Hilbert spacé R,, [j2-, |2}
By the isometry ot

[JQ(fr/n - f7/1)7fr/n - fvlz]Q > [f?ln - f?lwf;n - frlz]Q = [fm - fnafm - fn}l

Since® is uniformly positive, there exists a constant> 0 such that[j; g, g]; <
lg, g]1 for all g € ©. Combining this with the above inequality yields

[]2(f7/n - frlz)vf;n - f7/1]2 > O‘{h(fm - fn)afm - fn]l
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Since{f!},>0 converges by assumption {{R,, [j>-, -]2}, the preceding inequality
shows that{ f,,},.>0 is @ Cauchy-sequence in the Hilbert spde®, [j,-,]:} and,
hence, converges to ghe clos (D). Consequently{{ .. f.}}.>0 converges (in
the graph norm) td f, f'} € &, x R, and, hence{f, f'} € grV by the closedness
of V. Thereforef € clos (D) Ndom V =D and, hencef’ € V(D).

(i) : For simplicity assume thatul V' = {0}. Let® C dom V be closed, then

V' o is an everywhere defined closed (isometric) operator from the Hilbert space
{D,],]1} to {Ra,[-,"]2}. l.e., there exists &/ > 0 such that]j,V f,V f], <

MIf, fl1, forall f € ©. Hence, using the fact th&t is isometric, it follows that

1V, Ve < Mf, fli =MV V[, feD.

l.e.,V(®) is a uniformly definite subspace @R, [-, -].}. The converse implication
is obtained by applying (i) t& ~! andV (D). ]

Note that (ii) essentially also holds for non-closed isometric relations. This follows
by considering instead of non-closed isometric relations their closure.

3.4 Reduction of isometric relations

Here unitary relations are reduced in two different ways: By means of neutral sub-
spaces contained in their domain (or range) and by splitting them. These reductions
allow us to remove from unitary relations that part of their behavior which is well
understood. In order to obtain the mentioned results the following composition
results for isometric relations are used, see (Derkach et al. 2009: Section 2.2).

Lemma 3.10.LetS be an isometric relation frofdR,, |-, -|1} to { Ry, [, -]} and let
T be an isometric relation froniR,, |-, |2} to {83, [-,-]}. Then
(i) 7S is an isometric relation frord Ry, [-, |1} to {Rs, [-, |3}

(i) if S andT are unitary,ran S C domT anddom T is closed ordom T C
ran S andran S is closed, ther’S is a unitary relation from{ &y, [-, -]} to

{ﬁ& ['7 ]3}
Proof. Combine Lemma 2.15 with (3.1). [

Lemma 3.11 below associates with each neutral subspace a unitary operator which
can be used to reduce unitary relations, see Corollary 3.12 below.
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Lemma 3.11.Let £ be a closed neutral subspace{dt, |-, -|}. ThenU. defined as
Usf = f+18, fedomUg=gH

is a bounded unitary operator frofR, [, |} onto the Krén space{¢lt/g, [, ]}.

Proof. Recall that the fact thafcl*!/ € [-,-]} is a Krén space is the contents of
Proposition 2.3 and note that the isometrylaf is a direct consequence of the
neutrality of £. Next leth € & andk € £M1/¢ be such thaif, h] = [Ucf, k] for
all f € £ = dom Ug. SinceUe maps ontagltl /£ by its definition, there exists
ag € dom Ug such that/cg = k and, hence|f,h — g] = 0 for all f € £, This
shows thath — g € clos (£) = £ C ker Ug. Consequently{h, k} = {g, Ueg} +
{h — ¢,0} € grUg and, hence, Proposition 3.1 implies tlb&tis unitary. O

Sinceker V andmul V' are neutral subspaces for an isometric relatigrsee (3.3),
composing isometric relations with unitary operators provided by Lemma 3.11
yields isometric operators without kernel and multi-valued part. In other words
the interesting behavior of isometric relations takes place on the quotient spaces
(ker V)4t /ker V and (mul V)42 /mul V. Therefore Corollary 3.12 below can be

for instance used to simplify proofs for statements concerning isometric relations
to the case of isometric operators.

Corollary 3.12. LetU be a unitary relation from{ &, [+, -]1} to {Rs, [-,]2}. Then
U, andU,; defined via

grU, ={{f, [+ [mulU]} € & xtTanU/mul U : {f, f'} € U};

grUy = {{f + [ker U], f'} € domU/ker U x Ry : {f, '} € U},
are a unitary operator from{ K, [-,-]:} to the Kré&n space{ran U/mul U, [-, -],

with dense range and a unitary relation from the Krepace{dom U /ker U, [-, -];
to {Ro, [, -]2} with dense domain.

}
}

In particular, (U,)qs = (Uy), is a unitary operator from{dom U /ker U, |-, -], } to
{rfanU/mul U, [-, -]o} with dense domain and dense range.

Proof. Sinceker U andmul U are closed neutral subspaces by (3{4),, and
U v are unitary operators by Lemma 3.11 with closed domain and closed range,
respectively. Consequently, Lemma 3.10 implies iat= U,,,oU andU, :=
U(Uwerv) ! are a unitary operator and relation, respectively, and a direct calculation
shows that they have the stated form. ]

Lemma 3.13 below is a statement about splitting a unitary relation into two unitary
relations.
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Lemma 3.13.Let U be an isometric relation fromM &, [-,-]1} to {Rs, [, ]2} and
let {&;, [-, ]:}+-]{®R:, [, ]} be an orthogonal decomposition ff;, [-, -];} into two
Krein spaces, for = 1,2, such thatgrU = grff + gr U, where the isometric
relationsU and U are defined via

grU:=grUN (& x Ky) and grl:=grUnN (K x Ky).

ThenU is unitary if and only if/ andU are unitary.

Proof. This follows from the definition of unitary relationg&/{! = U~') and the
orthogonal decomposition &f. O

Recall from Proposition 3.9 that if a unitary relation contains a closed uniformly
definite subspace in its domain, then the unitary relation behaves like a Hilbert
space unitary operator on that part of the space. Hence, using Lemma 3.13, one can
reduce a unitary relation by taking out such parts.

Corollary 3.14. LetU be a closed and isometric relation betweghy, |-, -], } and
{R, [, ]2}, let®; C dom U be a closed uniformly definite subspace &f, [-, -]; }
and let®, be a closed uniformly definite subspacé &4, [-, -]} such that/ (D,) =
D, + mul U. ThenU is a unitary relation if and only i/ defined via

grfj =grUnN (Q[llh X ’D[QL]Q)

is a unitary relation from the K space{f; N ol [-,-]1} to the Krén space
{820 D57 [ ).

Proof. Note first that the existence @f, as stated follows from Proposition 3.9 and
that
Uf=Uf)NDy, fedomU =29,

is an everywhere defined isometric operator from the Hilbert sf@ge[-, -|; } onto
the Hilbert spacd®,, |-, -]} and, hence, unitary. Singe U = grU + gr U, the
statement follows now from Lemma 3.13. O

3.5 Maximal isometric and unitary relations

Recall that an isometric relation is calletaximal isometriaf there does not ex-

ist a proper isometric extension of it. In particular, unitary relation are maximal
isometric. As a consequence of the graph characterizations in Proposition 3.2, the
following characterizations of maximal isometric and unitary relations hold.
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Corollary 3.15. LetV be an isometric relation froMig,, [-, -]1} to {Rs, [-, ]2} and
let 8 [+]&; be a canonical decomposition ¢R;, [-,-];} with associated projec-
tions P;* and P, fori = 1,2. ThenV is maximal isometric if and only if

(P x Py)grV =R xR or (P/ xP)egrV=R8 xR&y.
Moreover,V is unitary if and only if both the above equalities hold.
Proof. Clearly,(&] x &, )[+](&; x &) is a canonical decomposition of (the Kme

spacef Ry x R, [-,-]1,-2}, see (3.2). Hence, the statement is a direct consequence
of Proposition 3.2, Proposition 2.5 and Proposition 2.6. O]

Using Proposition 2.16 alternative characterizations for the conditions in Corol-
lary 3.15 can be obtained.

Proposition 3.16. Let V' be an isometric relation from R, [-, |1} to {Rs, [, |2}
and let&; [+]&; be a canonical decomposition @Rf;, [-, ];} with associated pro-
jectionsPt and P, for i = 1,2. Then equivalent are:
() (P x Py)grV =8 x &
(i) PV-tranV N&S) =K andP; V(domV N &) = Ry;
(i) PfdomV = &), PyranV = &, and

domV =domV NK +V '(ranV N RKY),
Similarly, equivalent are:

() (Py x P )egrV =R x R&y;
iy PrV- i ranVNRKy) =K andP, V(domV NRKR) = &S;
(i) PydomV = Ky, PfranV = & and

domV =domV NKS +V '(ranV N Ky).

Proof. Clearly, it suffices to prove only the first equivalences. By Proposition 2.16,
the assumptioriP,” x P, )grV = K x &, yields that (ii) holds. If (ii) holds,
then, clearlyP;"dom V = & andP, ran V = &, , and the domain decomposition

in (iii) holds by Proposition 2.16. Finally, if (iii) holds, then the domain decom-
position therein implies thatP,"dom V') x (PyranV) C (P x Py )erV, see
Proposition 2.16. Hence, the assumptidijsdom V' = & and P, ranV = &,
imply that (i) holds. []
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In particular, Proposition 3.16 implies thatlifis a unitary relation, then
PfdomU = &), P[domU = Ry, PfranU = R, PyranU = R,. (3.7)

Combining Proposition 3.16 with Corollary 3.15 yields necessary and sufficient
conditions for an isometric relation to be unitary.

Corollary 3.17. LetU be an isometric relation fromi&,, [-, -1} to { Rz, [-, ]2} and
let & [+]&; be a canonical decomposition ¢f;, [+, -];} with associated projec-
tions ;" and P, fori = 1,2. ThenU is a unitary relation if and only3.7) holds
and the domain ol has the following decompositions:

domUNA +U ranUNKR,) =domU =domU N K, + U HranU N KY).

Note that the domain decomposition conditions in Corollary 3.17 are equivalent to
the graph ofJ having the following decompositions:

gU={{ffYegU:fe&}+{{f.f}eaU:feh}
gU={{ffregU:fel}+{{f . fleaU:fch}

cf. (Calkin 1939a: Theorem 3.9). For an isometric relation (3.7) can be satis-
fied while neither of the domain decompositions in Corollary 3.17 holds; consider
for instance the identity mapping on a hyper-maximal semi-definite subspace of
{R,[-,:]}. Conversely, if both the equalities in (3.8) are satisfies for an isometric

relation, then the relation is already very close to being unitary.

(3.8)

Proposition 3.18. Let U be an isometric relation froM &, [-, 1} to {Rs, [, ]2}
and let&; [+]R; be a canonical decomposition @R;, [+, -];} with associated pro-
jectionsP;" and P;, fori = 1,2. ThenU is unitary if and only if

(i) Uisclosed;

(i) ker U = (dom U)*1 andmul U = (ran U)H2;

(iii) the domain ot/ has the following decompositions:

dom UNKT +U HranUNRK, ) = dom U = dom UNK; +U ' (ran UNKY).

Proof. If U is unitary, then the closedness@ffollows from U~! = U and (ii)
holds by (3.4). Moreover, Corollary 3.17 shows that (iii) holds.
Conversely, if (iii) holds, then by Proposition 2.16

(P;" x Py)erU = PfdomU x Py ranU;

3.9
(P; x Py )erU = Py domU x PyfranU. (3.9)



Acta Wasaensia 37

Moreover, by condition (i) and Proposition 32U is a closed neutral subspace of
the Kran space & x R, [+, |12} and thug P;" x Py )gr U and(P; x P; )gr U are
closed subspaces, see (Azizo\uokhvidov 1989: Ch. 1§4). In view of (3.9), this
implies thatP;"dom U, P; dom U, Py ranU and P, ran U are closed subspaces.
Now the assumption (ii) implies by Lemma 3.4 thgtdom U = &, P, dom U =
A7, PranU = & and P, ran U = &, . Consequently, Corollary 3.17 yields that
U is unitary. ]

Using Corollary 2.14 the following properties of maximal isometric relations are
obtained.

Lemma 3.19.LetV be an isometric relation fromif&;, [, -]1 } to { R, [, -]2} and let
& [+]R; be a canonical decomposition ¢f;, |-, -];} with associated projections
PrandP;,fori=1,2.If (P" x Py)grV = & x &, then

clos(domV N &) =domV NRK and clos(ranV NRKy)=rtanV N K.
Similarly, if (P, x Py")grV = & x &5, then

clos(domV N &) =domV NK and clos(ranVNRK,)=rtanV N K, .
Proof. The statement follows from Corollary 2.14 applied = grV, £ =
domV xranV, PT = P x Py andP~ = P; x Py. O

Corollary 3.20. LetU be a unitary relation fron{ &, |-, ]1} to {£,, [, -]»} and let
& [+]R; be a canonical decomposition ¢f;, |-, -];} with associated projections
PtrandP;, fori=1,2. Then

clos (domU N &) =domU N K, clos(ranU NKRS) =tanU N R ;
clos(domUNK;) =domUNAK, clos(ranUNRK,)=TtanU N RK,;.

Proof. Combine Lemma 3.19 with Corollary 3.15. [

Combining Corollary 3.20 with the first von Neumann formula (2.4) (applied to
£ = ker U = (dom U)H*h) yields that for a unitary relatiof/

dom U = ker U + clos (dom U N &) + clos (dom U N &), (3.10)

see also (Derkach et al. 2006: Lemma 2.14 (ii)). Combining the above equality
with (3.7) yields the following useful equalities:
AT = Pl'ker U + clos (dom U N K );

(3.11)
R = P kerU + clos (dom U N KY).
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4  SPECIAL CLASSES OF UNITARY RELATIONS

In this chapter some special classes of unitary relations are introduced and inves-
tigated. More specifically, in the first section unitary relations with a closed do-
main, or equivalently with a closed range, are considered. They are shown to be
almost completely characterized by their behavior on uniformly definite subspaces
and they are also shown to have essentially the same behavior as standard uni-
tary operators. In the second section two types of unitary relations with a simple
structure are introduced, which will be callatthetypical unitary relationsLater
results, see e.g. Section 7.3, show that essentially all the mapping properties of
(unbounded) unitary relations can be understood by considering only (unbounded)
archetypical unitary operators. Finally, in the third section standard unitary oper-
ators are shortly considered. In particular, it is shown how they can be written in
terms of the introduced archetypical unitary operators.

4.1 Unitary relations with closed domain

As a starting point for investigating unitary relations with closed domain, consider
the following characterization of such relations. Note that the following statement
is a generalization of (Bo@m 1974: Ch. VI, Theorem 3.5).

Proposition 4.1. LetU be a unitary relation from{ £, |-, |1} to {R2, [-,-]2}. Then

U has closed domain if and only &f maps every uniformly positive (negative)
subspace of Ry, [-,-]1} contained in the domain df onto the sum a uniformly
positive (negative) subspace{ot,, [, -]} and the multi-valued part df.

Proof. Let (U,), be the unitary operator with dense domain associated i¥ids

in Corollary 3.12. Then one can easily see thiahas closed domain if and only

if (U,)q has closed domain. In other words, it suffices to prove the statement for a
densely defined unitary operator.

If U has closed domain ari@d C dom U is a uniformly positive (negative) sub-
space, therlos (D) C dom U = dom U is a closed uniformly positive (negative)
subspace which is mapped byonto a uniformly positive (negative) subspace, see
Proposition 3.9. Henc® itself is also mapped onto a uniformly positive subspace.
To prove the converse implication I8t [+]&; be a canonical decomposition of
{& [-,-]}. Thenf; = dom U = clos (dom UNK;)+clos (dom UNAK;), see (3.10).

By the assumption together with Proposition 8din U N & anddom U N &, are
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closed. Hencef; = dom U N & + dom U N & C dom U shows thatlom U is
closed. ]

The proof of Proposition 4.1 shows that{f is a unitary operator with closed
domain, thendom U = ker U[+]dom U N & [+]dom U N K;. Hence, in that
caseranU = U(domU N K)[+]U(dom U N K ), whereU(dom U N K;) and
U(dom U N K7 ) are closed uniformly definite subspaced &f, [-, :]»}, see Propo-
sition 3.9. Since the orthogonal sum of closed uniformly definite subspaces is a
closed subspace, see e.g. (Baga974: Ch. V, Theorem 3.& Theorem 5.3),

an elementary proof for the following statement has been obtained, see (Shmul’jan
1976; Sorjonen 1978/1979).

Proposition 4.2. Let U be a unitary relation from{ &y, [-, ], } to {&s, [-,-]o}. Then
dom U is closed if and only ifan U is closed.

Proof. SinceU is unitary if and only ifU~! is unitary, it suffices to prove that if
dom U is closed, theman U is closed. Ifmul U # {0}, thenmul (U, U) = {0},
see Lemma 3.11. Sindé,,,,yU has closed range if and onlyif has closed range,
the statement follows now from the discussion preceding this statement. [

Corollary 4.3. Let U be a unitary relation from{&;, [, -];} to {&, [, -]s}. Then
the following statements hold:

(i) if {Ry, [, ]1} is a Hilbert space, thedom U = R&;;

(i) if {R,[-,-]1} and{Rs, [-, ]2} are Hilbert spaces, theli is a standard unitary
operator.

Proof. Clearly, (ii) follows from (i). If the assumption in (i) holds, then by Proposi-
tion 4.1 (applied td/~1) U has closed range and, hence, closed domain, see Propo-
sition 4.2. Sinceker U = (dom U)™" is a neutral subspace ¢f,, [, -]}, the
assumption also implies thitr U = {0} and, hencedom U = dom U = &;. [

Proposition 4.2 can be extended to the case of isometric relations: If equalities hold
in (3.3) for an isometric relation and, additionally, its domain or range is closed,
then the isometry relation must be a unitary relation with closed domain and range.

Corollary 4.4. LetU be an isometric relation fromi&,, [-, -], } to { &z, [, -]»} which
has closed domain or closed range and satisfies

ker U = (domU)*1 and mulU = (ranU)Me2.

ThenU is a unitary relation with closed domain and range.
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Proof. Assume thatU has closed range, then the assumptions together with (2.6)
yield

dom UM € dom U™ = (mul clos (U))*2 € (mulU)*2 = ran U.

ThereforeU is unitary by Proposition 3.7 and has closed domain by Proposi-
tion 4.2. The case th&t has closed domain follows by passing to the inversel

Note that the assumptiofsr U = (dom U)*t andmul U = (ran U)™2 in Corol-
lary 4.4 can by Lemma 3.5 be weakened¢oU = (dom U)*1 and(ran V)2 C
ran V ormul U = (ran U)*2 and(dom V)1 C dom V/, cf. (Derkach et al. 2006:
Section 2.3).

Proposition 4.5 below shows that unitary relations with closed domain and range
have almost the same properties as standard unitary operators (everywhere defined
unitary operators with everywhere defined inverse, see (Derkach et al. 2009: Defi-
nition 2.5)).

Proposition 4.5. Let U be a unitary relation from{ &y, [, -]} to {&,, [-,-]»} with
closed domain. IE, ker U C £ C dom U, is a subspace dff, [, -|;}, then

UgHy) = w(e)H2  and U(clos (£)) = clos (U(£)), (4.1)
Moreover, if€, ker U C £ C dom U, is a neutral subspace 4f’;, |-, |, }, then
ny (L) =ni(U(L)) and n_(£) =n_(U(L)). 4.2)

In particular, £ is an (essentially, closed) (hyper-maximal, maximal) nonnegative,
nonpositive or neutral subspace @R, [-,-|;} if and only if U(£) is an (essen-
tially, closed) (hyper-maximal, maximal) nonnegative, nonpositive or neutral of
{Ra, [, ]2}, respectively.

Proof. Letker U C £ C dom U, then(dom U)Hr € g C (ker U)H):. Hence,
using (3.4) and the closedness of the domain (and rangé), of follows that
kerU C gl C domU. Similar arguments show thatul U C (U(£))MH:2 C
ranU. Consequently, the equality(£ltlr) = (U(£))*)= follows directly from
Lemma 3.8. The second equality in (4.1) follows by applying the first equality
therein twice to a subspack

As a consequence (4.1), (4.2) needs only to be proven for the cas€ tnad
U(£L) are closed. Now leUg and Uy gy be the bounded unitary operators asso-
ciated to€ andU(£) as in Lemma 3.11, thedl, := UyoU(Ug) ! is an every-
where defined isometric operator from the Krepaceg €111 /£, [-, ], } to the Krén
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space{(U(£)*2 /U(&),[-,-)2}. I.e.,U, is a standard unitary operator and, hence,
n+(04) = n+(0,), where0, and0, are the trivial subspaces {it*' /£, [-,-];} and
{(U(L)™2 JU(L), [, ]}, respectively. This, together with the first von Neumann
formula (2.4), shows that, (£) = n(U(£L)). O

Next further characterizations of the closedness of the domain of a unitary relation
are given; they are closely related to results on Weyl families of boundary relations
stated in (Derkach et al. 2006). Note that the equivalence of (i), (ii) and (iii) in
Proposition 4.6 goes back to Calkin (1939a: Theorem 3.10) and that the character-
ization (vii) is an inverse to a statement in (Derkach et al. 2006: Lemma 4.4).

Proposition 4.6. LetU be a unitary relation fron{ &y, -, -], } to {&,, [-, -]} and let
A7 [+]R] be a canonical decomposition &, [, -]; }. Then equivalent are

(i) domU is closed;
(i) dom U N K is closed;
(i) dom U N Ry is closed,

(iv) U(dom UNRKT)+[mul U] is a uniformly positive subspace of the Krepace
{ra_n U/mul U, ['7 ]Z}a

(v) U(domU N &) + [mulU] is a uniformly negative subspace of the ¥re
space{tan U/mul U, |-, -]o };

(vi) domU =kerU +dom U N & + dom U N Ky;
1 1

(vii) ranU = U(dom U N K) + U(dom U N Ky );

Proof. (i)-(v): The implication from (i) to (ii) and (iii) is clear, the equivalences
of (ii) and (iv), and (iii) and (v) follows from Proposition 3.9. Furthermore, the
equivalence of (iv) and (v) follows from Proposition 2.5, (Bégri974: Ch. V,
Corollary 7.4), and Proposition 5.1 below, and (3.10) shows that (ii) and (iii) imply

().

()-(v) < (vi) : By (3.10) the conditions (i)-(iif) imply (vi). If (vi) holds, then
AT = Pf{dom U = P/ ker U+dom UNRK, whereP;" is the orthogonal projection
onto &/, see (3.7). Comparing this with (3.11) shows that (ii) holds.

(vi) < (vii) : This follows by applyingl andU 1. O
Observe that the characterizations (ii) and (iii) in Proposition 4.6 in particular imply

that a unitary relation has closed domain (and range) if either of the defect numbers
of the kernel of/ is finite.
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4.2 Archetypical unitary relations

Two types of unitary operators having a simple block structure are here intro-
duced; they will be calledrchetypicalunitary operator. Recall that, in the bounded
case, archetypical unitary operators appear as so-called transformers in (Shmul’jan
1980). They also appear naturally in the framework of boundary relations; there
they are used to normalize the Weyl family associated with a boundary relation,
see (Derkach et al. 2009). Here archetypical unitary operators are considered in the
general case.

Letj be a fundamental symmetry R, [-, -]} and let)t be a hyper-maximal semi-
definite subspace dfR, |-, -|}. Then recall thaft induces an orthogonal decompo-
sition of &: & = M @ (M NiM) @ M, see Proposition 2.9. Cleargt N it

is a closed uniformly definite subspace{dt, [-, -]} and the behavior of isometric
operators on this subspace is essentially like a Hilbert space unitary operator, see
Proposition 3.9. Hence, assume thits hyper-maximal neutral and introduce for
arelationS in (the Hilbert space}n, [j-, -]}, the relationY'; (S) in {&, [-,-]} as

T(S)(f +ig) = f+i(@Sf+g), [fe€domS, geM.

Note thatY,(S) is a relation or, equivalently, has a kernel if and onlyifis a
relation, and tha{Y(S))~' = T,(-S). If S is an operator, thef(;(S) is an
operator (without kernel) which has the following block representation:

T1(S) = <ji[S ?) )

where the righthand side block decomposition is w.r.t. the decompoSitient

of K. As a consequence of its definitioff; (S) is an isometric operator or re-
lation if and only if S is a symmetric operator or relation, respectively. Since
clos (Y1(S)) = Ti(clos(S)), T1(S) can be an operator whilst its closure is a
relation. Proposition 4.8 below summarizes the above discussion and provides a
characterization foi(';(.5) to be unitary, see (Derkach et al. 2009: Example 2.11).
Here a short proof for the characterizationdf(.S) to be unitary is included; it is
based on the following lemma, which yields in fact a characterization for unitary
relations, see Theorem 6.8 below.

Lemma 4.7. Let U be an isometric relation from &y, [-, 1} to {&s, [, ]} and
assume that there exist hyper-maximal neutral subspgatesndMi, in {&y, [, )1}
and{Rs, [, ]2}, respectively, such th@t; C dom U andU (j;M Ndom U) = M,
for a fundamental symmetjy of { &y, [, -]:}. ThenU is a unitary relation.
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Proof. Letj, be a fundamental symmetry ¢R,, [, -]} and letk € K, andk’ € R,
be such thatf, k|, = [f’, k']o forall { f, f'} € gr U. Then by the assumptions there
exists{h, '} € grU such thatc — h € j;9t andk’ — b’ € j.90,. Clearly,

[fsk—hly = [f K = Ws, V{f f'} €arU. (4.3)

By the assumption thaf (j;9t; Ndom U) = 9,5, there exists @ € j; M Ndom U
such tha{g,j2 (k' — ')} € grU. Therefore (4.3) implies that

0=1[g,k—hly = [j2(k" = 1), (K" = h)]s.

This shows that’ — ' = 0 and, hencel,f, k — h]; = 0 forall f € dom U by (4.3),
i.e. k—h € (domU)Hh ¢ ! = 9. Sincek — h € 3,901, this implies that
k—h=0,ie {k Kk} ={h h'} € grU. Consequently, Proposition 3.1 implies
thatU is a unitary relation. l

Proposition 4.8. Letj be a fundamental symmetry £f, |-, -]}, assume that there
exists a hyper-maximal neutral subspagein { R, |-, -]} and letS be a relation in
M. ThenY,(S) is a (closed) isometric relation or (extendable to) a unitary relation
in {K,[-,-]} if and only if S is a (closed) symmetric relation or (extendable to) a
selfadjoint relation in the Hilbert spacgn, [j-, -|}, respectively. Moreovel(;(S)

is an isometric operator without kernel if and onlySifis an operator and(’;(.5) is

a standard unitary operator if and only  is a bounded selfadjoint operator.

Proof. Only the first equivalence is proven, the remaining statements follow di-
rectly from it and the definition of'; (S). To prove that equivalence first note that
if 7'is a symmetric extension ¢f, thenY;(T’) is an isometric extension af; (S).
Hence, it suffices to prove thdt, (S) is unitary if and only ifS is selfadjoint.

If S'is selfadjoint, then?t C dom (T1(S)) andY(S)(MNdom (T1(S))) = {f+

juSf . f € dom S} is a hyper-maximal neutral subspace{df, |-, -]}, see Proposi-

tion 2.20. Hence, Lemma 4.7 implies tHat(S) is unitary. To prove the converse
assume thab' is a maximal symmetric relation which is not selfadjoint, and that
T1(S) is unitary. Then there existsf, '} € gr S* such thafm [jf, f'] # 0, and a
direct calculation shows thaf, g| = [f +jif’,¢'] forall {g, ¢’} € gr (Y1(5)), i.e.,

{f, f+iif'} € gr (T1(S)) by Proposition 3.1. On the other hand, /] = 0 and,

by assumptionif +jif’, f +jif'| = i([if', ]~ f.if']) # 0. Therefore(f, f +jif'}
cannot belong to the graph of an isometric relation. This contradiction completes
the proof. ]

Observe that Proposition 4.8 yields elementary examples of isometric operators
which can not be extended to unitary operators (or relations); natfigly) for
symmetric operators if9t, [j-, -|} with unequal defect numbers.
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Next define for a relatiorB in the Hilbert spacdn, [j-, ]}, with adjoint B*, the
relationYy(B) as

To(B)(f +ig) = Bf +jB™"g, fe€domB, g€ domB™".

A direct calculation shows thaf,(B) is an isometric relation if &, [, -]}, which

is an operator if and only ifaul B = {0} andker B* = (ran B)* = {0}, and that
clos (T9(B)) = Ya(clos (B)). Hence, ifB is a non-closable operator withn B =

9, thenYy(B) is an isometric operator whilstos (T (B)) is an isometric relation.

If To(B) is an operator, then it has the following block representation w.r.t the
decompositio®)t @ j9N of R:

Ta(B) - (fj jBO_*j> .

Note thatY'»(B) is an isometric operator without kernel if and onlyAfsatisfies
ker B= {0}, domB =9 mulB={0} and tanB =M. (4.4)

Furthermore, using (2.6), it follows thadt, ( B) andclos (15 (B)) are both isometric
operators without kernel if and only i# satisfies

domB*=9, domB =9, tanB*=9 and tan B = . (4.5)

Clearly, the conditions in (4.5) are equivalent to those in (4.4} ifs a closed
operator. Proposition 4.9 below summarizes the above discussion and provides a
characterization foi(',(B) to be unitary.

Proposition 4.9. Letj be a fundamental symmetry £f, |-, -]}, assume that there
exists a hyper-maximal neutral subspagein {&, [-,-]} and let B be a relation
in M. ThenY,(B) and Ty(clos (B)) = clos (To(B)) are an isometric and a uni-
tary relation in {&, [-,-]}, respectively. Moreovefl,(B) or Ty(clos (B)) is an
isometric or unitary operator without kernel if and onlyAfsatisfieq4.4) or (4.5),
respectively, andl,(B) is a standard unitary operator if and only 8 and B~*
are everywhere defined operators.

Proof. It suffices to prove thalls(clos (B)) is unitary. Leth,h' k, k' € 9 be
such thatlh + jb/, f + ig] = [k + ik, f' +ig] for all {f, f'} € gr(clos B) and
{g9,9'} € er B™*. Thenl[iK’, f] = iK', f'| forall {f, f'} € gr(clos B) and[h,jg] =
[k,jg'] for all {g,¢'} € gr B~*, i.e.,{h,k'} € gr B~* and{h,k} € gr(closB).
Consequently{h + jh', k + jk'} € gr(Ty(clos (B))) and, hence, Proposition 3.1
implies thatY»(clos (B)) is unitary. O
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Henceforth, the introduced isometric (unitary) relatiGhgS) and Yy (B) will be
calledarchetypicalisometric (unitary) relations.

Next it is shown that unitary operators of the tyie(B) can map hyper-maximal
neutral subspaces onto closed neutral subspaces with equal, but nonzero, defect
numbers. In light of Theorem 7.16 below, this provides a simple proof for (Calkin
1939a: Lemma 4.4), see Corollary 7.25 below.

Proposition 4.10. Letj be a fundamental symmetry @&, [-, -]}, assume that there
exists a hyper-maximal neutral subspa®ein {f,[-,-|} and letU := Y,(B),
where B is a closed unbounded operator in the Hilbert spgé#, |-, ]} with
domB = M = ran B andker B = {0}. Then for every) < m < ¥, there
exists a hyper-maximal neutral subspate_ dom U of {&, |-, -]} such thatU(£)
is a closed neutral subspace @, |-, -]} with

ny(UL)=m and n_(U(L)) =m.

Proof. Since B* is a densely defined unbounded operator with B* = 9t and
ker B = {0}, there exists amn-dimensional closed subspa@g, of {91, [j-,-|}
such thatlom B*NMN,, = {0} and9 = clos (B~} (MSMN,,)), see Corollary 2.18.
Hence,

Cf =Bf, fecdomC=B"'McN,),

considered as an operator frép to 9t © 0, is a closed operator which satisfies
domC = M, ranC = M o N, andker C = {0}. Now define the isometric
operatotU, from {&, [-,-]} to {R© N, +iNn), [-,-|} as

Usf +if) = Cf +iC~*f', fedomC, f M.

Then by definitiondom U, C dom U and arguments as in Proposition 4.9 show
thatU, is a unitary operator fro&, [-,-]} to {R & (N, + M), [, -]} LetWK

be the polar decomposition 6f, then K is a (nonnegative) selfadjoint operator in
{M, [j-, -]} with dom K = dom C and, henceg := {f +jiKf: f €edomK}isa
hyper-maximal neutral subspace{dt, |-, -]} contained in the domain @&f,,.

By definition of K, KC~! is a closed operator frogdnoN,,, [i-, -|} to {9M, [i-, |}
with domaindt © 9,,,. Moreover, X B~ coincides withK C~! when the latter is
considered as a mapping {0, [j-, -]}, becauselom K = domC andC C B.
ThereforeS := B~*K B~ is a closed symmetry operator with dom&iten,,,, i.e.
S is a bounded symmetric operator with (S) = m. Now the proof is completed
by observing that C dom U and thaty/(£) = {f +jiSf : f € dom S}. O
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4.3 Standard unitary operators

Let j be a fundamental symmetry éR, [-, -]} and assume that ifif, [-, -]} there
exists a hyper-maximal neutral subspa8iei.e., &R = MM M. Let £ be a hyper-
maximal neutral subspace R, [-, |}, then by Proposition 2.17 (ii) and Proposi-
tion 2.20 there exists a selfadjoint relatiénin (the Hilbert space}n, |j-, -]} and

a closed operatoB in {9, [j-, -]} with dom B = 9, ran B = dom K @& mul K
andker B = {0}, respectively, such that

£ = {PxBf +i(iPxKBf + (I — Px)Bf) : f € M}.

Here Py is the orthogonal projection ontdom X = (mul K)* in {9, [j-,-]}.

Using this observation, standard unitary operators can almost be decomposed in
terms of the, in general unbounded, archetypical unitary operators introduced in the
previous section. In particular, Theorem 4.11 below together with Theorem 7.16
below shows that to investigate compositions of unitary operators, it suffices to
consider compositions of archetypical unitary operators.

Theorem 4.11.Let U be an isometric operator i &, [-,-]} with fundamental
symmetryj and assume that there exists a hyper-maximal neutral subspace
in {&,[-,-]}. ThenU is a standard unitary operator if and only if there exists a
closed subspac®t of 91, selfadjoint operatords; and K, in the Hilbert space
{9, [i-, -]} with dom K, = 9t andclos (K, ' — K;) being a selfadjoint relation in
{9, j-,-]}, a closed operatoi3 in {9, [j-, -]} satisfyingdom B = M, ran B =
dom K7, ker B = {0}, domclos (K;B~*) = 9, mulclos (K,B~*) = {0} and
ran clos (K, B~*) = dom clos (K; ' — K>) such that

U;;IIU = clos (Tl(Kl)]Tl(Kg)]TQ(B)) . (46)

Here, withPy, the orthogonal projection ontdt in {9, [i-, -]}, U is the standard
unitary operator in{ &, [, -] } defined as

Un(f+if') =Puf+ I —=Px)f +i((I =Px)f +Paf), ff e

Proof. If U is a standard unitary operator, thE9) is a hyper-maximal neutral
subspace of &, |, -]}, see Proposition 4.5. Hence, by the discussion preceding this
statement, there exists a selfadjoint relatiérin {901, [j-, -]} and a closed operator
Bin {9M,[-,-]} with dom B = 9, ran B = dom K @& mul B andker B = {0}

such that withPg the orthogonal projection onttom K in {9, [j-, -]}

_ Pk B _ B
U= <J’(iPKKB +(I— %)B)) = Un (jz‘PKKB> ’
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whereDt = dom K and the block decomposition on the range is w.r.t. the decom-
positiondt & i of K. Note thatK; := Px K @ 0,4 k IS @ selfadjoint operator in
{M, [j-,-]}. These observations show that there exist operatasd D in 9t with

dom C' = 9t = dom D such that w.r.t. decompositidit & it of K:

I
vav=( P9 (.7)
jiKiB jDj

Note thatl/,;' U being a standard unitary operator is bounded. Hence, (4.7) implies
thatC' and D are also bounded. Sincem C' = 9t = dom D, this implies that”
andD are closed operators. Sin€€;(K;))"! = T,(—K,), it follows that

e B i)\ (B iCj
wreren (2 9 (2,50 e

SinceUy andU are both standard unitary operators dfd(K;))~' is a unitary
operator, the righthand side of (4.8) is also a unitary operator, see Lemma 3.10.
The isometry of that operator implies th@ + K;C) € B~* and the fact that

iM C ran ((Y1(K,)) 'Uy'U) = dom T, (K,) implies thatran (D + K,C) =

9. Sinceker B~* = (dom B)* = {0}, the preceding observations imply that
(D + K,C) = B, see (2.8). Hencelom B* = ran B~* = 9t and

B iCj 1 icBy\ (B0 . .
(o j(D+KlO)j> (0 I )(0 jB‘*j) IT(CB)Ta(B)

(4.9
Since B is a closed operator satisfyintpm B = 9t = tan B andker B =
{0}, T1(B) is a unitary operator without kernel. Consequently, (4.9) implies that
T, (C'B~*)isisometric and, hencé, := C'B* is a symmetric operator, see Propo-
sition 4.8. Sincelom B* = 9 = dom C', K3 is in fact an everywhere defined sym-
metric operator, i.e.K, is a (bounded) selfadjoint operator {1, [j-,-]}. Com-
bining (4.8) and (4.9) yields thdt;, := IL..v,(x,) Uy U can be decomposed as
follows:

(4.10)

Up = T1(K1)jT1(K2)iTe(B) = < ; k) >

jiKiBj (I — K1K3)B™j

Sinceran (Y,(K,)) = &, the closure ot/ coincides withU;,'U, i.e., (4.6) holds.

As a consequence of (4.7), (4.10) and the proven closednéss:bfs (K, B~*) =

C which yieldsdom clos (K2 B~*) = 9t and mul clos (K,B~*) = {0}. More-

over, sinceclos (U;) is a standard unitary operator adds (dom U; N j9t) = i,

clos (Uy(dom U, N i9N)) = clos ({if +i(Ky;' — Ki)f : f € ran(KyB~*)}) is

a hyper-maximal neutral subspace. Consequently, Proposition 2.20 implies that
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clos (K, ' — K,) is a selfadjoint operator and also thlatm clos (K, ' — K;) C
ran clos ((K.B~*)). Finally, (4.10),dom U; = K anddom (clos (K;B~*)) = M
imply thatdom clos (K; ' — K;) = ran (clos (K, B~)).

Conversely, the assumptions imply that the closure of the righthand side of (4.10) is
an everywhere defined isometric operator with dense rangé/j,&/ and, hence,
alsoU is a standard unitary operator. O

Next some properties of standard unitary operators are presented. Recall that if
U is a standard unitary operator frof®,, [, ], } to {&s, [, ]} and & [+]R] is

a canonical decomposition ¢fR, |-, |, }, then the discussion preceding Proposi-
tion 4.2 shows that/ (&])[+]U (&) is a canonical decomposition ¢f;, [-, ]2}
Consequently, standard unitary operators iniKigpaces are the orthogonal sum

of two Hilbert space unitary operators. This implies that standard unitary operators
give a one-to-one correspondence between fundamental symmetries.

Lemma 4.12.LetU be a standard unitary operator frofR, |-, -]: } to {Ro, [, -2}
Thenj, — Uj; U~ is a bijective mapping from the set of all fundamental symme-
tries of { &, [, ];} onto the set of all fundamental symmetrie§ 8§, [-, -], }.

Proof. Letj, be a fundamental symmetry @, [-,-];} and let, := Uj;U~'. Then
it = jp and, clearly,{ £, [j2-, -2} is a Hilbert space. Hencg, is a fundamental
symmetry of{ R,, [-, -]o}. Since for any fundamental symmejgyof { K., [-, -]} one
has thaf, = UU'j,UU~! and similar arguments as above show tHatj,U is a
fundamental symmetry gf];, [, -]: }, the bijectivity of the mapping is evident.[]

Analogues of Lemma 4.12 hold for unitary relations with closed domain and range.
For instance, itan U = R,, then the mapping in Lemma 4.12 is surjective.

For technical purposes the following property of standard unitary operators will be
useful later on.

Lemma 4.13. Letj andj’ be fundamental symmetries &, |-, -]} and let9t and
M’ be hyper-maximal neutral subspaces#, |-, -]}. Then there exists a standard
unitary operatorU in { &, [-, -]} such that

U =9 and U(GM) =i’

Proof. If the assumptions hold, thg®t, [j-, -]} and{9V', [y’-, -]} are Hilbert spaces

of equal dimension. Lel/; be a (standard) unitary operator between these Hilbert
spaces, the® defined byU(fy +jf1) = Uifo +j'Ucfr1, wherefy, fi € 9, is a
standard unitary operator which has the stated properties. O
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As a conclusion of this section it is shown that the Potapov-Ginzburg transforma-
tion, see (Azizov& lokhvidov 1989: Ch. 581), can be interpreted as a stan-
dard unitary operator. This transformation, which yields a one-to-one correspon-
dence between unitary relations betweeniKspaces and Hilbert spaces (for fixed
canonical decompositions of the spaces), can in turn be used to obtain conditions
for when an isometric relation is unitary, see Lemma 5.2 below. To formulate the
following statement introduce for Kne spaces( £, [-,-]1} and {R, [, ]2} with
canonical decomposition®] [+]&; and&; [+] &5, respectively, the Hilbert spaces
{Sﬁla ('7 )1} = {ﬁi‘— X Ry, ('7 )1} and{ﬁ?? ('7 )2} = {ﬁ; X Ry, ('7 ')2}’ where

(fxflgxgh=1fgh=[f gl fra€R,f.d€fy;
(f X flvg X g/)Q = [fag]Q - [flag/]la fag € ﬁ;>f/>g/ € Rl_
Proposition 4.14. Let { &, [-,-]:} and{f,, [-, ]2} be Krén spaces with associated

Hilbert spaces{$, (-,-)1} and{$., (-, ).} as defined above for the fundamental
symmetrie$; andj,. Then the Potapov-Ginzburg transformatig ;, defined by

Bi ol fo 9} ={P"f x Pyg,Pygx P f}

is a standard unitary operator from the Krespace{ &, [-,-]1} x {R2, —[-, |2} tO
the Krdn space{9, (-, )1} x {$2, —(-,-)2}. For a relation H from {&,,[-,-]:}
to { Ry, [, -]2} denote its Potapov-Ginzburg transformation By, i.e. gr Hpg =
Bi, i, (gr H). Then

(4.11)

(H")pe = (Hpa) ™.

In particular, B;, ;, maps the graphs of (closed, maximal) isometric and unitary
relations from the Kren space{ Ry, [-,-]:} to the Krén space{{s, |-, -]o} onto the
graphs of (closed, maximal) isometric and unitary relations from the Hilbert space
{91, (-, )1} to the Hilbert space 9., (-, -)2}, respectively.

Proof. Let f,g € & andf’, ¢’ € K,, then with the introduced inner products

[fogh = [ g2 =
=[P Prgh + [P f. Prgl = [P o Py g'la = [Po f' Padlo
= (P fx Py [, Plrg x Py g — (P f' < Py f, Py g’ x Py g)s.
Hence the Potapov-Ginzburg transformatipy ;, is an everywhere defined iso-
metric operator from the Kfa space{ &, [, -]} x {R2, —[, ]2} onto the Krén
space{$H1, (-, -)1} x {92, —(-, )2}, i.e., it is a standard unitary operator. Finally,
the equality}3;, ;, (H ) = (5,5, (H)) ™" follows from Proposition 4.5 combined

with an interpretation of the orthogonal complement, cf. the arguments preceding
Proposition 3.2. l
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5 THE WEYL IDENTITY APPROACH

Proposition 4.1 showed that unitary relations with closed domain are essentially
completely characterized by their behavior with respect to uniformly definite sub-
spaces contained in their domain. Here it is shown how unitary relations can in
general be distinguished from isometric relations by looking at their behavior with
respect to uniformly definite subspaces contained in their domain. This approach
to unitary relations will be callethe Weyl identity approacto unitary relations.
Therefore, continuing from the results obtained in Section 3.5, in the first section of
this chapter it is shown that unitary relations satisfy the so-called Weyl identity and,
moreover, that identity is also shown to characterize unitary relations. By means of
the Weyl identity it is shown in the second section that unitary operators possess a
quasi-block representation. That representation in particular shows that unitary re-
lations in Kr@n spaces are closely connected to nonnegative selfadjoint relations in
Hilbert spaces; that connection will be used in the Chapter 6. In the third section it
is shown that the obtained quasi-block decomposition for unitary operators can be
generalized to a quasi-block representation for maximal isometric operators. There
it is also shown that the Weyl identity approach can not be used to investigate gen-
eral isometric relations. Finally, in the fourth section the Weyl identity approach to
unitary relations is applied to obtain two types of results on unitary relations: First
it is shown that this approach can be used to split unitary relations and, secondly,
that it can be used to indicate how the defect numbers of neutral subspaces change
under mapping by a unitary relation. In particular, in this last section of this chap-
ter necessary and sufficient conditions are presented for the pre-image of a neutral
subspace under a unitary relation to be a (hyper-)maximal neutral subspace.

5.1 The Weyl identity

Here it is shown that a unitary relation satisfies an identity which will be catied

Weyl identity The reason for this name is that in the case of boundary relations,
which can be interpreted as unitary relations, see Section A.2, this identity is an
identity for the Weyl family associated with the boundary relation, see Section A.3.

Proposition 5.1. Let U be a unitary relation from{ &y, [-,-];} to {&, [-,-],} and
let & [+]R] be a canonical decomposition ¢, [-,-];}. Then the Weyl identity
holds:

U(dom U N &) = (U(dom U N &))"
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In particular, U (dom U N &) andU (dom U N &) are a maximal nonnegative and
maximal nonpositive subspace{ot,, [+, -]»}, respectively.

Proof. Let &5 [+]&, be a canonical decomposition of,, |-, ]»} and letP;" and
P be the projections associated £§ [+]&;, i = 1,2. Then Proposition 3.16
together with Corollary 3.15 implies that(dom U N &) andU(dom U N &)
are a maximal nonnegative and a maximal nonpositive subspa¢@,of, |»},
respectively. Since, evidentlfom U N & C (dom U N &; )4, applyingU and
using Lemma 3.8 yields

U(domU N &) C (U(dom U N &7))H2 NranU.

SinceU(dom U N &) and (U(dom U N K; )2 are both maximal nonnegative,
see Proposition 2.5, the Weyl identity follows from the previous inclusion. [

Note also that the equalitylom U N &) N (dom U N &) = {0} yields

U(domU N &) NU(dom U N Ky ) = mul U. (5.1)

Using the Potapov-Ginzburg transformation, see Proposition 4.14, the following
necessary and sufficient conditions for an isometric relation to be unitary are ob-
tained, cf. Proposition 3.18. Those conditions are subsequently used to prove that
the Weyl identity characterizes unitary relations almost completely.

Lemma 5.2. LetU be an isometric relation fronjf, |-, -]1} to { R, |-, -]o} and let
& [+]&; be a canonical decomposition ¢&;, [+, -|;} with associated projections
P andP;, fori = 1,2. ThenU is unitary if and only if
(i) Uisclosedker U = (dom U)* andmul U = (ran U)H1;
(ii) there exists a subspa®®@™ C dom U N K with 27U (M) = Ry
(iii) there exists a subspad®~ C dom U N Ky with P, UM~ ) = R;.

Proof. Necessity of (i) is clear by (3.1) and (3.4). SinegU(dom U N &Y) = &Y
by Proposition 3.16 and Corollary 3.15, (i) and (iii) hold #5t* = dom U N &5

Conversely, assume that (i)-(iii) hold and [ét; be the Potapov-Ginzburg trans-
formation ofU, i.e.,

grUpe = {{P"f x Py f, P f' < Py f}:{f, f'} €gr U},
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see Proposition 4.14. Sin¢éis by assumption a closed isometric relatioip; IS

a closed isometric operator from the Hilbert spé6g x &5, (-,-);} to the Hilbert
space{ &5 x &7, (-,-)2}, see (4.11). Now observe that the assumption (ii) implies
that&] x {0} C ran Upg. Moreover, the assumptider U = (dom U)H1 implies
thatP dom U = &, see Lemma 3.4, and, hence, there exists a subSpace &,
satisfyingclos 91, = K, such thatP, ran Upe = 91, . Combining the preceding
observations shows tha&, x M, C ran Upe and, henceran Upg = &5 x & .
Similar arguments show thdbm Ups = & x &, . Consequentlylos (Upg) =

Upc is a (Hilbert space) unitary operator and therefore, using the inverse Potapov-
Ginzburg transformatiorl/ is a unitary relation. O

Theorem 5.3. Let U be an isometric relation fromM&,, [, -]:} to {Rs, [-, -]} and
let & [+]R; be a canonical decomposition ff, |-, -];}. ThenU is unitary if and
only if

(i) Uisclosed;

(i) kerU = (dom U)MH1;

(i) U(domU N &) = (U(dom U N &7))™™.

Proof. Necessity of the conditions (i)-(iii) follows from (3.1), (3.4) and Proposi-
tion 5.1. Conversely, if (iii) holds, then

(ran U2 C (U(domUﬁﬁl_))m2 = U(domU N K{) C ranU.

By Lemma 3.5 the above inclusion combined with the assumption (ii) implies that
mul U = (ran U)M*2, Moreover, Proposition 3.9 yields th&t{dom U N &) and
U(dom U N K) are closed and, hence, assumption (iii) combined with Proposi-
tion 2.5 implies that/ (dom U N K}) andU (dom U N &) are a maximal nonnega-
tive and nonpositive subspace{ot,, |-, -]»}, respectively. Hence the sufficiency of
the conditions (i)-(iii) follows now from Lemma 5.2. ]

Geometrically Theorem 5.3 says that closed isometric relation are unitary precisely
when they map certain uniformly definite subspaces onto maximal definite sub-
spaces. It can be seen as an abstract extension of (Derkach et al. 2006: Proposition
3.6).
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5.2 A quasi-block representation for unitary operators

Here a quasi-block representation for unitary operators and a consequence of it
from (Nakagami 1988) are presented; see also (Gheondea 1988). For completeness
here a proof based on the Weyl identity is included. As a preparation for the proof
two lemmas will be stated. The first lemma shows that unitary relations possess a
core which is connected to the Weyl identity. Note that the same subspace is also
a core for certain maximal isometric relations, see Corollary 6.3 below; cf. also
Example 5.10 below.

Lemma 5.4. Let U be a unitary relation from{&;,[-,-];} to {f, [-, ]} and let
& [+]R] be a canonical decomposition ¢, [-,-];}. Then the subspac@ :=
ker U + dom U N K + dom U N & is a core forU, i.e.,clos (U |¢) = U.

Proof. By definitionU, := U [¢ is an isometric relation such that

U,(dom U, N &) = U(dom U N £).

12

Hence, Proposition 5.1 implies thélt (dom U, N &) = (U,(dom U, N ﬁl‘))[
Furthermore, sincdom U, = dom U, see (3.10), it follows from (3.4) that

ker U, = ker U = (dom U)*1 = (dom U, ),

Consequentlyclos U, is a closed isometric relation satisfying the conditions of
Theorem 5.3, i.e.¢closU, is a unitary relation. Sinc&, C U, this completes
the proof. O

In Lemma 5.5 below certain unitary operators in aiikrgpace with a trivial kernel

are considered which are additionally nonnegative selfadjoint operators in an asso-
ciated Hilbert space. Theorem 5.6 below shows that this class of unitary operators
essentially explains the structure of unitary operators betweem lspgaces. As

a preparation for Lemma 5.5, recall that for an everywhere defined contrdction
from the Hilbert spacé $, (-, -);} to the Hilbert spacd 9., (-, )2} the following
equivalence holds:

ker (I — K*K) = {0} ifandonlyif ker(I — KK*)= {0}. (5.2)

Lemma 5.5. Letj be a fundamental symmetry of, |-, -]}, let &7 [+]R~ be the as-
sociated canonical decomposition{at, -, -]} and letK be an everywhere defined
contractive operator fror{ 8%, [, -]} to {&~, —[-, -]} with ker (/ — K*K) = {0}.
ThenUgk defined as

B I K*\ ((I-KK)\/? 0
e (1K) (R e e
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is a unitary operator in{ &, [-, -]} with ker Ux = {0} and
Ux(domUg NKY) ={f" + Kf": ff € &};
Uk(domUg NA) = {f"+ K*f~: fe &}

Moreover,Uk is a nonnegative selfadjoint operator in the Hilbert spdek [j-, -] }.

Proof. In this proof the following notation is used
D= (- K*K)"? and Dg.= (I - KK*)"?,

cf. (Sz.-Nagy& Foias 1970: Ch. |, Section 3). Note that the assumpgtiar{/ —
K*K) = {0} implies thatDy' := (Dg)~* and Dy: := (Dg-)"! are operators,
see (5.2).

Step 1:W.r.t. the decompositioR™ x K~ of |, defineS andT as

* —1
S = I K and T = Dy 0_1 . (5.4)
K I 0 Dyl

ThenS is an everywhere defined closed operator and, hence, by Lemma 2.15

D0 I —K*
T\ = gk — [ PK .
(5T) 5 0 D) \-K I

Consequentlyy := ST satisfies
-1 * * -1
vy _ (P 0 I -K I K*\ (D 0
0 Dp)\-K I K I 0 Dgt
_(Dx 0 I - KK 0 Dyt 0
0 Dt 0 I - KK* 0 Dyt

- [domV-

This shows thal is an isometric operator ifig, |-, -] }. Furthermore, the condition
ker (I — K*K) = {0} implies thatl” has dense domain, see (5.2) and (2.6). Con-
sequently, (3.3) implies thaer V' = {0}. Moreover, evidentlydom V' N K" =
dom D[_(l, domV NA™ = dom D[}i, dom Dy = 8" anddom Dy~ = £~ . Hence

V(domVN&") = {f"+Kf": fre &)
V(domVNR ) ={f +Kf :f €&}

These equalities show th&t(dom V' N &) andV (dom V' N &) are a maximal
nonnegative and a maximal nonpositive subspace, respectively, and that

V(domV N &Y) = (V(domV N &™))H2,
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see Proposition 2.19. Consequentliyy = clos (V') is unitary by Theorem 5.3.
Finally, sinceV (domV N &7) NV (domV N &™) = {0}, because by assumption
ker (I — K*K) = {0}, it follows from (5.1) thatmul Ux = {0}.

Step 2:Recall that
KD C DK and K*Dil C DK™,

see (Sz.-Nagyc Foias 1970: Ch. I, Section 3). Applying the above inclusioni to
yields:

D' K*Dy. Dt 0 IOK"\ il
1 e ) I = T 51 = Ui,
KDy Dyl 0 D) \K I

Sincer};]j is a unitary operator if&, |-, -]}, see Lemma 3.10, aridx = clos (V)
is also a unitary operator iR, [, -|}, the above inclusion implies th&t, = jUE]j.
l.e., Uk is a selfadjoint operator in the Hilbert spa®, |-, -|}.

Step 3:The arguments in (Sz.-Nagy Foias 1970: Ch. I, Section 3) can also be
used to show that

KD C D?K and K*Di? € DJMK*

Applying these inclusions to" (= ST) yields:
vo (T K D 0
K I 0 Dg
—-1/2 * —1/2
c (P 0 I K*\ (Dy”? 0
“\ 0o DR?)\K I 0 Dp?
K* K*

SinceK is a contraction$ (in (5.4)) is a nonnegative operator{s, [j-, -] }. Conse-
quently, the above calculation shows tfvats a nonnegative operator {IR, [j-, -]}
and, hence, alst i = clos (V) is a nonnegative operator {IR, |j-, |} O

Note that the conditioer (I — K*K) = {0} in Lemma 5.5 can be dropped by
allowing Uk to have a kernel and a multi-valued part. In that case the block repre-
sentation folUx needs to be interpreted in a specific manner.

Following is the announced representation for unitary operators w.r.t. uniformly
definite subspaces, see (Nakagami 1988) and (Gheondea 1988); see also{Azizov
lokhvidov 1989: Ch. 2, Theorem 5.10).

Theorem 5.6. Let U be a unitary operator from{ &, [, ]} to {&,,[-,]} and
let &5 [+]R, be a canonical decompositions of;, [-,-|.}. Then there exists a
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bounded unitary operato’; from { &, |-, -]:} onto{&s, [-, -]} and an everywhere
defined contractio from{&], [-,-]o} to {&;, —[, |2} withker (I - K*K) = {0}
such that

U = UkU,

whereUg is as in Lemma 5.5. Conversely[if and K are as above, theti U, is
a unitary operator from{&;, [-, ]} to {&s, [+, ]2}

Proof. Since Uk is a unitary operator iffs, [, ]} and U, is a bounded uni-
tary operator from{ &, [, -]} onto { Ry, [+, -]2}, UxU; is a unitary operator from
{f1,[-h} to{Ry, [, ]2} by Lemma 3.10.

To prove the converse note thatkifr U # {0}, thenU, := U(Uy,y) ™', Where
Uerv 1S @s in Lemma 3.11, is a unitary operator without kernel. Hence, it suffices
to prove that for the unitary operatdf, with ker U, = {0} there exists a represen-
tationU, = UxU,, whereU, is a standard unitary operator. Namely, in that case,
U has the representatidh = Uk (U;Uyer ), WhereU, Uy, 7 is @ bounded unitary
operator.

Hence, let/ be a unitary operator witker U = {0} and let&] [+]&] be a canon-
ical decomposition of &1, [, -]; }. Then by Proposition 5.1 and 2.19 there exists a
(unique) contractive operatdt from {&], |-, -]o} to {&;, —[-, -]} such that

U(domUNKT) ={f +Kfy : f; € &}
UdomUNRK) ={fy +K*fy : fy € & }.

Hereker (I — K*K) = {0}, becausenul U = U(dom UNK)NU(dom UNK;) =
{0}, see (5.1). With thid{, let Ux be the unitary operator ififs, [-, ]2} with
mul Ux = {0} given by Lemma 5.5 and defireto bedom U N & +dom U N K; .
Thenran (U |¢) C ran Uy and, hencel/;'U [¢ is an isometric operator, see
Lemma 3.10, which satisfies

(Ug'U 1¢) (domU N &) = dom (I — K*K)™"? x {0} C &3;
(Ug'U I¢) (domU N &) = {0} x dom (I — KK*)™/? C &;.

Now observe thatlom U N & anddom (I — K*K)~'/? are dense in the Hilbert
spaceq &y, [, i} and{ &S, [, ]2}, respectively, and thaiom UNK; anddom (/-

KK*)~1/% are dense in the Hilbert spacgs;, —[-, -]} and{&;, [, ].}, respec-
tively, see Corollary 3.20. Hence, there exist standard unitary operdfomnd
U; from {&],[-,-]1} to {&F, [, ]} and from{&, —[,]:} to {&;, —[, ]2}, re-

spectively, such that with respect to the decompositighs< &, and&; x &, of
R, and Ry, respectivelylU; = clos (Ug'U ¢) = U;” x U, i.e.,U [¢C UgUs.
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SinceUk U, is unitary by the proven part of the statement ahds by assumption
a unitary operator, the preceding inclusion implies that Uk U,. l

If j, is the fundamental symmetry ¢R,, |-, -]»} corresponding to the canonical de-
compositioni; [+]K; in the statement of Theorem 5.6 apds the fundamental
symmetry of{&, [, -];} corresponding to the canonical decompositRi+]&;

in the proof of Theorem 5.6, theA” in Theorem 5.6 is the operator such that
U(domU N &) = {f" + KfS : fi € &5}. Furthermore, ifkerU = {0},
then, with the above notatiord/; in Theorem 5.6 is a standard unitary operator
from {R,, [, ]1} to {Ro, [, -]o} such that,j; = joU;. Therefore, in that casé); is
also an everywhere defined unitary operator from (the Hilbert sga&e)i:-, -1 }
onto (the Hilbert space)fs, i+, -]2}. Consequently, in light of Lemma 5.5, the
decompositiorUx U, of U in Theorem 5.6 is in fact a polar decomposition.dfs

an operator from the Hilbert spag&,, [j;-, |1} to the Hilbert spacé R, [js-, |2},

cf. (Calkin 1939a: Theorem 3.6). This observation will be used in Chapter 6 to
obtain another useful graph decomposition of unitary relations.

Remark 5.7. Theorem 5.6 shows that unitary relations can be classified by the
nature of the spectrum of an associated contradtiat 1. In particular, the unitary
operatorU is a standard unitary operator if and onlyAifis a uniform contraction,
see (Azizow lokhvidov 1989: Ch. 2, Theorem 5.10).

Theorem 5.6 can be interpreted as a realization result for maximal nonnegative and
nonpositive subspaces (or, equivalently, for maximal dissipative or accumulative
relations, see Proposition 2.20). Therefore observe first titatsifa closed neutral
subspace of the Kfe space{ R, [-, -]} with fundamental symmetrj, theng is a
hyper-maximal neutral subspace of the Krepace{£ + iL, [, ]} andL x Lis a
unitary relation in{ £ +j£,[-, -]}, see e.g. Corollary 4.4.

Theorem 5.8. Let ™ and M~ be a maximal nonnegative and nonpositive sub-
space of &, [, -]}, respectively, and leg " [+]R~ be a canonical decomposition of
{R,[,+]}. Then there exists a unitary relatidnin {&, [-, -]} such that

M =U(domUNKY) or M =U(domUNK),

respectively. Moreover, [f; andU, are two unitary relations i{ &, |-, -|} such that
Ul(dom U1 N ﬁ+) = Ug(dom UQ N ﬁ+) or Ul(dom U1 N .ﬁ_) = UQ(dOHl Ug N .ﬁ_),
thenclos (U, 'U,) is a unitary relation in{ &, [, -]} with closed domain.

Proof. Let j be the fundamental symmetry associated with the canonical decom-
position A [+] R~ and letd, be defined ag)t* N (M*)H. Thendn, is a closed
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neutral subspace df, [-, -]} and by means of this neutral subspace define=
My + M, andR, = AN KLY Then{Ky, [-, -]} and{&K,, [-, -]} are Krén spaces and
Ko [+]Ry = (BT N Ro)[+](R™ N Ko) and&F [+]& = (AT N K,)[+](R™ N &,) are
canonical decompositions of these spaces.

Now let K, be the angular operator 8ft* N K,, i.e.,
M NR ={fF+K.fF:[Fer}

SincedMt* N (M) N K], = {0}, it follows thatker (I — K*K,) = {0}. Hence,
Uk, is a unitary operator if&,, [-, -]} such thalx, (dom Uk, N K) = M N K,
see Lemma 5.5. Sindg, defined viagr Uy = 91y x M, is a unitary relation in
{Ro, [, ]}, Lemma 3.13 shows that defined viagr U = gr Uy +gr Uk, is a unitary
relation in{ &, [-, -]}, which satisfie$/(dom UNK") = MM*. Similar arguments can
be used to show the existence of a unitary relationith U(dom U NK~) = M~

Next let U; and U, be unitary relations such thaf (domU; N &) = M =
Uy(dom Uy N &1) and w.l.o.g. assume thatr U; = {0} = ker U,, see the above
arguments or Corollary 3.12. Thén (domU; N R~) = Us(domU; N R™), see
Proposition 5.1. HencE, := U, 'U; mapsdom U; N &* ontodom U, N &*. Since
clos (dom U; N &%) = K%, fori = 1,2, see (3.11), it follows thatlos (U,) is a
standard unitary operator {R, |-, -|}. O

5.3 A quasi-block representation for maximal isometric
operators

Next the quasi-block representation for unitary operators from Theorem 5.6 is gen-
eralized to a quasi-block representation for maximal isometric operators. That
representation for maximal isometric operators implies that non-trivial properties
of maximal isometric operators can be obtained from properties of unitary oper-
ators. Note also that a similar representation holds for an isometric opéfator
whose domain contains a hyper-maximal semi-definite subspace, because in that
caseker V + dom V N & + dom V N K; is dense in its domain.

Theorem 5.9. Let V' be an isometric operator frofiRy, [, -]1 } to { R, [, |2} with
ker V = (dom V)t andtan V' = R,. Moreover, letj; be a fundamental symme-
try of {&;, [,-]:} and let&; [+]&; be the associated canonical decomposition of
{Ri, [-,]:}, fori = 1,2. ThenV is a maximal isometric operator if and only if

V= UK‘/ta

where



Acta Wasaensia 59

(i) Vi is a closed isometric operator frofiRy, |-, |1} to {Rs, [, |2} satisfying
ker V = ker V; and (ker V)1 = dom V;, j,V; = V;j, and

PfranV, =& or PyranV, = Ry;

(i) Uk is the unitary operator in{f;, [-,-]o} associated with an everywhere
defined contraction’ from (the Hilbert spacel &5, [, ]»} to (the Hilbert
space R, , —[-, ]2} withker (I — K*K) = {0} as in(5.3).

Proof. W.l.o.g. assume thaer V' = {0} = ker V}, see Section 3.4.

First the sufficiency of the conditions is proven, where w.l.0.g. it is assumed that
PyranV;, = RK;. Note first that the assumptignV; = V;j; together with the
closedness of¥; implies thatdom V; = K;. Hence, in particular, the assumptions
imply that V;(&) = P, ranV; and V(&) = K,. Furthermore, sinc&/ is a
unitary operator i{ Rz, |-, -]o}, Proposition 3.16 and Corollary 3.15 imply that

Py Ug(domUxg NRy) =K, and P U (ranUk N Ry) = Ry,
Combining these equalities wil} (R, ) = R, yields
domUg NKR, CranV; and Py (Ug'(ranUg N KRS) NranV;) = Pyran V.
Consequently, sincg (&) = Py ranV; andV; (R, ) = K, , V = UV, satisfies
PyV(domV NA )=/, and PV '(ranV NKy) = K.
This implies by Proposition 3.16 and Corollary 3.15 thais maximal isometric.

Next the necessity of the conditions is proven; w.l.o.g. that is only done for the
case thatP, x P, )erV = R, x 85, see Corollary 3.15. IfP; x P, )grV =

A x &F, thenV (dom VN &) is a maximal nonnegative subspace %, [-, -].} by
Proposition 3.16. LeK be its angular operator w.r&;, i.e., K is the everywhere
defined contraction froM&; , [, -]o} to {&;, —[, -]2} such that

V(domVN&) ={fT+Kf": f" ek}

Moreoverker (I—-K*K) = {0}, becausé&’ is a closed operator witlhul V' = {0},
i.e. V(dom V N &) does not contain neutral vectors{o,, [-, -} (hereK* is the
adjoint of K as an operator frod &5, [, |2} to {&;,—[,"]2}). Let Ux be the
unitary operator associated witti as in (5.3). The/;'V [ﬁr IS an isometric op-
erator from{ &7, |-, -]:} to {&5, [-, -]} which maps the dense subspdoen V N K;
of &, see Lemma 3.19, onto the dense subspacel; N &5 of &5, see Corol-
lary 3.20. l.e.dim & = dim &5 andV;" := clos (Ug'V [g+) is an everywhere
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defined unitary operator from the Hilbert spao®/, [, -];} onto the Hilbert space
{ﬁ;’ ['? ]2}

Similar arguments (applied 6!, ran V N &, andV ~!(ran V' N K;)) show that
there exists an everywhere defined unitary oper&torfrom {&,, —[-,]:} onto
{R5,—[,"]2}- ThenV; := V;* x V]~ is a standard unitary operator frof®,, [-, |; }

to {Rs, [, ]2} satisfyingVij; = j,Vi1. Hence, by Lemma 3.10 := UxV; is a
unitary operator fror{ Ry, |-, -]1} to { Ko, [-, -]} which by definition ofl/; satisfies

Uf=Vf, fedomUnNAK =domV nAK . (5.5)

Next let the definite inner products -); and(-, -), on the closed subspacfs x &,
andf; x &5 be asin (4.11) and let,, and A;; be the Potapov-Ginzburg transforms
of V andU:

gt Ay = {{Pfx Py f,Prfx Py f'y{f. f} ear V]
gr Ay = {{Pfx Py f',P{ fx P f'} : {f, f'} € er U},

respectively, see Proposition 4.14. Thép and A;; are a maximal isometric and
a unitary operator from the Hilbert spa¢&; x &5, (-,-);} to the Hilbert space
{R x &7, (-, )2}, respectively. Note that the assumptidf] x Py )grV = & x
RF implies thatran Ay = &; x &5 . Note also thatl;' (R} )@ A, (&) = & x &5,
becausely is a (Hilbert space) unitary operator, and tHat' (&) = A,'(&5) by
(5.5). Sincedy is an isometric operator, the above observations yield

AVHRD) C (AVH(R9))7 = (A7 (8) ™ = Ay (&)

This shows thal, := Ay A;! |« is an everywhere defined isometric operator
in {&, [, ]1} and, hence}, = & x V5 is an everywhere defined isometric
operator ir{ Ry, [+, -]1 } which commutes with,. By definition of 5

(UV)'f=V7lf, feranVNRK =ran(UV)N K. (5.6)

Sincedom V' = dom VNRK] +V ~!(ran VNAK, ) by Proposition 3.16, (5.5) and (5.6)
show thatU'V, = UV, V, andV coincide on the domain of the maximal isometric
operatorV/. Hence, the asserted decomposition holds Wtk V;15. O

Although Uy in Theorem 5.9 is a nonnegative selfadjoint operator in (the Hilbert
space){ Ry, [j2-, ]2} andV, an everywhere defined isometric operator from (the
Hilbert spaceX{ &1, [j:-,]:} to (the Hilbert space) k., [j2-, ]2}, the decomposi-
tion V' = UkV; is not, in general, a polar decompositionlof becauselom Uy ¢

ran V;. However, ifran V;, = Ry, then the decomposition in Theorem 5.9 is a polar
decomposition. In fact, in that ca$eis a unitary operator, see Section 5.2.
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Recall that for a unitary relatioker U + dom U N & +dom U N K; is dense in the
domain ofU, see (3.10). In fact, Lemma 5.4 showed that the preceding subspace
is a core forU. l.e., a unitary relation is completely determined by its behavior on
the uniformly definite subspacel®m U N & anddom U N &;. For (maximal)
isometric relations this does not in general hold as the following example shows.

Example 5.10.Let U be a densely defined unbounded unitary operator in the
separable (infinite-dimensional) Krespace{&, [-,:]}. ThendomU N K" and

domU N K~ are dense subspaces ®f and 8, respectively, which are, more-

over, operator ranges. Hence, there exists an infinite-dimensional closed subspace
£ of & such thatt N dom U = {0}, see Proposition 2.17 (vi). Now |&f be the
everywhere defined isometric operator{if, |-, -|} which is the identity mapping

on 8~ and mapsiR*t isometrically ontol C K*, thenV := UV, is by (the first

part of the proof of) Theorem 5.9 a maximal isometric operator and by construction
dom V N & = {0} (@anddom V = R).

From the fact thatlom V = & anddom V N &% = {0} in Example 5.10, it follows

that the domain of/ can not contain a hyper-maximal semi-definite subspace. Be-
cause if it would contain a hyper-maximal semi-definite subspacediher’ N &+
anddom V' N &~ should be dense ia* and &, respectively, see Corollary 2.14.
Example 5.11 below shows that there exists a densely defined (non-maximal) closed
isometric operatov” with dense range such thidm VNR™ = {0} = dom VNK".

In particular, the domain of the isometric operator in Example 5.11 also does not
contain any hyper-maximal semi-definite subspace.

Example 5.11.Let K be a compact nonnegative selfadjoint operator in the separa-
ble (infinite-dimensional) Hilbert spade), (-, -)} with ran K # $) = tan K. Then

by (Brasche& Neidhardt 1993: Lemma 2), there exists a closed restricticf

K such thatan 7' = $), thatdom 7' NranT = {0} and thatdim(dom 7)* = cc.

Note that the operator rangem 7" + ran 7', see Proposition 2.17 (i), is not equal

to the whole space by Proposition 2.17 (iv).

Sincedom T + ranT' is a nonclosed operator range, Proposition 2.17 (ii) and (V)
implies that there exists an everywhere defined closed opéesatdth ker B = {0}
such thatan BN (dom T +ranT) = {0}. Now V defined as

V{f, T 'f+Bf}y={f,Kf —B*f}, fe€ranT, f €domK,

is a closed isometric operator {H?, < -,- >}, cf. (Derkach et al. 2006: Example
6.6) and (Derkach et al. 2012: Proposition 7.55). Clearly,
domV = grT™' + {0} x B(dom K);

(5.7)
ranV = gr K 4+ {0} x B*(ranT).
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The above formulas imply thatom V' = $? = fan V, because by assumption
domK = § = ran7, and B and B* are closed everywhere defined operators
with dense range. Recall th&t™[+]9H~, wheresH™ = {{f,if} : f € o} and
9™ = {{f,—if} : f € H}, is a canonical decomposition §H% < -,- >}, see
Example 2.1. Hencelom 7" NranT = {0}, ran BN (dom T +ranT) = {0} and
(5.7) yielddom VN H* = {0} =domV NH.

Using compositions of unitary and maximal isometric operators as in Theorem 5.9,
it can be shown that the domains of unitary relation do not differ essentially from the
domains of isometric relations. l.e., to distinguish unitary relations from isometric

relations their action also has to be considered.

Example 5.12.Let U be an unbounded unitary operator betwéen, [-,-];} and
{R,],"]2} and letR; [+]R; be a canonical decomposition gf;, [-,-].}. More-
over, letl” be a closed everywhere defined isometric operatd®in [-, -]o} which
mapsf; onto &5 and &, onto®,, where®, C £,. ThenVU is an isometric
operator from{ Ky, [-, |1} to {Rs, |-, -]2} with dom VU = dom U. Moreover,VU

is not unitary, becausg, ran VU = ©,; # K, . In fact, arguments as in the proof
of Theorem 5.9 show thatU is a maximal isometric operator.

Example 5.13.Let S be a densely defined closed symmetric operat¢sin(-, -) }
which does not have equal defect numbers. TliefS) is a densely defined iso-
metric operator in{$H? < -,- >} with dense range which can not be extended
to a unitary operator. Next leB be an everywhere defined closed operator such
thatran B = dom S andker B = {0}. ThenY,(B™1!) is a unitary operator in
{92, < -, >} with

dom (T2(B™")) = ran B @, $ = dom S @, $ = dom (1(S)).

5.4 Weyl identity and properties of unitary relations

The Weyl identity approach, which was shown to characterize unitary relations in
Section 5.1, is now used to obtain two types of results on unitary relations: Firstitis
shown that this approach indicates how unitary relations can be split and, secondly,
itis shown how the approach can be used to determine the defect numbers of certain
neutral subspaces after mapping them by a unitary relation. As a first step towards
the splitting result, conditions (in terms of the Weyl identity) are presented for when

a part of a unitary relation is itself a unitary relation between certaifrkgpaces.
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Proposition 5.14.LetU be a unitary relation fror{ &, [-, -]: } to { Ko, [, -]o} and let
& [+]&; be a canonical decomposition ¢&;, [-, -|;} with associated projections
P’ and P/, fori = 1,2. Moreover, let; and £, be closed subspaces lofr U
andmul U, respectively, and assume that there exist subsgates. dom U N K,
and9~ C dom U N K; such that

(i) clos(MT)Ndom U =M+ andclos (M) Ndom U = M~
(i) PyUENT) C PyUEN) and PFU(-) C P U,

ThenU defined via
orU = Hf+g,fYeU: fecclos(Mr+M), g€ Ly, f €L}

is a unitary relation from the Kiie space{&;, |-, -]: } to the Krén space{ &,, |-, ].},
wheref; = clos (IMMT+9M7)+ (L4471 L4) and Ry = (P UONT) + P, U(OM))N
(L + 2L,

Proof. Note first that condition (i) implies tha®, U(9") and P, U(9M~) are
closed, see Proposition 3.9. Hence, the assumptions (i) and (ii) together with the as-
sumptions oty andg, imply that{&y, [, ]:} and{&s, [-, ]} are Krén spaces and
thatU is closed, because its graph is the intersection of the two closed subspaces
gr (U) and&; x K,. Moreover, by constructioker U = £, = (dom U)H N &;.

Next observe that the assumptions (i) and (ii) imply thgpnt) and U(917)
are a maximal nonnegative and maximal nonpositive subspace of tie $frace
{PYUONT) + Py UOR), [ ]2}, respectively. Therefore, sindg € mulU <
U@) NUM™), UORT) = UMH) N Ky andU (M) = U(M) N &, are a
maximal nonnegative and nonpositive subspace of thénkagace{ R,, [-, -], }, re-
spectively. Sincé/(M+) C (U(M))H2, see Proposition 5.1, the maximality of
U(9M+) and U (M) implies thatU (M+) = U(M)H= in {Ks, [-,-]}. Hence,
Theorem 5.3 yields thdf is a unitary relation. l

The inverse to Proposition 5.14 also holds, i.el/ifs a unitary relation, then (i)
and (ii) hold. Next Proposition 5.14 is used to obtain a result about the splitting of
unitary relations which complements Lemma 3.13.

Theorem 5.15.Let U be a unitary relation from{ &, [-,-]1} to {Rs, [, ]2}, let
{&:, [ -i}[+{&:,[-, ];} be an orthogonal decomposition éf;,[-,-];} into two
Krein spaces, fof = 1,2, and defind/ and U via

grﬁ:grUﬁ(?il xﬁg) and grﬁ:grUﬂ(ﬁl xﬁg).

ThenU is unitary if and only iU is unitary.
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Proof. W.l.0.g. assume th&ker U = {0} = mul U and let&; [+]&; and &} [+]&;
be canonical decomposition 6R;, [, -];} and{&;, [-, -];}, respectively, foi = 1, 2.
Denote the associated canonical decompositiop®pf|-, -];} by & [+]&; and let
P and P denote the associated projections,ifer 1, 2.

Clearly, to prove the equivalence it suffices to prove only one implication. Hence
assume thal/ is unitary. Defind/;" via

grUr ={{f.f}egrU: f e domUnNKS and P} f' € &},

then P;fran ﬁj — RJ, see Proposition 5.1. Iff, '} € gr ﬁj and{g,¢} € gt U
whereg € dom U N K, then[f, g, = 0 and[P,f ', P ¢'], = 0. Therefore

0= [f? g]l = {flag/]Q = [P27f/’P27g/]2‘

SinceU is unitary, P;ﬁ(domﬁ NRy) = 3%2‘ and, hence, the previous equality
implies thatP; f” € (&;)*2 N &; = ;. Consequentlytan U+ C R,.

Now if {g, ¢’} € U, whereg € dom U N &7, then, sincean U} C ], = E[jh,

frgh =1f¢) =0, {f.f}€arlT}
This shows thaf € (dom U N &7 = (&) = &F, see (3.11).

The above arguments show tiat C U and, henceP, U(domU N &) = &
andP; U(dom U N &) C /. By similar arguments®, U(dom U N &;) = &,
andP; U(dom UNK]) C /. Thereforel is unitary by Proposition 5.14, because
the condition (i) therein clearly holds. l

Next a very different application of the Weyl identity approach to unitary relations

is presented. Namely this approach is now used to characterize the defect numbers
of the pre-images of neutral subspaces under mapping by unitary relations; these
results are an extension of Calkin’s, cf. (Calkin 1939a: Theorem 4.8, Theorem 4.11
& Theorem 4.12). As a starting point, a simple observation on neutral subspaces
contained in the domain of a unitary operator with a trivial kernel is stated.

Lemma 5.16. Let U be a unitary operator from{ &y, [-, 1} to {Rs, -, ]2} with
ker U = {0}, let & [+]&; be a canonical decomposition f;, -, -|;}, fori = 1,2,
and let€ C domU be a neutral subspace df’,,[-,-]:}. Then there exists a
subspacel™ C ran UNAS, an injective mappind., fromU~!(£") todom UNK;,
and a subspace€~ C ranU N K,, an injective mapping._ from U~1(£7) to
dom U N K such that

{(fe+Lify freU ML)y =L={f-+L f :f eU L)} (58)
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In particular, £ is closed ifclos (£7) Nran U = £7 orif clos (£7) NranU = £,
U(L) is closed ifclos (ran L) Ndom U = ran L or if clos (ran L_) Ndom U =
ran L_. Moreover,

ny (L) =dim(&; ©, PLUHLT)) and n_(L) =dim(& o, U (£h)).

Proof. As a direct consequence of the decompositions of unitary relations in (3.8),
the decompositions of in (5.8) hold. Recall that, sincg is neutral,£ is closed

if and only if either P," £ is closed orP; £ is closed. This observation together
with (5.8) implies thatg is closed if and only if eithe®®U~!(£") is closed or
P;U'(£7) is closed. Therefore the stated conditions for the closednesioiv
follows from Proposition 3.9. Moreover, the stated conditions for the closedness
of U(£) can be proven by similar arguments and the assertion about the defect
numbers ofg follows straightforwardly from (5.8), becauge and L_ map into

A, andAf;, respectively. O

Combining the decomposition of unitary relations in (3.8) with the concept of an-
gular operators, see Section 2.5, yields the following reformulation of Lemma 5.16
in terms of angular operators.

Proposition 5.17. Let U be a unitary relation from{ &, [-, -]1} to { &y, [, ]2}, let

& [+]&; be a canonical decomposition of;, [-,-];}, fori = 1,2, and letK ™ and

K~ be the angular operators df (dom U N &) andU(dom U N K] ) W.r.t. K5
and{; , respectively. Moreover, 18t C ran U be a neutral subspace ¢Rs, |-, |2}

with angular operatork’ w.r.t. 8. Then the defect numbers of the neutral subspace
U~1(M) of { &y, [, ]} are

ny(U7'(M)) = dim (& ©1 PL U (ran (K* — K))) ;
n_(U'(MN)) = dim (K] &, U (ran (K~ — K))).

Furthermore,U~!(MN) is closed ifran (K™ — K) NranU = ran (K* — K) or if
tan (K~ — K ')NranU =ran (K~ — K1),

Proof. W.l.o.g. assume thdter U = {0} = mulU, then to complete the proof
it now suffices to note that it = U~}(9N), thenran (K* — K) C ranU N K,
andran (K~ — K~!) C ran U N K5 correspond to the subspacgs and £+ from
Lemma 5.16. [

The assumptioft C ran U in Proposition 5.17 can be droppedif (K+—K) and

ran (K~ —K ') arereplaced byan (K™ — K)Nran U andran (K~ — K ~')Nran U,
respectively. In particular, Proposition 5.17 yields the following conditions for the
inverse image of a neutral subspace under a unitary relation to be maximal neutral.
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Corollary 5.18. Let U be a unitary relation from{ &, [, -]1} to {Rs, [, ]2}, let
& [+]&; be a canonical decomposition of;, |-, ];}, fori = 1,2, and letK ™ and
K~ be the angular operators df (dom U N &) andU(dom U N K] ) W.r.t. K5
and R;, respectively. Moreover, €@t be a neutral subspace ¢fR., |-, -|]»} with
angular operatorK w.r.t. &5 . Then equivalent are:

() n (U 'MNranU)) =0andU (M NranU) is closed;
(i) ranUNKR; Cran (K™ — K);

(i) ranU = (MNranU) + U(dom U N K).
Similarly, equivalent are:

() no(U'MNranU)) =0andU (M NranU) is closed;
(i) ranUNRKS Cran (K~ — K1),

(i) ranU = MNranU) 4+ U(dom U N Ky).

Proof. W.l.o.g. only the first set of equivalences will be proven. To prove the
equivalence of (i) and (i) recall first tha& U~1(9~) = &, for M~ C ranUNK,

if and only if 9~ = ran U N K, , cf. Proposition 5.1. In light of that observation,
Proposition 5.17 together with the discussion following that statement show that (i)
holds if and only ifran U N K; C ran (K — K) Nran U; this latter condition is,
clearly, equivalent to condition (ii). Finally, the equivalence of (ii) and (iii) follows
directly from the fact thatan U = ranU N R, + U(dom U N &) by (3.8). O

In fact, by means of direct arguments it can be shown that in the equivalences in
Corollary 5.18 the assumption thétis unitary is too strong. For instancelf is

an isometric relation frod{ Ry, [+, -]1 } to {Rs, |-, -]} and91 is a neutral subspace

of {R, [-,-]2}, thenn (VM NranV)) = 0 and V=M NranV) is closed

if and only if P, domV = & andranV = (M NranV) + V(domV N &),

and thatn (V' NranV)) = 0 andV (M NranV) is closed if and only if
PfdomV = & andranV = (Mt NranV) + V(dom V N K ).
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6 HYPER-MAXIMAL SEMI-DEFINITE SUBSPACES

As a preparation for Chapter 7, where block representation for certain classes of
isometric operators are considered, here hyper-maximal semi-definite subspaces
contained in the domains of isometric and unitary relations are investigated. More
specifically, in the first section consequences of the existence of a hyper-maximal
semi-definite subspace in the domain of an isometric relation are presented. There-
after, in the second section, a graph decomposition of unitary relations is presented.
That graph decomposition implies in particular that the domain or, equivalently, the
range of a unitary relation always contains a hyper-maximal semi-definite subspace.
In the third and final section of this chapter the graph decomposition approach to
unitary relations from the first section is combined with the Weyl identity approach
to unitary relations from Chapter 5 to obtain more insight into unitary relations.

6.1 Isometric relations and hyper-maximal semi-definite
subspaces

Here some basic properties that an isometric relation possesses as a consequence of
having a hyper-maximal semi-definite subspace in its domain are presented. Since
hyper-maximal semi-definite subspaces are closed, a first consequence is that the
kernels of those isometric relations are closed. Another connected consequence is
contained in the following statement.

Lemma 6.1. Let V' be an isometric relation froM &y, [-,:]1} to {Ra, [+, -]2} with
mulV = (ran V)2 and assume that there exists a hyper-maximal semi-definite
subspace of {&;, [+, -]} such thatg € dom V. Thenker V = (dom V),

Proof. Recall thatg¢!l' C £, becauseg is hyper-maximal semi-definite, see e.g.
Proposition 2.9. Hence, the assumptidic dom V' implies that

(dom V)M1 c gl C ¢ CdomV.

Consequently, Lemma 3.5 implies that V = (dom V), O

Using the second von Neumann formula yields the following statement.
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Corollary 6.2. LetV be an isometric relation fromd R, [-, -]} to {Rs, [-, -]} and
assume that there exists a hyper-maximal semi-definite subspatéA;, |-, |}
such thatg € dom V. Thenclos (dom V N &F) = dom V N /.

Proof. W.l.o.g. assume thet is hyper-maximal neutral, then the statement follows
directly from Corollary 2.14 (applied t8 = dom V and9t = £). l

In particular, if V' is an isometric relation fromiRy, |-, |1} to {Ra, [, -]2} such that
kerV = (dom V)M anddom V' contains a hyper-maximal semi-definite sub-
spaces, then combining the first von Neumann formula (2.4) with Corollary 6.2
yields

domV = ker V @ clos (dom V N &) Py clos(domV N Ky),  (6.1)

wheref] [+]&] is a canonical decomposition ¢, [+, -]; }, cf. (3.10). The above
formula together with Lemma 3.8 yields

(V(domV N &Y)) M A ran v = V(dom V N KY);

,mz (6.2)
(V(domV N &) *NranV = V(dom V N &Y).

Observe that by Proposition 319 dom V N &) andV (dom V N K] ) are closed if
V' is closed in addition to the previous conditions.

In fact, just as for unitary relations, the isometric relations under considerations are
characterized by their behavior on the uniformly definite subspdees)” N &
anddom V' N K.

Lemma 6.3. Let V' be a closed isometric relation frodR, [-, |1} to {&a, [, ]2}
satisfyingker V' = (dom V)*)i, assume that there exists a hyper-maximal semi-
definite subspace€ of {&,[-,-]:} such that® C domU and let&[+]&] be a
canonical decomposition ¢f&;, |-, -], }. Thenker V + dom V N & + dom V N K,

is a core forV/.

Proof. W.l.o.g. assume thater V' = {0} = mul V' and thatg is hyper-maximal
neutral. Moreover, lef; be the fundamental symmetry corresponding to the canon-
ical decompositiom] [+]&] of {&1,[-,-]:}. ThendomV = £ &; j; £ Ndom V.,
Moreover, sincel is closed and/ is a closed relation, it follows that restricted

to £ is a bounded operator. Therefore the statement follows from the fact that
clos (ji£Ndom V) =j; £ and thatj; £ Ndom V') +j;(j1€ Ndom V) = dom V' N

A +domV N K. ]
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6.2 A graph decomposition of unitary relations

Here unitary relations are characterized by the fact that they have a special graph
decomposition, see Lemma 6.4 and Theorem 6.8 below. This decomposition is the
main result of this chapter and it will also play a major role in the next chapter.
The decomposition result is based on the fact that unitary relations between Kre
spaces are connected to nonnegative selfadjoint operators in Hilbert spaces, see
the discussion following Theorem 5.6. Note that Lemma 6.4 below is inspired by
Calkin (1939a: Theorem 3.5); the difference is that here the graph of a unitary
relation is decomposed whereas in (Calkin 1939a) only the domain of a unitary
relation was decomposed.

Lemma 6.4. Let U be a unitary relation from{ &, [-,-];} to {f,,[-, ]} and let
& [+]&; be a canonical decomposition of;, |-, -];} associated to the fundamen-
tal symmetryj; of {&;, [, ];}, fori = 1, 2. DefineU, via

grUc = {{fa f/} S grU : [jlfvgv]l = [ijlvg/]Qv v{g’gl} € gI‘U}

Moreover, with®, := &, N (ker U + jiker U 4 dom U,)1 and with&; := & N
(mul U + jomul U + ran U,.)*)2, definel, via

gI'UO = gI‘Uﬂ (‘fél X .fég)
ThenU has the graph decomposition
grU = (kerU x mulU) + gr U, + gr U,,

where

(i) U.isastandard unitary operator from the Krespace{dom U,, [+, -|;} to the
Krein space{ran U, [-, |2 }. Moreovergr U, = gr U, +gr U_ whereU,. and
U_ are the Hilbert space unitary operators defined via

grU, =grUN (R x KY) and grU_ =grUN (K] x Ry)

from{dom U, [-,-];} onto{ran Uy, [, -]} and from{dom U_, —[-, -], } onto
{ranU_, —[-, ]2}, respectively.

(i) U, is a unitary operator from the Kia space{?%l, [-,-]1} to the Kra@n space
{Rs, [, |-} with dense domain and dense range. Moreover, there exist hyper-
maximal neutral subspace%; € domU, and £, C ranU, of {El, [, ]1}
and{R&s, [-, ]»}, respectively, such that

Us(Lg) =j2£- NranU, and U,(j1£4NdomU,) = £,.
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In particular,

domU, = £, ®1 (1£€4NdomU,) and ranU, = £, @, (jo£, NranU,).

Proof. Note first that the stated graph decompositiort/as a consequence of (i)
and the fact thater U x mul U is a unitary relation from the Kra space{ker U +
jiker U, [+, -]1 } to the Krén spacemul U + jomul U, [-, -]» }, see e.g. Corollary 4.4.

(i), (ii): Define &, = & N (kerU + jiker U)H1 and &y, = K, N (mulU +
jomul U)H2, Then Lemma 3.13 implies that. defined via

grU, =grU N (R, x Ray)

is a unitary operator with a trivial kernel from the Kmnespace{R,,,[-,:]:} to
the Krdn space{ &, ., [+, ]»}. By Theorem 5.6 (applied t& '), see also the dis-
cussion following that statement, there exists a standard unitary opékafiam
{Ri [, 11} t0 {Ras, [, ]2}, satisfyingUyj, = i»U;, such that/, := U, 'U, is a
unitary operator (without kernel) ifif, ., |-, -1} which is additionally a nonnega-
tive selfadjoint operator in (the Hilbert spade3 ., [j1-, -1 }-

Now let{ £, };cr and{ F; }cr be the spectral families of the nonnegative selfadjoint
operatord/, andU, ! in (the Hilbert spacej&; ., i1, -1}, respectively, thed; =

I — Eqpy- fort > 0. Moreover,£; := ranE;_, MM, = ran F;_ andMNy =

ker (U, — I) =ran (£, — E,_) are closed subspaces{at, ,, [j:-, |1} such that

dom U, = Sd D1 ‘ﬁd D1 Ua_l(i)ﬁr) and ran U, = ?IRT D1 ‘ﬁd D1 Ua<£d)' (63)

Next note that/; ' = j,;U,j;, becausd/, is a selfadjoint operator in (the Hilbert
space) 81, [j1+,-]1} and a unitary operator iR, ,, |-, -1 }. The preceding equality
together the before mentioned connection between the spectral meastiyesnolf
U, ', implies that

I — E(l/t)— =1 Bg, t>0. (64)

In particular, (6.4) yield¥y; — F,_ = j;(E; — F1_)j;. Thisimplies thadt, = j; 0,
and, hence{My, [-,-]:} is a Krdn space becau$®, is by definition closed. From
(6.4) italso follows thaj;ran (I — E;) = ran (E;_j;) = £4. Sinceran (I — E1)N
dom U, = U;'(9M,), this implies that/, ! (9M,) = j; £4 N dom U, and also that
clos (j1 £4 Ndom U,) = j; £4. Consequently, (6.3) implies that

S = 18k = 1T clos 1841 dom 1)) = 7, 84

The above formula implies that, is a hyper-maximal neutral subspace of (the
Krein spaceX Ry, [, -]} :== {dom U, ©: Ny, [, -]1 }
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Similar arguments as above yield,(£;) = 519, N ranU, and thatd, is a
hyper-maximal neutral subspace in the Wrepace{tan U, ©1 Ny, |-, -]1 }. Hence,
£, = UM®M,.) = U.(1£- N domU,) is a hyper-maximal neutral subspace in
{Ro, [, ]2} = {U(FanU, &, My), [, ]2}. Therefore, ifU, and U, are defined
via

grlU, =grU,N (El X EQ) and grU. =grU,N My x U;(Ny)),

thengr U, + gr U. = gr U,.. Consequently, Lemma 3.13 shows thgtandU, are a
unitary operator with a trivial kernel and a standard unitary operator, respectively.
Moreover, the above arguments together ity = U;j; show that (ii) holds with

£4 and £, as above. Finally, from the fact that, = j;9t, andj,U; = Uj,, it
follows that the decomposition f@r, as in (i) holds. l

Since the unitary relatioris:r U x mul U andU,. are easily understood, Lemma 6.4
shows that, from a theoretical point of view, the most interesting unitary relations
are those with dense domain and range in arkepace{R, |-, -]} with £+ = &k~.

In other words, to understand unitary relations it suffices for instance to consider
only the unitary operators with a trivial kernel from Lemma 5.5. Lemma 6.4 also
shows that ifU is a unitary relation such thakr U does not have equal defect
numbers, then there exist uniformly definite subsp&@esand®, of {8, [, 1}
and{f,, [, ]o} such that/(D,) = D, + mul U andU defined viagr U = gr U N

(@M x D52 is a unitary relation fror{&; N®" [, ]1} to {&: N D52 [, 1o},

see Corollary 3.14 whose kernel (and multi-valued part) has equal defect numbers.

From the graph decomposition of a unitary relatioin Lemma 6.4 it follows, with
the notation as in that statement, that

ny(kerU) = dim(dom U_) +;k:vl_, n_(kerU) = dim(dom U,) —l—Ef;

6.5
ny(mulU) = dim(ranU_) + k;, n_(mulU) = dim(ran Uy ) + k5, (6:3)

wherek; andk;” are the dimensions of" and&; for any canonical decomposition
R [+]/ of {&,[,"];},i = 1,2. Sincedim(dom U.) = dim(ran U, ), cf. Propo-
sition 4.5, ancfkvli = E;E by Lemma 6.4 (ii), (6.5) shows that the defect numbers of
the kernel and multi-valued part of a unitary operdtoare equal, cf. (Derkach et
al. 2006: Lemma 2.14 (iii)).

Corollary 6.5. LetU be a unitary relation from{ &, [-, -]1} to { Ko, [, -]2}. Then
ny(kerU) =ny(mulU) and n_(kerU) =n_(mull).

Next letU be a unitary relation fromi&;, [, |1} to {Rs, [-, -]} and letk;" [+]R; be
a canonical decomposition ¢R;, |-, -];} with associated fundamental symmeiry
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fori = 1,2. Then definel/;(j1,j2) anddy;(j1,j2) as

dfr(j1,)2) = dim{f € & : 3f" € &7 s.t.{f, f'} e ex U};

d;(1,j2) =dim{f € & : If' € &S s.t.{f, f'} e gr U}.
l.e., with the notationNas in Lemma 64;(j1,j2) = dim(dom U, ) anddy, (j1, j2) =
dim(dom U_). Sincek; = k;, (6.5) implies that ifn_(ker U) > n(kerU) or
n_(kerU) < ny(kerU), thendy;(i1,j2) > dg;(j1,j2) Or df;(31,32) < dy(j1,i2) for
all j; andj,, respectively. Ifn_(ker U) = n (ker U), thend;;(j1,j2) anddy; (j1, j2)
can be ordered in an arbitrary manner, and differently for different fundamental
symmetrieg; andj, as Example 6.6 below shows.

(6.6)

Example 6.6. Let U be a standard unitary operator from the separable (infinite-
dimensional) Krén space{ Ry, [+, -]: } to the separable (infinite-dimensional) Kre
space{fy, [, ]2} such thatu, (kerU) = n_(ker U), i.e. k{ = ki = ki = ky. If

j1 is a fundamental symmetry ¢fi,, [, -]: }, thenj, := Uj,U ! is a fundamental
symmetry of{ &, [, -]»}, see Lemma 4.12. WitR; [+]&; the canonical decompo-
sition of {R;, [, -];} associated witly;, for i = 1,2, as a consequence of the above
construction/ (&) = &5. Consequenthy};(i1,i2) = ki = ki = di;(j2,j2)-

Next let K be a uniform contraction from the Hilbert spa¢&;, [-,].} to the
Hilbert space &5, [, -]»} with ann-dimensional kernek, € N, such thatran K )+
is infinite-dimensional. By means & define®* and®~ as

Dt ={ft+Kfr:ffeRf} and D ={f +K*f :f €/}
Then®* and®~ are a maximal uniformly positive and maximal uniformly neg-
ative subspace dffs, |-, -]2} which are orthogonal. 1.e®*[+]©~ is a canonical
decomposition of Ry, [-,-]2}. If j4 is the corresponding fundamental symmetry,
then by constructiodi;; (j1, j4) = dim(ker K) = n anddy; (j1,jq) = dim(ker K*) =
dim(ran K)* = oo # df;(i1,ja)-

If there existj, andj, such thatd/;(j1,j2) = dy(j1,i2), diy(G1,32) > dy (i, j2) OF
df(G1,32) < dg(j1,j2), then Lemma 6.4 implies that there exist hyper-maximal
semi-definite subspaces in the domain and randé which are neutral, nonnega-
tive or nonpositive, respectively; cf. (Calkin 1939a: Theoremé& Bheorem 4.4).
Importantly, those subspaces can be chosen to have more properties.

Proposition 6.7. LetU be a unitary relation fror{ &y, |-, |1} to { Ko, [, -]2} and let
j; be a fundamental symmetry of;, |-, ];}, for i = 1,2. Then there exist hyper-
maximal semi-definite subspac@sC dom U and9t C ranU of {&, [, ];} and
{Ry, [, ]2}, respectively, such that
dom U = gl @, (£Nj.L) & (jlﬁml NdomU);
ran U = M2 @, (M N5o9M) @y (102 Nran U),
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where

U(eH) = j,m2 Aran U 4+ mul U;
U(LNj L) = MNjpIM + mulU;
UG 24 ndom U) = 92 + mul U.

Here £ and9)t can be taken to be hyper-maximal neutral, nonnegative or nonposi-
tive SUbSpaceS qtﬁla ['7 ]1} and {ﬁ% ['7 ]2} If d$(]17]2) = d(}(jl)j?)’ d$(]17]2) >
di;(1,32) or df; (31, 32) < di; (31, i2), respectively.

Proof. Using the notation of Lemma 6.4, recall first that the domain of the stan-
dard unitary operatol/, is a Kran space. Hence, there exists a hyper-maximal
semi-definite subspacg, in {domU,, [-,-];}, which can be taken to be neutral,
nonnegative or nonpositive #;;(j1,i2) = di;(1,32), d;(G1,j2) > dy(1,i2) or
di(1,32) < dy(j1,32), respectively, see the discussion following (6.6). Sifice

is a standard unitary operatdf,(£.) is a hyper-maximal semi-definite subspace in
{ranU,, [, ]2}, see Proposition 4.5. Hence, using the fact that = j»U.,

dom U, = £ @, (£, nj1L.) @1 51 M

6.7
ran U, = U.(i1 £ @y UL (€. N31L0) @o Ue(LHh), ©7)

cf. Proposition 2.9 (iv). (Note that the orthogonal complemeng of= et g
(L. Nj1L.) in the above equations is taken fdom U,, |-, -];}.) With the above
observation, the asserted decomposition of the domain and rabgftdws from
(6.7) together with Lemma 6.4 (ii). Specifically, wiiy and £, as in Lemma 6.4,
£ andt can be taken to beer U + £, + £, andU (j; £.) + £,, respectively. [

The hyper-maximal semi-definite subspatén Proposition 6.7 is shown to exist

as an extension of the subspéagteas in Lemma 6.4. Not all hyper-maximal semi-
definite subspaces contained in the domain of a unbounded unitary relation can
be obtained in that manner. In view of Proposition 6.9 below, this follows for
instance from the fact that every unitary operator has a hyper-maximal semi-definite
subspace in its domain which it maps onto a hyper-maximal semi-definite subspace,
see Corollary 7.25 below.

Combining Proposition 6.7 with Lemma 4.7 yields the following necessary and suf-

ficient conditions for an isometric operator to be unitary are presented. In particular,
they show that if an isometric relation has a graph decomposition as in Lemma 6.4,
then it must be a unitary relation.

Theorem 6.8.LetU be an isometric relation froMif,, [-, -]1 } to {Rs, |-, -]2}. Then
U is a unitary relation if and only if there exists a hyper-maximal semi-definite
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subspacet C dom U of {&), [, -];} and a fundamental symmetiyof {&,, [-, ], }
such that/(j; £ndom U) is a hyper-maximal semi-definite subspacé®f, |-, |-}

Proof. The existence of a subspagewith the asserted conditions follows from
Proposition 6.7. The sufficiency of the conditions in the case tha hyper-
maximal neutral is the contents of Lemma 4.7 and the general case follows by
arguments similar to those in Lemma 4.7. l

Finally, some special properties of the subspg8gen Lemma 6.4 are listed.

Proposition 6.9. LetU be a unitary relation from{ &1, [-, ], } to { &, [, ]2} and let
£4 be the closed neutral subspace as in Lemma 6.4 for fixed fundamental symme-
triesj; andj, of { &, [, ]:} and{&,, |-, ]2}, respectively. Then

(i) U has closed domain if and only if maps some (any hence every) closed
neutral subspace of {8, [-,]:} which extends, onto a closed neutral
subspace of &, [+, ‘]2 };

(i) £:=kerU + £4issuchthakerU C £ C £t C dom U;

(iii) if £is a neutral subspace dff;, [-,-]:} such thatker U C £and£; € £ or
i1€4NdomU C £, thenn, (£) = n (U(L)) andn_(L) = n_(U(L)).

Proof. In this proof the notation as in Lemma 6.4 is used.

(): By Lemma 6.4 a closed neutral extensiorgfcan be written aker U @ £4P;
My, whered; C dom U, is closed. Itis mapped ontaul U @3 (jo£, Ndom U) o
Ny, whereM, C ran U, is closed becausE. is a standard unitary operator (in the
appropriate space). Consequenthy(,£) is closed if and only if,£, N dom U is
closed, which by Lemma 6.4 is the case if and oniywif U, is closed. Sincean U,
andran U are simultaneously closed, this proves (i), see Proposition 4.2.

(ii): Since £, is hyper-maximal neutral ir{fél, [-,-]1}, Lemma 6.4 implies that
(LM = g4+ dom U, 4+ ker U C dom U.

(ii): Only the case thatt, C £ is considered, the other case follows by similar
arguments. If£,; C £, then note that the defect numberswef U + £, andU (£,)
coincide (sincelos (j2£, N ran U) is hyper-maximal neutral iR, [-, -2 }). Now

the desired conclusion is obtained by combining the preceding observation with
with Proposition 4.5 and Lemma 3.13. l
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6.3 Hyper-maximal semi-definite subspaces and the Wey!I
identity

The graph decomposition characterization of unitary operators, as expressed by
Proposition 6.7, is combined with the Weyl identity approach to unitary relations
from Chapter 5 in order to obtain conditions for the closure of an isometric relation
to be unitary. Therefore recall thatifis a hyper-maximal semi-definite subspace

of {&, [, ]}, then, for any fundamental symmeftrof {&, [, -]}, & can be decom-
posed a®t = £ @ (£NiL) @ L], see Proposition 2.9 (iv). In this connection
Pguy andPigry denote the orthogonal projections fw.r.t. [j-, -] onto £l and

£ respectively.

As a starting point, some properties of the subspgaté&om Proposition 6.7 are
listed; the implications of these properties are investigated in this section.

Lemma 6.10. Let U be a unitary relation from{ K, [-,-]1} to {Rs, [-, -]} and let
& [+]R; be a canonical decomposition éf;, [-,-];} associated to fundamen-
tal symmetryj; of {&;, [-,-];}, for i = 1,2. Then there exists a subspag® of
{Ra, [, ]2} such that

(i) M CranU is a hyper-maximal semi-definite subspacés®f, |-, -]>};
(i) U1 NjIM) Cker U + K or U1 (MM N juM) C ker U + K ;

(iiy PfUY(OM) = PlkerU + domU N K and Py U1(IM) = P kerU +
dom U N Ky,

(iv) M= (U '(G2MmNranU)) N (ker U + dom U N & + dom U N Ky ) is such
that

PN = PtkerU +domUNKS and P, N = P kerU +domU N K.

Proof. W.l.o.g. assume thdaDt as in Proposition 6.7 is hyper-maximal neutral.
Then, clearly, 9 satisfies (i) and (ii). Next note that := U~'(ju9 NranU)
and the closure ot/ 1 (9M) = ker U + j;.£ N dom U are hyper-maximal neutral
subspaces of Ry, [, -]: }, see Proposition 6.7. The fact thétis hyper-maximal
neutral yields

iti€NdomU) +j1£NdomU = dom U N & +dom U N Ky .

Hence, the fact that (iii) and (iv) hold, follows from the preceding observations.
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Corollary 6.11 below shows that the properties (i) and (iiip@fin Lemma 6.10
can be alternatively expressed by two equalities.

Corollary 6.11. LetV be an isometric relation fromR,, [-, -]1 } to {Ra, [+, -2}, let
& [+]&; be a canonical decomposition ¢f&;, [-,-]:}, and let9 C ranV be a
subspace of R, [-, |2 }. Then

PV HOM) = Pker V 4+ dom V N K] ;

(6.8)
PV Y OM) = P ker V +domV N &,
if and only if

M+ V(domV NAT) =V(domV NRK) + V(domV N KY);
M+ V(domV NRK) =V(domV NK) +V(domV N K.

(6.9)

Proof. If (6.8) holds, then for every™ € domV N & andf~ € domV N /]
there exists @~ € dom V' N & such thatf™ + ¢~ € V-1(M). le. [T+ f~ =
(fT4+g )+ (f~—g ), whereft + g~ e V(M) andf~ — g~ € domV N K.
This shows that’ (dom V N &) + V(dom VN &) C M+ V(dom V N &). On
the other hand, if € V—1(901), then by the assumptions there existsar ker V,
anft € domVNRK andanf~ € domV NRK] suchthatf = f,+ f*+ f~. From
this it follows that9t + V(dom V N &) C V(dom V N &) + V(dom V N Ky ).
By similar arguments the second equality in (6.9) can be proven.

To prove the converse implication Igt € dom V' N K, then by the first equality

in (6.9) there exists afi™ € dom V N K and anf’ € M such thal/ 1 f/ + f+ =

f~ +kerV. Sincef~ € domV N K was arbitrary, this implies that the first
equality in (6.8) holds. Similar arguments show that the second equality in (6.8)
holds. O

In particular, Corollary 6.11 shows thatift is a hyper-maximal semi-definite sub-
space such that (6.9) holds, thens (V=1(90)) is a hyper-maximal semi-definite
subspace if and only iff = clos (P"ker V +dom V N &), cf. (3.11). In geomet-

rical terminology the observation contained in Corollary 6.11 can be formulated as
follows.

Proposition 6.12. For every maximal nonnegative or nonpositive subspatef
{R, [, -]} there exists a hyper-maximal semi-definite subsgaocé{R, |-, -]} such
that

L4+M=mm+m = ¢+l
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Proof. W.l.o.g. assume thdbt is nonnegative and le€*[+]R~ be a canonical
decomposition of &, [-,-]}. Then by Theorem 5.8 there exists a unitary relation
Uin {&,[-,-]} such thatU(domU N &) = 9 andU(dom U N &™) = M.
Consequently, the statement follows from Lemma 6.10 and Corollary 6.11[]

Continuing the investigation of the propertiesigiflisted in Lemma 6.10, an alter-
native characterization of the properties (i) and (iv) is given.

Lemma 6.13. Let V' be an isometric relation froM &y, [+, -]1} to {Ra, [-, ]2}, let
A7 [+]R] be a canonical decomposition éf1, [, -];} and letj, be a fundamental
symmetry of R., [, -]o}. Moreover, letht be a hyper-maximal semi-definite sub-
space off Ry, [, -]2} such thatt’ =1 (DM N ju9M) C ker V + K] or V1IN jpIN) C
ker V + & and let)t := V-1(jx9MNran V) N (dom V N KT +dom V N &y ). Then

PN =domV NR < PyyuV(domV NAKT) C Py, V(dom V N KY);
PrM=domVNRK <= Py V(domV NRKT) C Py, V(dom V N KY).

Proof. As a consequence of the assumption #iat (99t N j,9M) C ker V + K or
VHON N§9) C ker V + K], assume w.l.0.g. tha is a hyper-maximal neutral
subspace. Since both equivalences are of a similar nature, only the first equivalence
will be proven. Hence assume thgt9t = dom VN & and letf,” € dom VN K.

Then by the assumption there exi$t§ f'} € grV such thatf € ;, P, f = f;

andf’ € ;M NranV. ThenPy f* = 0 and, hence, one has shown that

Png(dOIIl VN ﬁi’-) - PmV(dom VN ﬁl_)

Conversely, if the above inclusion holds, then for evétye dom V N K, there
exists anf~ € domV N K such thatV(f* + f~) € M NranV. Hence,
fT+ f~ € 9t from which P"0%t = dom V N & follows, becauseg* was taken
arbitrarily. O]

Lemma 6.13 implies that if
Poniil V(domV N ﬁf) = Popiiss V(domV N KY), (6.10)

thenV ! (j,9tNran V) is an essentially hyper-maximal semi-definitéjfker V +
clos (dom V N &F) = &F, cf. (Derkach et al. 2006: Corollary 4.12). Proposi-
tion 6.15 below gives conditions for the hyper-maximal semi-definiteness: ef
U~1(ju9H2 nran U) for a unitary relatiori/ given that (6.10) holds, see (Derkach
et al. 2006: Proposition 4.1% Corollary 4.17). Therefore recall first the following
result, see (Derkach et al. 2006: Lemma 4.10).



78 Acta Wasaensia

Lemma 6.14. Let U be a unitary relation from{ &, [-,-]:} to {Rs, [, ]2} and as-
sume that there exists a hyper-maximal neutral subspfida {f,, [-,|»}. Then,
with Ugy := PyyU considered as a mapping frofiR;, [-,-]1} to {&s, [, ]2}, the
following statements hold:

(i) if ran Ugy is closed, thetker Uy is closed;

(i) if Uy is closed, theman Uy is closed if and only iker Uygy is closed.

Proof. Observe tha’PS[);}] = Py and hence by Lemma 2.15
ran Uzg;kz] — ran (PgpU)! = ran (U[*]Pgt]) = ran (U 'Pj) = ker Ugp.

The above equality together with the fact that for a closed relatiohetween
Krein spacesan H is closed if and only ifran H* is closed, see e.g. (Sorjonen
1978/1979), yields the statements. l

Proposition 6.15. Let U be a unitary relation from{ Ry, [-, -]1} to {&a, [+, -2}, let

AT [+]R] is a canonical decomposition df,,[-,-];} and letj, be a fixed fun-
damental symmetry dff., [, ].}. Moreover assume that there exists a hyper-
maximal neutral subspac®t in {R., [+, -] }. Then equivalent are

(i) PoU(dom U N &) = PoplU(dom U N Ky ) andran (Pyrl) is closed;

(i) PoU(dom U N &) or PoplU(dom U N Ky ) is closed.

In particular, if either of the above conditions holds, thén'(jo9t NranU) is a
hyper-maximal neutral subspace{ot,, |-, |, }.

Proof. (i) = (ii): By Lemma 6.14, the discussion preceding Lemma 6.14 and
(3.11), the conditions in (i) imply tha® := U~1(ju9 N ran U) is hyper-maximal
neutral. Therefore

£+domUNK =domU = £+ domU N Ky .
From this it follows that
PonlU(dom U N &) = ran (PomU) = PonU(dom U N KY).

This together with the assumption thath (PyrU) is closed implies that (ii) holds.

(i) = (i): To prove this implication w.l.o.g. assume thaulU = {0}. Since
U(dom U N K) andU(dom U N K; ) are a maximal nonnegative and nonpositive
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subspace of &, [, |}, see Proposition 5.1, the quasi-angular operat@nd A*

of U(domU N K) andU(dom U N &) w.r.t. to <M are a maximal dissipative

and a maximal accumulative relation, respectively, see Proposition 2.20. Moreover,
dom A = (mul A*)*2 = M anddom A* = (mul A)*2 = 9, becaused and A*

are operators as a consequence of the assumptiomtiat = {0} and, hence,
U(dom U N &) andU(dom U N &) do not contain any neutral vectors. Recall
that A andA* are defined as

gt A= {{Pmf,iPuif}: f € U(domU N K)};

, ' (6.11)
gr A" = {{Pmf,iPmif} : f € U(domU N Ky )}.

Hence, if the assumption in (ii) holds, thelom A and dom A* closed. Since
dom A = 9 = dom A*, this implies that if (i) holds, thedom A = 9t = dom A*
which implies that (i) holds, see (6.11). m

The conclusion that := U~1(ju9t N ran U) is hyper-maximal neutral in Proposi-
tion 6.15 is stronger than the equal®,U (dom U N &) = PoplU(dom U N K7 ).
To see this let’) ,[+]&;, and &) ,[+]R], be two canonical decompositions of
{R1, [, ]1}, then the assumption th&tis hyper-maximal neutral implies that

L+ domU NRK{, =domU = £+domU N Ky
As a consequence of the definition©fthe above expression implies that
PorlU(dom U N &Y ,) = PoxU(dom U N Ry ,).
Next it is shown that if the hyper-maximal semi-definite subsgaceccurring in
Lemma 6.13 is contained (& Ndom U)NU (K, Ndom U), cf. Corollary 6.11,

thenU ! (joMH2 N ran U) is hyper-maximal semi-definite. In light of Lemma 4.7
this yields a necessary and sufficient condition for isometric relations to be unitary.

Lemma 6.16. Let V' be an isometric relation fromM &, [-, -]1} to {Ra, [-, |2}, let
A [+]&; be a canonical decomposition &, [-,-];} and letj, be a fundamen-
tal symmetry of R., |-, ]o}. Moreover, assume thait is a hyper-maximal semi-
definite subspace ¢fR,, |-, -]»} such that

(i) MCV(domV NKS) +V(domV NKY);

(i) VLI N§9M) Cker V + & or VLN N§o9) C ker V + &

(iil) Poprrr, V(dom V N RY) = Pyyyas, V(dom V N KY);
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ThenV ~1(ju9 Nran V) is a hyper-maximal semi-definite subspacé #f, [-, -]; }
if and only if P,"dom V = & and P, dom V = &7 .

Proof. The first assumption ot implies thatP=V =1 (9) C Piker V+dom V N
&%, and from the second and third assumptiom®iit follows by Lemma 6.13 that
PEker V +dom V N &E C PEV-1(1,9 Nran V). ConsequentlyP“ 1V —1(9m) C
PEV1(j,9M Nran V). Next note that the fact that C ran V' is hyper-maximal
semi-definite implies thatan V' = M + joM NranV, i.e. domV = V(M) +
V~1(5,9 Nran V). Combining the above observations yields

PfdomV = PEV-HON) + PEV .M Nran V) = PEV (19 Nran V).

From the above equality it follows th&t ! (j.9tNran V) is a hyper-maximal semi-
definite subspace if and only #"dom V' = & andP, dom V = &7 . O

Theorem 6.17.Let U be an isometric relation from 8y, [-,-]1} to { Ry, [+, -2}, let
A7 [+]R] be a canonical decomposition éf1, [, -];} and letj, be a fundamental
symmetry of &, [+, -]2}. ThenU is a unitary relation if and only if

(i) there exists a hyper-maximal semi-definite subspgicef { K., [-, -]} such
that

(@ M C U(domU N K) +U(dom U N Ky);
(b) UL Nju9M) Cker U + & or UM N juM) C ker U + K ;
(€) Py U(dom U N RY) = Py, U(dom U N R );

(i) PtdomU = & and P, domU = f; .

Proof. The necessity of the conditions follows from Lemma 6.10, Lemma 6.13 and
(3.7). The converse part follows directly from Theorem 6.8 after observing that
Lemma 6.16 yields that the assumptions imply tHiat (j»9t N ran U) is a hyper-
maximal semi-definite subspace{ot,, |-, |2} O

In view of Proposition 6.18 below, the conditions in Theorem 6.17 (i) imply that
U(dom U N &) andU(dom U N K; ) are maximal nonnegative and nonpositive,
respectively. Hence, Theorem 5.3 shows that condition (ii) in Theorem 6.17 can be
replaced by the conditions thétis closed and thater U = (dom U)*1

Finally note that Lemma 6.10 combined with Lemma 6.13 implies that for a unitary
relationU there exists a hyper-maximal semi-definite subspgicguch that
Pyt U(dom U N R ) = Py, U(dom U N R );
Py U(dom U N &) = Py gy, U(dom U N RY).

)

(6.12)



Acta Wasaensia 81

This observation yields half of the next geometrical statement, cf. Proposition 2.5.

Proposition 6.18. Let 9, and 9t be a nonnegative and nonpositive subspace
of {R, [, ]}, respectively, such thaft, C m andom_ ¢ zm[j] and letj be a
fundamental symmetry ¢R, |-, -] }. Then9t, andt_ are a maximal nonnegative
and a maximal nonpositive subspace{#, |-, |}, respectively, if and only if there
exists a hyper-maximal semi-definite subsp@aé { &, [-, -]} such that

P, =& and P_ =gt or P, =gl and P =g,

if £is nonnegative or nonpositive, respectively.

Proof. The necessity is clear by the discussion preceding the statement combined
with Lemma 6.10 (ii) and Theorem 5.8. To prove the converse assume w.l.0.g. that
£ is nonnegative. D), is not maximal nonnegative, théf, can be nonnega-
tively extended by an elemeht€ K. In fact, as consequence of the assumption
PO, = £ one can assume thate £+ = j€M. Consequently, there exists an

f € £l suchthat = jf. On the other hand, by the assumptg)t, = £, there

exists ag € £t such thatf +jg € M. Hence, for any € R

0<[(f+ig)+df, (f +ig) +cif] =2 f, f] + lig, f1 + |, igl.

Sincec is arbitrary, this implies thaf = 0, i.e., 91, is maximal nonnegative. The
maximal nonpositivity oP)1_ can be proven using similar arguments. O

If £in Proposition 6.18 is neutral, then Proposition 6.18 can be interpreted as say-
ing that a nonnegative (nonpositive) subspacé®f|-, -]} is maximal nonnegative
(nonpositive) if and only if it can be represented by an everywhere defined bounded
operator in{ £, [j-, -]}, cf. Section 2.5. Note also that there exists a subsgdutae-

ing the properties as in Proposition 6.18 which simultaneously has the properties of
the subspac# in Proposition 6.12.
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7 BLOCK REPRESENTATIONS

In this chapter block representations will be given for certain classes of isomet-
ric operators; in particular, for unitary operators. Moreover, some consequences
of those block representations are stated. As a preparation therefore the composi-
tion of archetypical unitary operators is studied in the first section. Note that those
investigations yield simple examples of the peculiar mapping behavior of unitary
relations. In the second section block representation for a special type of isometric
operators, which are the abstract equivalent of the so-called quasi-boundary triplets,
see Section A.2, are presented together with some consequences of their represen-
tation. In the third section it is shown that every unitary operator can be expressed
as the composition of an archetypical unitary operator with a bounded unitary op-
erator. This implies that the unboundedness of unitary operators can be understood
by studying only unitary operators which have a diagonal block representation. As
an application of these block representation approach to unitary operators, the main
results from (Calkin 1939a) are proved in the fourth section with simple arguments.
As another application of the obtained block representations for isometric and uni-
tary operators, conditions for when their composition is (extendable to) a unitary
operator are presented in the fifth and final section.

7.1 Compositions of archetypical unitary operators

Letj be a fundamental symmetry ¢R, [-, -]} and assume that there exists a hyper-
maximal neutral subspa®® in {&, |-, -]}. If K; and K are selfadjoint relations in
(the Hilbert space}on, [j-, -]}, then

Tl(Kl)T1<K2> = Tl(Kl + KQ),

see (Derkach et al. 2009: Example 2.11). This composition is (extendable to) a
unitary relation if and only ifK; + K, is (extendable to) a selfadjoint relation,
see Proposition 4.8. Example 7.1 below provides an example of two selfadjoint
operatord{; andK, such that their sum cannot be extended to a selfadjoint relation,
i.e.,T1(K; + K3) can not be extended to a unitary relation.

Example 7.1. In the Hilbert spacel?(R, ) consider the differential expressions
tf = —f"—2if — fandlyf = f” + f. Both expressions can be interpreted
as canonical differential systems which are definitéRon see e.g. (Behrndt et al.
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2011b). With

0 -1 10 2 ~1 0
jz(l o)’A<t>:(o o)’Hl(t>:<—z' 1>’H2(t):<o —1)’

these systems are
JF'(t)— H(t)F(t) = ANA@)F(t), teR,ae, \eC,

whereF = (fi, f.)* andi = 1,2. With L% (R, ) the Hilbert space (of equivalence
classes) associated with, the minimal relations generated by the above canoni-
cal systems are symmetric operatord. (R, ) with defect numbersl, 1), which
follows e.g. from (Leschi Malamud 2003: Proposition 5.25) together with the
definiteness of the systems. In particular, for both systeémsa regular endpoint
andoo is an endpoint in the limit-point case. Therefore, properly understaod,
and K5 defined via

gr K; = {{F,G} € LA(Ry) x LA(Ry) : Lify = g1, f1(0) =0}, i=1,2,

whereF' = (f1, f2)7 andG = (g1, ¢92)", are selfadjoint operators ib3 (R, ), see
(Behrndt et al. 2011b: Section 4.1 and 5.3). Moreodem K, C dom K; and,
hence, the sum ok, and K is the symmetric operatdf:

grS={{FG}y e LA(R,) x LA(R}) : F € dom K5, {sf1 = g1, f1(0) =0},

wherelsf = —2if', F = (f1, f2)T andG = (g1, g2)*. Hence, the closure df is
a well-known symmetric operator with defect numbers.S) = 0 andn_(S) =1
corresponding t@s.

The selfadjoint operators from Example 7.1 can also be used to show that there exist
unitary operators which map hyper-maximal neutral subspaces onto (non-closed)
neutral subspaces which can not be extended to hyper-maximal neutral subspaces.

Example 7.2. Let K; and K, be the selfadjoint operators it} (R*) as in Exam-

ple 7.1 and le§ be the fundamental symmetry {4 (R™))? as in Example 2.1,
i.e.,i{f, f'} = {=f, f} Thend := LL(R") x 0 is a hyper-maximal neutral
subspace of the Kfe space[ (LA (R))?, (j-,-)}, andK; and K, can be interpreted

as selfadjoint operators (in the Hilbert spagéjt, (-,-)}. Now Y;(K) is a uni-

tary operator in{(L4(R™))?, (j-,-)} and £ := gr K, is a hyper-maximal neutral
subspace of (L4 (RT))?, (-, )} such that® C dom T (K;) = dom K; & 9, be-
causelom K> C dom K;. Moreover,T;(K;)£ = gr (K; + K») is a (non-closed)
neutral subspace which can not be extended to a hyper-maximal neutral subspace,
because(; + K5 is a symmetric operator which can not be extended to a selfadjoint
operator, see Example 7.1 and Proposition 2.20.
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Example 7.1 can also be used to show that there exist isometric operators which
cannot be extended to unitary relations such that the closure of their composition
with a unitary relation is (extendable to) a unitary relation. Another example of
this phenomenon is obtained by considering the compositiah 6K') and Y (.5),
where K is a selfadjoint operator in the separable Hilbert spgdg [j-,-|} and

S is a symmetric operator with unequal defect numberg$dn, [j-, -]} such that

dom SNdom K = {0}, cf. Proposition 2.17 (v). Then, clearly, (K)Y:(S) = Ijm

can be extended to a unitary operator.

Different from the composition off'; (K;) and T;(K5), the composition of the
archetypical unitary relation¥,(B;) and Ty(B,), where B; and B, are closed
operators (or relations), can always be extended to a unitary relation:

BB, 0

Tg(BﬂTQ(BQ) = < 0 ]Bl_*BQ_*J) g TQ(CIOS (Ble))

Here it is used thaB; * B, * C (B By)*, see Lemma 2.15.

Next compositions of the typ&,(S5)Y.(B) are considered. The following two
statements give some conditions for when this composition is unitary.

Proposition 7.3. Letj be a fundamental symmetry R, |-, -]} and assume that
there exists a hyper-maximal neutral subspaen {{, |-, -]}. Moreover, letB be
an operator in (the Hilbert space), [j-,-]} with dom B = 91 = ranclos (B)
andker clos (B) = {0}, and letS be a symmetric relation i1, [j-,-]}. Then
T1(S)Y2(clos B) is (extendable to) a unitary relation iR, |-, -]} if and only if S
is (extendable to) a selfadjoint relation {1, |-, -|}.

In particular, Y1 (5) Y2 (clos B) is a unitary operator if and only if is a selfadjoint
operator in{9Mn, [j-, -]} with dom S N mul clos (B) = {0}.

Proof. Since the final equivalence evidently holds if the first equivalence holds, it
suffices to prove only the first equivalence. Therefore note thaisfa symmetric
extension ofS (as in the statement), théfy (7') T (clos B) is an isometric exten-
sion of T, (S) Y2 (clos B). Hence, to prove the first equivalence it suffices to show
that Y, (S)Ys(clos B) is unitary if and only ifS is selfadjoint.

If S is selfadjoint, then the fact thaf,(S)Yy(clos B) is unitary follows from
Lemma 4.7 as in Proposition 4.8. To prove the converse assumg ikiatmaximal
symmetric relation which is not selfadjoint, and th&t(S) Y, (clos B) is unitary.
Then there exist§ f, f'} € grS* such thatlm [f, /| # 0 and by the assump-
tions on B there exists & € dom clos (B) such that{h, f} € grclos(B). Now
a direct calculation shows thét, g] = [f +jif’,¢] for all {g,¢'} € grU, i.e,
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{h,f +jif'} € grU by Proposition 3.1. On the other hard, h] = 0, because
h e M, and[f +jif’, f +i3if'] = i(if’, f] = [f,if']) # 0, by the assumption
on{f, f'}. This shows thafh, f + jif’'} cannot be contained in the graph of an
isometric relation. This contradiction completes the proof. l

Corollary 7.4. Letj be a fundamental symmetry{ok, |-, -]} and assume that there
exists a hyper-maximal neutral subspa@ein {{, [-,-|}. Let B be a closed opera-
tor in (the Hilbert spacelMn, [j-, -]} with dom B = 9 = ran B andker B = {0},
and letS be a symmetric operator ifn, [j-,-]}. ThenY(S)To(B™') is (extend-
able to) a unitary operator i{ &, [, -]} if and only if B=*SB~! is (extendable to) a
selfadjoint operator ifM, [j-, -]}

Proof. Note that

B 0 Bl 0 I 0
T,(S)Yy(B7Y) = =
1(9)T2(B7) (jz’SBl jB*j) ( 0 jB*j) <jiB*SBl I)

— To(B Y)Y (B*SB™Y) = (T1(=B*SB™)Ty(B)) "
Here the second equality holds, because the assumptiaBsroply thatran B* =
M. Since an isometric relation is unitary if and only if its inverse is unitary, the
above equality together with Proposition 7.3 shows that the statement holds.

Example 7.5 below shows thatin Corollary 7.4 need not be a selfadjoint opera-
tor nor even a symmetric operator with equal defect number&foiS B! to be
selfadjoint and, henc&;; (S)Yy(B~!) to be unitary.

Example 7.5. Letj be a fundamental symmetry ¢R, |-, -]} and assume that there
exists a hyper-maximal neutral subspagein {&,[-,:]}. Moreover, letS be a
closed symmetric operator in the Hilbert spgéa, [i-, ]} with dom S = 97t and
defect numbers.(S) = ny, wheren. < N, and letB be a closed operator in
{"M, [j-,-]} with dom B = dom S, ker B = {0} andran B = 90, see Proposi-
tion 2.17 (ii). ThenK := B~*SB~! is a symmetric operator withom K = I,
i.e. K is a selfadjoint operator ifn, [j-, -] }.

Remark 7.6. Note that ifS and B are as in Example 7.5, then the unitary operator
T1(S)YTo(B~1) maps the hyper-maximal neutral subsp#e {0} onto the closed
neutral subspacgf +jiSf : f € dom S} with defect numbers, andn_. Hence,
unitary relations may map hyper-maximal neutral subspaces onto closed neutral
subspaces with nonzero and arbitrary defect numbers,(, cf. Proposition 7.25

and Chapter 8.
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Using archetypical unitary operator it is also easily shown that there exist unitary
operators having the same domain which are really different, i.e. they do not differ
by a composition with a standard unitary operator on the range side.

Example 7.7. Let j be a fundamental symmetry ¢, [-, -]}, assume thait is

a hyper-maximal neutral subspace{d, [-, -]} and, moreover, leB be an arbi-
trary closed operator in the Hilbert spa¢ah, [i-,-]} which satisfiesdlom B =
M = ranB andker B = {0}. ThenU := Y,(B) is a unitary operator in
{&,[-,:]} with domU = dom B & j9. Let KX be the polar decomposition
of B in {9, [j-,-]}, where K is a nonnegative selfadjoint operator{ft, [j-, -]}
(with ran X' = ran B = 9t) and X is a unitary operator i1, [j-,-]}. Then
U, = T1(K)Y2(X) is a unitary operator iR, [-, -]} which has the same domain
asU. Furthermore,

U, MU = (To(X)) N (Y1(K)) T T2 (K)To(X) = To(X T (—K)To(K)Yo(X),

is an unbounded unitary operator i, [-, -]}, becauséry(X) and Ty (X ') are
standard unitary operator ¥R, [-, -]} andY;(—K)Y,(K) is an (unbounded) uni-
tary operator in{ &, [-, |} by Proposition 7.4.

7.2 Block representations for isometric operators

If for an isometric operatoV” from {&, [-, |1} t0 {&y, [-, ]2} there exists a hyper-
maximal semi-definite subspageC dom V of {&, [, -] }, then by means df and
a fundamental symmetiy of {&;, [-,-]: }, the domain of” can be decomposed as

domV = £ gy (£n518) @1 1.8 ndom V, (7.1)

see Proposition 2.9. If an isometric operator has a domain decomposition asin (7.1),
then block representations (with respect to those coordinates) for it can be given.
Since the main interest is in isometric operators which are closely connected to
unitary operators, in addition to the assumption that the domain isometric operator
can be decomposed as in (7.1), it will in this section also be assuméd(tfdt: ) is

a neutral subspace with equal defect numbers. In other wordsj,vaifindamental
symmetry for{R, |-, ]o}, isometric operator$” from {8, [-, 1} to {Ra, [, ]2}

are studied for which there exists a hyper-maximal semi-definite subSfiact

{8, [, ]2} such thabtNju M C ran V andV ~*(j2M Nran V) is a hyper-maximal
semi-definite subspace R, |-, -], }. With respect to certain coordinates, the block
representations of such isometric operators take a specific form: they can be written
as the composition of two archetypical isometric operators and a bounded unitary
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operator. Note that the isometric operators studied here are the abstract analogue
of so-called quasi-boundary triplets, see Definition A.11 below, and that for unitary
operators the preceding conditions are always satisfied, see Proposition 6.7.

To obtain a block representation for isometric relations having the above mentioned
property the following slightly technical lemma is used.

Lemma 7.8. Let VV be an isometric operator froiR;, [-, -]} to {Rs, [, -]2} with
ran V' = K, and assume that there exists a hyper-maximal neutral subspace
{R1, [, 1} with £ C dom V. Then there exists a bounded unitary operdtpfrom
{81, [, )1} onto{ Ry, [, ]2} with dom V' C dom U, such that’U; ! is an isometric
operator in{ &y, [+, -]} with dom (VU; ') = R = tan (VU ).

In particular, if 901 is a hyper-maximal neutral subspace{si,, [, ]»} andj; and
j» are fundamental symmetries oy, |-, -]: } and {8, [-, |2}, respectively, thef,
can be taken such that,(£) = M and U, (j; £ N dom Uy) = jo M.

Proof. Itis a direct consequence of the assumptionsithal’ = (dom V)41, see
Lemma6.1. Hencd/U; ', wherel, := U,y is asin Lemma 3.11, is an isometric
operator from{ s, [-,-;} to {fs, [, ]2} which satisfieslom (VU; ') = &5 and
tan (VU; ') = R,.

Since £ is a hyper-maximal neutral subspace dndis a bounded unitary opera-
tor, U, (£) is a hyper-maximal neutral subspace{a, |-, -], }, see Proposition 4.5.
In particular, k5 = k;, see e.g. (Azizo\W lokhvidov 1989: Ch. 1, Remark
4.16). Since/U; ' mapsU, (£) injectively onto a neutral subspace of,, [+, |-},

k¥ < ki. Moreover, the fact that’U; ! is an injective operator together with
dom (VU; ') = &3 andran (VU; ') = R, yields thatk] + k; = kj + k,. The
preceding arguments together show that= k3. Therefore there exists a standard
unitary operator/, from {Rs, [-, 1} t0 {Rs, [, ]2} and the first statement holds
with U, := U,U;.

SinceU,U; is a bounded unitary operatdryU; (£) andU,U; (j: £ N dom Uy ) are
hyper-maximal neutral subspaces {of., [-, -]} and there exists a fundamental
symmetryj, of {Ra, [+, ]2} such thatU,U;(j; £ Ndom V') = j,U,U;(£). There-
fore, by Lemma 4.13, there exists a standard unitary opeigtior{ Rs, [-, -]o} such
that Us(UxU1(£)) = M andUs(UxU; (j1.£ Ndom Uy)) = Us(1oUxUL (L)) = j2IN.
Hence, the final statement holds with := UsU,U; . O

Following is a representation for the isometric operatoror which V=1 (.9 N
ran V') is a hyper-maximal neutral subspace. It is shown that such operators have,
up to a bounded unitary transformation, a triangular representation which can be
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expressed in terms of archetypical isometric operators. Note that the isometric
operators considered in Theorem 7.9 below are a coordinate free version of quasi-
boundary triplets, see Definition A.11 below. To better see this connection, note

thatV ! (j29 Nran V') = ker (PyV'), wherePyy is the orthogonal projection onto

M W.rt. [jo-, ]o-

Theorem 7.9.LetV be an isometric operator frofiRy, |-, -]1} to { R, [, -]2} with
ran V = Ry, letj, be a fundamental symmetry{of,, [-, -]} and, moreover, assume
that there exists a hyper-maximal neutral subsp@iten {R., |-, -]} such thatC :=
ker (PamV') is a hyper-maximal neutral subspace{di,, [-,-]:}. Then there exists
an operatorB in the Hilbert spaceM, [j-, -]»} with dom B = M = ran clos (B)
andker clos (B) = {0}, a symmetric operatof in {9, [j2-, -]} with dom S =
ran B anddom S* N mul clos (B) = {0}, and a bounded unitary operatdf; from
{R1,[,]1} onto { Ry, [, ]2} with dom V' C dom U;, mapping€< ontoj;9M, such
that
. B 0

VUt = <J B i B_*h) = T1(5)Y2(B), (7.2)

Furthermore,mul clos (B) = {0} if and only ifclos (V(£)) = j IN.

Proof. Note first that if (7.2) holds, thej3V'(£) = dom B*. This together with
dom B* = (mulclos (B))*, see (2.6), shows that the final assertion holds. Next
note that Lemma 7.8 implies the existence of a bounded unitary opératas

in the statement. TheW := VU, ! is an isometric operator i, [, -]} with
dom W = Ry = ran W, jo9 C dom W andW (j.901) = V(£) C j. M.

Step 1:Sincej;MN C dom W andW (1.901) C oM, W has w.r.t. the decomposition
M @ joIN of Ky, the following block representation:

B 0
W=\ |
(JzzC J2DJ2>

whereB, C' and D are operators in (the Hilbert spacel, [j2-, ]2} which satisfy
dom D = 9, ker D = {0} anddom B = dom C. Direct calculations shows that
the fact thatl” is isometric implies thab C B~—* and thatC = S B for a symmetric
operatorS with dom S = ran B, cf. Proposition 2.20.

Step 2:Next observe thatom B = 9t andran B = 9, becauselom W = &, =
tan V. Sincedom D = M, see Step 1, anthul B~ = (ran B)* = {0}, equality
must hold in the inclusio® C B~* by (2.7): D = B~*. Consequentlytan B* =
dom D = 9t and combining this witlran B = 9t yields ranclos (B) =
Moreover,ran B* = 9t also yieldsker clos (B) = {0}, see (2.6).
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Step 3:The arguments from step 1 and step 2 show that the asserted representation
for W = VU, ! holds. Thereforean V = {f 4 j2iSf : f € dom S} + jodom B*.
Sinceran V = K, it now follows that

{0} = (ran V)2 = {f 4+ 4,iSf : f € dom S}H2 N (j,dom B*)H2
={f +320S*f : f € dom S*} N (mulclos (B) & jM),

i.e. dom S* Nmulclos (B) = {0}. This completes the proof. O

Remark 7.10. (i): Let j; be any fundamental symmetry §R, [-,-]:}. Then note
thatU, in Theorem 7.9 could have been chosen such that, in addition to the stated
propertieslU;(j; £ N dom U;) = M, see Lemma 7.8. With that choice ©f, (7.2)
yields

V(ii£Ndom V) = VU ' (MNdom VU ) = {f +j2iSf : f € dom S}.

In view of Proposition 7.3 and 2.20, this shows that the isometric operator in The-
orem 7.9 is unitary if and only i is a selfadjoint operator or, equivalently, if and
only if V(j1.£ Ndom V') is a hyper-maximal neutral subspace{@, |-, ]2}

(ii): Using Corollary 3.14, Theorem 7.9 can be extended to the caséJihiata
hyper-maximal semi-definite subspace{@, |-, -]} such that)t Nj.9t C ran V'
and £ := ker (P, V) = V7 1(1o9M Nran V) is a hyper-maximal semi-definite
subspace of Ry, [,-]:}. Namely in that case there exiStand B as in Theo-
rem 7.9 (withdt there replaced btlH2) and a bounded unitary operaidy from
{R1, [, -1} to {Rs, [, ]2} with dom V' C dom Uy, mapping€ ontoj,9, such that
w.r.t. the decompositio®t2 @ j, M2 @ (1,901 N 9N) of &

B 0 0
VU™ = |32iSB 2B 0 | = T1(S)Y2(B) & Ionrjpom.
0 0 Tonnj,m

Next two consequences of Theorem 7.9 are given: The first shows that isometric
operators as in Theorem 7.9 are closely connected to unitary relations and the sec-
ond shows how the representation in Theorem 7.9 simplifies if it is assuméd that
mapsg := ker (Pgy11, V') onto the hyper-maximal semi-definite subspgos.

Corollary 7.11. Let V' be an isometric operator fromif,, [-,-J1} to {Rs, [, |2}
withtan V' = R, letj, be a fundamental symmetry pf,, [, |2} and assume that
2 is a hyper-maximal semi-definite subspacég®f, |-, -]} such thatt N j M C
ran V" and that€ := ker (Pyy., V) is @ hyper-maximal semi-definite subspace
of {&1,[-,:]1}. Then there exists a symmetric operafBrin the Hilbert space
{2 [5,-, -]} with dom T = 92 such that the closure ¢f( (T) @ Iopnj,on)V

is a unitary relation from{ &, [-, |1} to { Ry, [, |2}
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Proof. W.l.o.g. assume that and 9t are hyper-maximal neutral subspaces, see
Remark 7.10 (i), the/U; ' = T (S)Y,(B) by Theorem 7.9 (withs, B andU,
as in that statement). Next note tiat, (S))~* = T1(—S5) and thatdom S = 90,
becauselom S = ran B andran clos (B) = 91, see Theorem 7.9. Furthermore,

clos (Y1 (=S)VU; ) = clos (T1(—S)Y1(S)Yo(B)) = clos (Yo(B))
= Ty(clos (B)).

SinceY,(clos (B)) is a unitary relation, see Proposition 4.9, dnds a bounded
unitary operator, the statement holds with= —S by Lemma 3.10. O

Corollary 7.12. Let V' be an isometric operator fro&,, [-, |1} to {8, [, ]2}
withtanV = R, and let£ C dom V' be a hyper-maximal semi-definite subspace
of {Ry, [, ]1} such thatht := j;V (£) is a hyper-maximal semi-definite subspace
of {Rs, [-,-]2}. Then for every fundamental symmetrpf {Rs, [, -]o} there exists

a symmetric operatof in the Hilbert spacg/ M2 [i;-, -], } with dom S = il

and a bounded unitary operatéf, from{ K, [-, -|1} onto{ R, |-, -]2} withdom V' C
dom Uy, mapping€ ontoj,M, such that/ U, ! = T1(S) & Lyprjon-

Proof. As a consequence of Remark 7.10 (ii) assume w.l.0.g. £hamd 9t are
hyper-maximal neutral subspaces. Then the conditions of Theorem 7.9 are satis-
fied, i.e. VU ' = YT1(S)T2(B). Moreover, the assumption th&t(£) (C j,9M)

is hyper-maximal neutral implies thain B~ = j,V(£) = 9. This, together

with the other properties aB, see Theorem 7.9, implies thdbs (B) is an oper-

ator with a trivial kernel satisfyinglom clos (B) = 9t = ranclos (B). Conse-
quently, Ty(clos (B)) = clos (Y3(B)) is a standard unitary operator and, hence,
Ty (clos (B))U; is a bounded unitary operator frofiRy, |-, |1} onto {Ry, [+, ]2}

This observation together with (7.2) shows that the statement holdsShéi in
Theorem 7.9. [

If V is asin Theorem 7.9 or, more generallyyif= 1, (5)Y+(B)U; for a symmet-
ric operatorS, an operatoB and a bounded unitary operaidy, thenker (Pyn!)

is also a neutral subspace f,, [-, -1}, ker V' = ker (PomV') N ker (PpnV') and,
moreover,

ker (Pon(VU; ")) = {f +jiB*(=S)Bf : f € dom (B*SB)}  (7.3)

Consequentlyker (Pon(VU; '), and hence alsker (PyyV/), is a hyper-maximal
neutral subspace if and only B*SB is a selfadjoint relation i{90, [j2-, -]2}, cf.
Example 7.5. Moreoveker (PjpyV') = ker V if and only if dom (B*SB) = {0}.
Next an example of a unitary operatdwith ker (PyyrlU) = ker U is presented, cf.
(Derkach et al. 2006: Example 6.6).
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Example 7.13.Letj be a fundamental symmetry &, |-, -|} and assume that there
exists a hyper-maximal neutral subspéfieof {{, |-, -]} such that{9, [j-, -]} is a
separable Hilbert space. Moreover, Iétbe a selfadjoint operator i), [j-, -}
with ran K # 9t andtan K = 91. Then there exists a closed operaforn
{9, j-,-]} such thatranC' = 9, ranC Nran K = {0}, domC = 9 and
ker C' = {0}, see Proposition 2.17 (ii) and (v). Thédn = C'~* is a closed op-
erator withdom B = 90 = ran B, ker B = {0} anddom B* Nran K = {0}. Now
dom (B*K B) = {0} and, hencel/ := T;(K)7Y2(B) is a unitary operator with
ker (PynU) = ker U, see Proposition 7.3 and (7.3).

Furthermore, ifi’ is as above, then
ker (PomV') 4 ker (PnV) = dom V' ifand only if ran (SB) C dom B*. (7.4)

Example 7.14 (i) below shows that for two hyper-maximal neutral subspégces
and £, there always exists a unitary operatorsuch thatC, = ker (PoplU), £1 =

ker (P;mU) andker (PognU) + ker (PpplU) = dom U. Also an isometric operator
with the same properties is given which can not be extended to a unitary operator,
see Example 7.14 (ii) below. Recall thatdf and £, are extension of a closed neu-

tral subspace and their sum coincides with the orthogonal complent&tt, then

£o and £, are traditionally called transversal extensionstofFor such cases it is

well known that there exists a bounded unitary operator suchthat ker (Poyl)

and£; = ker (PpnU), see (Derkacliz Malamud 1995: Proposition 1.3).

Example 7.14.Letj be a fundamental symmetry éR, [, -|} and assume that there
exists an infinite-dimensional hyper-maximal neutral subsp&de { &, |-, -]}

(i) Let £ be an arbitrary hyper-maximal neutral subspacé ®f|-,-|}. Then, by
Proposition 2.20, there exists a selfadjoint relationn {90, [j-, -]} such thatC =
{f+4af : {f,f'} € gr K}. Now a direct calculation shows that the unitary
relationU := jY;(K1)j is such thatht = ker (PamlU), £ = ker (PmU) and
ker (PonU) + ker (PjmU) = dom U.

(i) Let S be a symmetric operator in the Hilbert spae®t, [j-, -]} with unequal
defect numbers andom S = 9 = 1an S, and letB be a closed operator with
dom B = M = ran B andker B = {0} such thatlom B* = ran S, see Proposi-

tion 2.17 (ii). ThenK := B*SB is a selfadjoint operator if90, [j-, -]}, because

by the assumptionsin K = 9t. Now V' := U;(S)Yo(B) is an isometric operator

in {&, [-,-]} which cannot be extended to a unitary operator, see Proposition 7.3,
while £y := ker (PmV) = it and £, := ker (PmV) = {f + jiB*(—=S5)Bf :

f € dom(B*SB)} = {f —jiKf : f € dom K} are hyper-maximal neutral
subspaces of &, [-,:]}. Finally, note thatlom V' = £, + £, by (7.4), because
ran (SB) = dom B* by construction.
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7.3 Block representations for unitary operators

Continuing the investigations from the preceding section, here block representa-
tions for unitary operators are presented. For instance, it is shown that each uni-
tary operator can be written (w.r.t. certain coordinates) as the composition of an
archetypical unitary operator of the tyfi& (B) and a bounded unitary operator.
This shows that the unbounded part of a unitary operator can always be represented
by a block diagonal unitary operator. To obtain the indicated represented the fol-
lowing lemma is needed; note that Theorem 7.23 below extends this lemma.

Lemma 7.15. LetU be a unitary relation from{ &y, [-,-]:} to {Ri, [, 1}, letj; be
a fundamental symmetry ¢y, [-,-];} and let€ C dom U be a hyper-maximal
semi-definite subspace 6f,, [, -];} such thatU(£*)h) is a neutral subspace of
{8y, [, ]2} with equal defect numbers in the Knespace{U (£ Nj, L))z [ ]},
ThenU (j; £ N dom U) is a hyper-maximal semi-definite subspacé¢®f, |-, ]2}

Proof. SinceU is unitary, assume w.l.o.g. thatul U = {0} or, equivalently, that
ran U = R,. Then the statement follows directly from Remark 7.10 (i). O

Theorem 7.16.LetU be a unitary operator frold R, |-, |1} to {8, [-, -]} and let

j; be a fundamental symmetry ok, |-, -|;}, fori = 1, 2. Then there exists a hyper-
maximal semi-definite subspa®@ C ran U of {R,, |-, |2}, a closed operatoB in
the Hilbert spacg M2, [j5-, -], } withdom B = M2 = ran B andker B = {0},
and a bounded unitary operatéf, from{ R, |-, -]1} onto{ Ry, [-, -]o} withdom U C
dom U, such that

UU ! = Ta(B) @ Iopnjom.

In particular, if £ is a hyper-maximal semi-definite subspaceg 8f, [-,];} such
that £ C dom U and thatU (£+)1) is a neutral subspace with equal defect numbers
in the Krén space{(U(£Nj, £))*z [, ],}, then the subspacdBt can be taken to
beU(j; £ NdomU).

Proof. The existence of a subspageas in the statement follows directly from
Proposition 6.7 and by Lemma 7.98 := U(j;£ NdomU) is a hyper-maximal
semi-definite subspace. To complete the proof it suffices to show that withthis
the indicated decomposition 6f holds. W.l.0.g. this will only be done in case that
£, and hence als®i, are hyper-maximal neutral subspaces, see Remark 7.10 (ii).

Now by Lemma 7.8 there exists a standard unitary opefatdrom { &, [-,-]:} to
{Ra, [, ]2} with dom U C dom U, mapping€ ontojMt andj; £Ndom U; ontoM.
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Therefore the unitary operatdfU, ! without kernel has w.r.t. the decomposition
M D 129 of Ky, the block representation

UUh—l — B ZO)Q :
0 j2Dj2

whereB is a closed operator satisfyingm B = clos (U, (j; £ N dom U)) = 9N,
ran B = U(j;£€Ndom U) = M, ker B = {0} = mul B, andC andD are operators
satisfyingdom C' = dom D = U,(£ NdomU) = U,(£) = j»9M. Now the argu-
ments as in Theorem 7.9 show that= B~* and that”' = SB~* for a symmetric
operatorsS in {97, [j»-, -]}. Hence,UU, ' can be written as

pu-t— (B #SBTR) _ (B 0 I iB7'SB™j;
4 0 j2B ", 0 j2B %) \0 I ‘

Here the second equality holds because B = 9t. Next observe thak' :=
B~1SB~* is a symmetric operator, becausel (UU, ') = {0}, with dom K =
M, becauselom (SB~*) = dom C' = M andran B = 9. This shows thak is
a everywhere defined selfadjoint operator and, heligék’) is a standard unitary
operator. Therefore the statement holds With= jo Y (K )jaUy,. [l

The diagonal block representation forin Theorem 7.16 holds only for special
coordinates, it can be generalized to the case of arbitrary coordinates by means of
standard unitary operators.

Corollary 7.17. LetU be a unitary operator fror{ R1, [-, -]1} to {Ra, [, -]2} with
strongly equal defect numbers (see Chapter 8 below) and le¢ a fundamental
symmetry fo{Rs, [-,]o}. Then for every hyper-maximal neutral subspatef
{&,, [, ]2} there exists a closed operat@y in {MN, [jo-, -]»} With dom By = N =
ran By andker By = {0} and a standard unitary operatdr. in {8, |-, ]2} such
that

UUU U = To(By).

Proof. SinceU has strongly equal defect numbers, there exists a hyper-maximal
neutral subspac®t of {R,, |-, |2}, a closed operataB in {90, [j2-, -]»} satisfying
dom B = M = ran B andker B = {0}, and a bounded unitary operatdy from

{81, [, -1} onto {&y, [, ]2} with dom U C dom U; such thatUU, ' = Yy(B),

see Corollary 8.18 below. Therefore the statement follows by takjnip be the
standard unitary operator iRy, [-, -]2} which mapsIt onto9t andj,?t ontoj.MN,

see Lemma 4.13. N
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Next an example is given of how a unitary operator with a block representation can
be rewritten such that the unbounded part is in diagonal form. Note that the uni-
tary operator under consideration is connected with so-called generalized boundary
triplets, see (Derkacl: Malamud 1995: Definition 6.1), see also Theorem 7.19
below.

Example 7.18.Let {$?, < -,- >} be the Krén space with fundamental symmetry
j associated to the Hilbert spa¢®, (-,-)} as in Example 2.1. I{$H? < -,- >},
consider the operat@r whose block decomposition w.rs x $ is given by

B
U= 0 ,
KB B

whereB is an unbounded closed operator{if), (-, -)} with dom B = $ = ran B
andker B = {0}, andK is a selfadjoint operator ifi9), (-, -)} with dom K = $.
Since Y, (K) is a standard unitary operator affg(B) is a unitary operator, it
follows thatU = T, (K)Y.(B) is a unitary operator.

To obtain a block representation 6f where the unbounded part is in diagonal
form, note first that{0} x $ C domU is a hyper-maximal neutral subspace

of {9% < -,- >} which is mapped onto the essentially hyper-maximal neutral
subspac€0} x dom B*. Therefore Theorem 7.16 implies th&t has a diago-

nal block representation with respect to hyper-maximal neutral subspiace
{{Bf,KBf} : f € dom(KB)} = gr K of {§% < -,- >}. Hence, to obtain a
diagonal block representation with respect to the hyper-maximal neutral subspace
9 x {0} of {H?, < -,- >}, astandard unitary operator{$?, < -,- >} needs to be
found which maps) x {0} onto2t, see Corollary 7.17. A direct calculation shows
thatUsy defined as :

C -—-KC
Uyt = C=(I+KK)Y?

where the block representation is w.r.t. the decompositier of 2, is a standard
unitary operator i{$?, < -,- >} with the desired properties. Now

_ C COK B 0
Up) 1 U =
(Uon) —CK c) (KB B*)
_ (CU+KK)B CKB™*
B 0 CB~*

_(C7'B C'BB'CCKB™
B 0 (C~'B)~*

_(c'B 0 I B'CCKB™*
Lo (@B \o I '
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Clearly, B"'CCKB™™ = B"'CKCB™* is an everywhere defined symmetric op-
erator in the Hilbert spacg, (-, )}, i.e. itis a bounded selfadjoint operator. There-
fore the following decomposition df has been obtained:

g ¢ -KC C~'B 0 I B 'CKCB™*
- \KCc ¢ 0 (('B)*)\o I '

The unboundedness bfis now completely expressed by the unitary diagonal block
operator, the other two operators in the righthand side of the above equality are
standard unitary operators.

Next some further necessary and sufficient conditions for an isometric relation to
be unitary are stated; note that the following result extends (Derkach et al. 2006:
Lemma 5.5). Theorem 7.19 below shows that up to a standard unitary transforma-
tion each unitary boundary triplet whose domain contains a selfadjoint relation is a
generalized boundary triplet, see also Section A.2.

Theorem 7.19.LetU be an isometric operator frof&;, |-, -]} to {Rs, [, -]} and
let j, be a fundamental symmetry R, |-, -]o}. ThenU is unitary if and only if
there exists a hyper-maximal semi-definite subsp#iaaf { R, |-, -]o} such that

(i) 9M = Popran U andM N juIMM C ran U;

(i) ker (Pyuu,U) is a hyper-maximal semi-definite subspacés®f, |-, -], }.

In particular, if (i)-(ii) hold, then there exists a closed operatBrin (the Hilbert
space){ M2 [iy- -]} with dom B = Mt = ran B andker B = {0}, a selfad-
joint operator K in {92 [j,- ]} with dom K = M2 and a bounded unitary
operator U; from {R&y, [-,-]2} onto {Ry, [, ]2} with domU C dom U;, mapping
ker (PyU) ontoj»9M, such that

UU = T1(K)T2(B) @ Iypnion- (7.5)

Proof. If U is unitary, therd)t as in Theorem 6.8 satisfies (i)-(ii). In fact, in that
casedt C ranU. To prove the sufficiency of the conditions, it suffices to prove
that U has the indicated block decomposition if the stated conditions hold, see
Proposition 7.3. Sinc@® N j,M C ran U, thisis w.l.0.g. only done in case that,

and hence als@ := ker (P11, U), is @ hyper-maximal neutral subspace.

Note that in (Derkach et al. 2006: Lemma 54) should be selfadjoint.
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Step 1: Recall that by assumptiofi (£) C j,9. Next it is shown that the as-
sumptions (i) and (ii) imply thatlos (U(£)) = j2Mt. Therefore note first that the
assumption tha€ is hyper-maximal neutral implies that

L£+domUNK =domU = £+ domU N K. (7.6)

Now let f, € joMSclos (U(L)), then by the assumption (i) together with (7.6) there
exists anf € dom U N & such thatPyrU f = j» f,. ConsequenthyU f,Ugl, = 0

for everyg € £ and, hence|f, g]; = 0 for everyg € £. Sincef € domU N &
and £ is hyper-maximal neutral, the preceding equality can only holfl # 0.
Consequentlyglos (U (L)) = j29M. Now let ' € (ranU)*2, thenclos (U(£)) =
1290t implies thatf’ € 91. Then (i) implies thatf’ = 0, i.e.tan U = R,.

Step 2: Since it has been shown th&tn U = R, Theorem 7.9 implies that
there exists an operatd? in {9, [j,-, -]»} with dom B = M = ranclos (B) and
ker clos (B) = {0}, a symmetric operatak in {90, [j,-, -]} with dom K = ran B
and a standard unitary operatdy in { Ry, [+, ]2} with dom U; C dom Us, mapping
ker (PyrU;) ontoj,9, such that

B 0
U Ut =7T1(K)Yy(B) = . 7.7
5= Ta(K)Ty(B) (MB ng‘*j2> (.7)
Now the assumption (i) implies th8& = ran B and, henceJom K = 9, i.e. K is
a bounded selfadjoint operator arich B = 9t together withker (clos (B)) = {0}
implies thatB is closed, see (2.8). This shows that (7.5) holds. l

The two conditions in Theorem 7.19 are independent of each other, i.e. there exist
unitary operators for which either only (i) holds or only (ii) holds. First an example
of a unitary operator is given which satisfies condition (i), but not condition (ii).

Example 7.20.Let {$?, < -, - >} be the Krén space associated to the Hilbert space
{9,(-,-)} as in Example 2.1. Le§ be a closed symmetric operator {#, (-, -)}
with defect numbers., (S) = 1 andn_(S) = 0 such thadom S = § = ran S.
Moreover, letB be a closed operator %, (-, -)} with dom B = §, ran B = ran S
andker B = {0}, see Proposition 2.17 (ii), theli := B~'SB~* is a selfadjoint
operator in{ 9, (-, -)} with ran K = §. Now U defined as

. (KB —B) |
B~ 0

where the block representation is w.r.t. the decomposition$) of 2, is a unitary
operator in{&, < -,- >}, see e.g. Lemma 4.7. Clearlfg, (03U 2 ran K = 9,
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while on the other hand

ker (PoxioyU) = {{f, f'} € domU : KB~ f + Bf' =0}
={f,fyedomU: f'= -B KB *f} =gr(-5).

Sinces is by assumption not selfadjoint {m, (-, -) }, the above calculation shows
thatker (Pgx (01 U) is not hyper-maximal neutral, see Proposition 2.20.

Instead of giving a concrete example of a unitary operator which satisfies condition
(i) in Theorem 7.19 but not condition (i), here a block representation characteriza-
tion for unitary operators satisfying condition (ii) is given. In particular, this shows
that such unitary operators are closely connected to those which do satisfy condi-
tion (i) and (ii) in Theorem 7.19. In that connection recall that the condition (ii) is

a very strong one, i.e. isometric operators which satisfy it are quite close to being
unitary, see Section 7.2.

Corollary 7.21. Let U be a unitary operator from{ &y, [, -]1} to {Rs, [, ]2}, let
j» be a fundamental symmetry o, |-, -]o} and let9t be a hyper-maximal semi-
definite subspace df’,, |-, -]} such thatt Nj,M C ran U. Then equivalent are:

(i) ker (Pyyu,U) is a hyper-maximal semi-definite subspac¢®f, [-, -]1 };

(i) there exists an operatoB in the Hilbert space{Mtz, [j,-, |5} satisfying
dom B = M2 = ranclos (B) and ker clos (B) = {0}, a selfadjoint op-
erator K in {92 [j,-, ]} with dom K = ran B and a bounded unitary
operatorU; from { &y, [-, -]} onto{ Ry, [-, -]} with dom U C dom U;, map-
ping ker (PyyU) ontoj, M, such that

UU = T1(K)T2(B) @ Iypnion-

Proof. As a consequence of the assumption fhat 9t C ran U assume w.l.0.g.
thatt is a hyper-maximal neutral subspace. If (i) holds, then (ii) follows from The-
orem 7.9 and Remark 7.10 (i). Conversely, if (i) holds, then(Pyy.,, UU, ') =
joran B* = j,9M, i.e., ker (P, UU; ) is @ hyper-maximal neutral subspace of
{8y, [, "]2}. Consequentlyker (Pyy1,U) = U; ! (ker (Poyu, UU;Y)) is @ hyper-
maximal neutral subspace @R, [-,]1 }. O

Corollary 7.22 below contains conditions for the unitary operator in (7.5) to be a
bounded unitary operator, which differ from the usual condition that the range of
the unitary operator is onto, see also Section 4.1.
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Corollary 7.22. Let U be a unitary operator from{ &, [+, :]1} to {Ra, [, ]2}, let
j» be a fundamental symmetry oo, |-, -]o} and let9t be a hyper-maximal semi-
definite subspace dfk;, [, -]o} such that Theorem 7.19 (i) and (ii) hold. Théris

a bounded unitary operator if and only if

5o = Pionran U and  ker (PopU) + ker (PigmU) = dom U.

Proof. By assumptionU has the representation in (7.5). In fact, singeis a
bounded selfadjoint operatdf, (K) is a standard unitary operator therein. More-
over, sinceB is closed andan B = M2 = dom B in (7.5), U is a bounded
unitary operator, i.eranU = R, if and only if dom B* = M2, It is clear
(see e.g. (7.7)) thatom B* = M2 if and only if ran (KB) C dom B* and
Pi,omran U = 290 In view of (7.4), this observation proves the equivalencel]

Finally, necessary and sufficient conditions for the isometric operators under con-
sideration in Section 7.2 to be (extendable to) unitary relations are given. Note that
Theorem 7.23 below is a (partial) inverse to Lemma 7.15.

Theorem 7.23.LetU be an isometric relation fromfy, [-, -]} to {Rs, |-, -]2} and

let j; be a fundamental symmetry gf;, |-, -];}, for i = 1,2. Moreover, assume
that there exists a hyper-maximal semi-definite subspiia# { R,, [-, -]} such that

M N jeM C ran U and thate := ker (Pyy11,U) is a hyper-maximal semi-definite
subspace of &, [-,-]1}. ThenU is (extendable to) a unitary relation if and only

if U(j1£ NndomU) is (extendable to) a hyper-maximal semi-definite subspace of

{ﬁ% ['7 ]2}

Proof. SinceMt N j,M C ran U, assume w.l.0.g. tha@t and £ are hyper-maximal
neutral subspaces. It can also be assumed(thist closed, because i is not
closed, thertlos (U) clearly satisfies the same conditions. Moreovérgan also
w.l.o.g. be assumed to be an operator with a trivial kernel, see Lemma 3.11. Then
arguments as in Step 1 of Theorem 7.9 show that w.r.t. to the decomposition
£ &1L of K and the decompositiaht &, j.91 of K, U has the following block

representation:
v=(" D
j2B  j21S5Ch

whereB andC' are operators froM.g, [j1-, -]1} to {9, [j2-, ]2} with dom B = £,
ker B = {0} = ker C andC C B~*, andS is a symmetric operator iftt, [jo-, |2}
with dom S = ran C. Moreover, sincd/ is by assumption closed? needs to
be closed. Now assume thdtj; £ N dom U) is (extendable to) a hyper-maximal
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neutral subspace, then the above representation showS thgextendable to) a
selfadjoint relations in {9, [j2-, -|2}. Using K, U, defined via

grU, ={{f +i9,B "g+i(Bf+iKB *g)}: feMandg € dom (KB™*)}

IS a unitary extension d/, because C dom U, is a hyper-maximal neutral sub-
space of{ &y, [-,-]:} andU,(;1€ NdomU,) = {f +jiKf : f € dom K} is a
hyper-maximal neutral subspace k., [-, -]}, see Lemma 4.7. Note that here
it was used thatan B~ = 9. Hence, ifU(j;£ N domU) is (extendable to) a
hyper-maximal neutral subspace, théns (extendable to) a unitary relation. The
converse implication is a direct consequence of Lemma 7.15. O

7.4 Block representations and Calkin

Here the block diagonal representation of unitary operators from Theorem 7.16 is
used to furnish simple proofs for a number of statements from (Calkin 1939a).

Starting with the following two statements which are the abstract analogues of

(Calkin 1939a: Lemma 4.& Theorem 4.13) and of (Calkin 1939a: Lemma 4.4

& Theorem 4.15); they show how unitary relations can change the defect numbers
of closed neutral subspaces.

Proposition 7.24.LetU be a unitary relation fron{ &, |-, ]:} to { &, [, ]2} which
does not have a closed domain. Then there exists a maximal neutral subspace
£ CdomUin {R&y, [ ]:} such that

(i) clos (U(£)) is a maximal neutral subspace R, |-, ‘]2 };

(i) foreveryd) < m < ¥, there exists a closed neutral subspagewithker U C
£,, C £ such thatelos (U(£,,)) = clos (U(£)) andny(£,,) = n(£) + m.

Proof. To prove the statement w.l.o.g. assume that/ = {0} = mulU and let

j» be a fundamental symmetry ¢R,, [-,-|2}. Then by Theorem 7.16, there exists

a hyper-maximal semi-definite subspageof {Rs, |-, |2}, a closed operataB in
{2 [+, -]} with dom B = M2 = ran B andker B = {0}, and a standard
unitary operatot/; from {8, [-, -]} onto { &y, [+, -]} with dom U C dom U, such

that UU; ' = Yy(B) @ Ignry,on- Since standard unitary operators do not change
the defect numbers of neutral subspace, see Proposition 4.5, it suffice to proof the
statement for the unitary operatGy, := Yo(B) & Ion,on in {Ra, [+, |2}

From the properties aB, it follows that£ := )29t C dom U, is a maximal neutral
subspace of R, [, ]2} and thatclos (U,(£)) = clos (jodom B*) = j.9 is also a
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maximal neutral subspace ¢Rs, [-,-|2}. SinceB is an unbounded operator (be-
causel by assumption does by not have closed domain), Corollary 2.18 implies
that there exists for everty < m < X, anm-dimensional closed subspatk, of

(the Hilbert space}n, [j2-, -]2} such thablt = clos (B~* (M2 M,,)). This shows
that, with £ as above, the statement holds £ := jo (9t ©2 N,,,). O

Proposition 7.25.LetU be a unitary relation from{ &y, [, |1} to {Rs, [, -]} which
does not have a closed domain andjldte a fundamental symmetry{o#;, [-, -1 }.
Then for everyn < X, there exists a hyper-maximal semi-definite subspgace
dom U of {8, [,-]:} such thatl/(£l+12) is a closed neutral subspace of the Kre
space{f, N (U(L£Nj L) [ ]} with defect numbers.. (U (£H2)) = m.

Proof. W.l.o.g. assume thatwlU = {0}. ThenU = (Yo(B) & Imnj,om)U:,
wheredt, B andU, are as in Theorem 7.16 anfgdis a fundamental symmetry of
{R2, [, -]2}. From the assumption that does not have closed domain it follows
that Yo(B) is an unbounded unitary operator. Hence, by Proposition 4.10 there
exists for everyn < X, a hyper-maximal neutral subspa®®,, C dom (T2(B))

such thafl'y(B)(9M,,) is a closed neutral subspacefifi, N (9 N D)2 [ )5}

with defect numbers.. (T5(B)(9,,)) = m. Consequently, the statement holds
for £ := U; 1 (M, D2 (M Nj,IM)), becauséd/, is a bounded unitary operators, see
Proposition 4.5. l

Proposition 7.25 implies in particular that the domain of a unitary relation always
contains a hyper-maximal semi-definite subspace which is mapped onto a hyper-
maximal semi-definite subspace. Combining this observation with Corollary 7.12
and Proposition 4.8 yields another representation for unitary relations.

Corollary 7.26. LetU be a unitary relation from{ K1, [-, -]1 } to {Ro, [, -]} and let

j» be a fundamental symmetry ff;, [-,-]o}. Then there exists a hyper-maximal
semi-definite subspacBt of {Ry, [, ]»}, a selfadjoint relationX in the Hilbert
space{M= [j,-,-],} and a bounded unitary operatdr; from {&;,[-,-];} onto
{R, [, ]2} withdom U C dom U, such that

(](J;1 == T1<K) EB Imﬁjzf)jt.

Now it is shown that for every unitary relation in a separableiKigpace which

does not have closed domain there exists another unitary relation, also necessarily
having a non-closed domain, having the same kernel such that the intersection of
their domains is their kernel. This statement can be found from (Calkin 1939a: 416)
where no proof for the assertion is given. In order to give a proof for that statement,
the following lemma will be used.
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Lemma 7.27. Letj be a fundamental symmetry £R, [-, -]} and let&T[+]&~ be
the associated canonical decompositiod &f |-, -]}. Moreover, let)t be a hyper-
maximal neutral subspace ¢R, |-, -]} and let® be a dense subspace 8f (&™)

which is an operator range. Then there exists a unitary operatan {&, [-, |}

satisfying

domU =M +D and domUNK" =D (domUNK =2).

Proof. Only the cas&® C K7 is considered. First note that the assumptionthat

an operator range and thads © = &1 implies that there exists a bounded operator
B in the Hilbert spacg, [j-, -]} with dom B = 9t = ran B andker B = {0}
suchtha® = {Bf+jBf : f € M}, cf. Proposition 2.17 (ii). Thelti = To(B™!)

IS a unitary operator witdom U = ran B & )01, see Section 4.2. Moreover,

domUNK" =domUN{f+jf: feM={f+jf:f€ranB} =D.
Clearly, from the above calculation it also follows thiain U = 9t + ©. l

Theorem 7.28.Let U be a unitary relation from{ &, [-,-]:} to {8, [-, ]2} which
does not have a closed domain such tfrafn U/mul U, |-, -], } is a separable Krin
space. Then there exists a unitary relatignfrom{ &, |-, -1} to { Ko, [-, -]2}, which
does not have a closed domain, with

kerU, =kerU and domU NdomU, = ker U.

Proof. In the proof letj, be a fundamental symmetry éR,, [-, -2}, let &5 [+] &5

be the corresponding canonical decompositiof®f, [-, -|»} and w.l.0.g. assume
that U is an operator, see Corollary 3.12. Then by Theorem 7.16 there exists
a hyper-maximal semi-definite subspageof {8s,[-, ]2}, an unbounded closed
operatorB in the, by assumption, separable Hilbert spggi-12, [j,- -],} with
dom B = M2 = ran B andker B = {0}, and a bounded unitary operatoy

from {Ry, [-, |1} to {Rs, [, ]2} with dom U C dom U, such that

UU; " = Ya(B) @2 Imnjon.

By Proposition 2.17 (ii) and (iv) there exists a bounded selfadjoint opefator
{omlz [iy-, -]o} with fan K = M2, dom BNran K = {0} anddom B+ran K #
oMz, Theng := {f+jiK~'f : f € ran K} is a hyper-maximal neutral subspace
in {R2 S2 (MNj2M), [, ]2} with £NTy(B) = {0}.

Sinceran K 4+ dom B is a nonclosed operator range, see Proposition 2.17 (i), using
Proposition 2.17 (ii) and (v) once more yields the existence of a closed bounded
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(selfadjoint) operatoD in {92 [iy-, |5} with fan D = M2 andker D = {0},
such thatan D N (ran K 4+ dom B) = {0} andran D + ran K + dom B # e,
Then the subspac® := {f +jof : f € ran D} is a uniformly definite subspace
of {& Oy (M NjeM), [, ]2} such thatlos (D) = KT O, (I N j,9M). Hence, by
Lemma 7.27 there exists a unitary operat@rin {&; Sy (M N j:M), [+, -]o+ with
dom U, = £+9. Moreover, since by constructi@it +®)Ndom (T5(B)) = {0},
dom Uy Ndom (Yy(B)) = {0}.

If M is a (hyper-maximal) neutral subspace, then the statement holdg/with

UsU;. Next assume thapt is not neutral, but, w.l.0.g., assume tB&tis nonnega-
tive, i.e. M N joIM C Ry . Since{ Ry, [, ]2} is a separable spac®} N j,MN has at
most the dimensiol,. Recall that

dom (T2(B)) = dom B @, jIM;
domUs = {Df +joDf : f € MM} + {Kf +iaif : f € M1},

Since alsadom B + dom D + ran K is a nonclosed operator range, see Proposi-
tion 2.17 (i), there exists by Proposition 2.17 (vi) an infinite-dimensional closed
subspaced. such thatd. N (dom B + dom D + ran K) = {0}. Hence,® =
{f+if: feD.}isan infinite-dimensional closed subspaceidfsuch that

DFNdomU, = {0} and (D + domU,) N To(B) = {0}.

Now let U; be the standard unitary operator {,, [-, -]} which is the identity
mapping onf, O, (DF @2 M N j290), mapsM N . onto D and D onto
M NjM. ThenU,, = (Us & Imnj,m)U; IS @ unitary operator iffs, |-, |2}
such thatdom U, N dom (UU; ') = {0}. Consequentlyl/, := U,,U, satisfies the
conditions. O

Combining Theorem 7.28 with Proposition 6.7 yields the following statement, see
(Calkin 1939a: Theorem 4.6).

Corollary 7.29. LetU be a unitary relation from{ &, [-, -];} to {8, [-, ]2} which
does not have a closed domain such #frafn U/mul U, |-, -], } is a separable Kri
space. Then there exists a hyper-maximal semi-definite subSpalcéR;, [-, -1 }
such thate N dom U = ker U.

7.5 Compositions of unitary operators

As a further application of the block representations for isometric operators pre-
sented in Section 7.2 and 7.3, here conditions for when the composition of a unitary
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operator with an isometric operator is (extendable to) a unitary operator are given.
Two distinct cases are considered: The composition of unitary operators with iso-
metric operators with a trivial kernel and, secondly, the composition of unitary
operators with bounded unitary operators with a non-trivial kernel.

Proposition 7.30. Let U be a unitary operator from{ &y, [-,-]:} to {Rs, [, |2},
let j, a fundamental symmetry dfR,, [, -]o}, let 9t be a hyper-maximal neu-
tral subspace of R,, |-, -2} such thatker (PoU) is a hyper-maximal neutral sub-
space of{ Ry, [-,-]1} and letV be a closed isometric operator §R,, [-, -]o} with
ker V' = {0}. Moreover, letB, K andU, be as in Corollary 7.21 (ii) such that

UU" = 11 (K)Yo(B). (7.8)

ThenVU can be extended to a unitary operator frofRy, |-, 1} to {Ro, [, ]2}
with ker (PoyrVU) = ker (PnU) if and only if there exists a closed relatiab
in the Hilbert space{N, [jo-, ]2} such thatD~*B~* is a closed operator satis-
fying dom (D~*B~*) = 9 andker (D~*B~*) = {0} , and a symmetric opera-
tor S in {9, [j2-, -]} which has a selfadjoint extensidkis satisfyingdom Kg N
ker (D~*B~*)* = {0}, such that/’ is an extension of

T1(5)To(D)T1(-K).

In particular, clos (VU) is a unitary operator if and only it/ is an isometric ex-
tension ofY; (S5)Y,(D)Y,(—K) as above and, additionallylos (5) is selfadjoint
andclos (DlgomxB)) = (D™ *B~*)~*.

Proof. If VU can be extended to a unitary operator &ad PV U) = ker (PorU),
thenVUU, !, whereU, is as in (7.8), is an isometric operator sy, [, -]} such
thatker (PyrVUU; ) = j,9M. Hence, as in step 1 of the proof of Theorem 7.9,
there exist operator®; andC' in {9, [j2-, ]2} with B; C C™*, domC = 9N,
ker C' = {0} = mul C' and a symmetric operatdr in {9, [jo-, -|]2} with domT" =
ran B, such that

_ B 0 By 0
VUU ™ = =T,(T . 7.9
! <j2iTB1 j20j2> 1(T) ( 0 j20j2> (7.9)

SinceVU, and hence alsb’UU; *, is extendable to a unitary operator, it follows
thatmul clos C' = {0}. This observation together withom C' = 9t yields thatC'

is a closed operator. Moreover, singé/ is extendable to a unitary operatar,is
extendable to a selfadjoint operatii such thatdlom Kg N (ran C)+ = {0}, see
Remark 7.9 (i) and step 3 of the proof of Theorem 7.9.
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Combining (7.8) and (7.9) yields

B, B! 0

V lanv= T1(T) < 0 ngB*jg) T (—K). (7.10)

SinceV is by assumption closed, the closure of the righthand side of (7.10) is
contained inV/. Hence, the assumption thetis an operator with a trivial kernel
implies that the operataf := C'B* satisfiesker clos (£) = {0} = mulclos (E).
Hence,D := E~* is a relation which satisfies the stated conditions, because

DB ™ =clos(F)B™" = C+ {0} x mulclos (F) = C.

Hence, by takings to be the restriction of to ran (B, B~!) the necessity of the
conditions is clear.

Conversely, le) andS be as in the statement, then with:= dom K @ jxIN
T1(S)Yo(D) Y1 (=K)U = T1(S)T2(D)IaYo2(B)U:.

Now observe that

To(D)IaAT2(B)

(D famacli 0 ) C (DB ),

0 2D By
By the assumptiong’ := (D—*B~*) * is a (closed) relation if91, [j2-, -]o} Sat-
isfying domE = M = ranE andker E = {0}. Hence, ifKs is a selfad-
joint extension ofS such thatdlom K¢ N mul £ = {0}, then the above calcula-
tions show thafl';(S)Y,(D)Y,(—K)UU,; " can be extended to the unitary oper-
ator Y, (Ks)Y2(E), see Proposition 7.3, i.elJU can be extended to the unitary
operatorY'; (Ks) Y (E)U;, see Lemma 3.10.

The final equivalence is clear by the above observations. O

Note that the isometric operatdt, (S)Y2(D)Y;(—K) in Proposition 7.30 need
not be extendable to a unitary operator. Consider for instance the cade thdt
and thatS and — K are the selfadjoint operatofs; and K, from Example 7.1.
However, in the case that andV U in Proposition 7.30 are the abstract equivalent
of generalized boundary triplets, th&hmust be a unitary operator.

Corollary 7.31. LetU be a unitary operator fror{ &, [, -]1 } to {Rs, [-, ]2}, letjq

be a fundamental symmetry of,, [, -]} and let9t be a hyper-maximal neutral
subspace of R., |-, -]o} such thatker (Pyrl) is a hyper-maximal neutral subspace
of {Ry, [, 1} and thatPyrran U = 9. Moreover, letV” be a closed isometric
operator in{ Ry, [+, -]o} withker V' = {0} such thatker (PyVU) = ker (PoylU) and
Popran (VU) = 9. ThenV U is a unitary operator fror{ &y, [-,-]:} to {Ra, [, -]2}
andV is a unitary relation in{ R, [, |2}
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Proof. The assumptions ol U imply by Theorem 7.19 that' U is a unitary op-
erator. Moreover, Theorem 7.19 implies thiétandclos (S) in Proposition 7.30
are bounded selfadjoint operators in the Hilbert spgbe [j,-, -]} and, therefore,
T,(S) andY,(—K) are standard unitary operators{ifs, |-, |2 }. From this it fol-

lows thatclos (T1(S)Yo(D)Y1(—K)) = T1(S5)Ta(clos (D)) Y1 (—K) is a unitary
relation in{ Ry, [, -]o}. SinceY(5)Y2(D)Y,(—K) C V andV is by assumption
closed, this implies that itself is a unitary operator ifRs, [-, |2} O

In Proposition 7.30 the composition of a unitary operator with a closed isometric
operator with a trivial kernel was considered. Next the composition of a unitary
operator with a bounded unitary operator with a non-trivial kernel is considered.

Proposition 7.32. LetU be a unitary operator frord &, [-, -]; } to {&s, [, -]} and
letj, be a fundamental symmetry{ok,, |-, -]o}. Let9t be a hyper-maximal neutral
subspace of Ry, [+, -]2} such that := ker (Pyrl) is a hyper-maximal neutral sub-
space of &y, |-, -]1 } and letU, be a bounded unitary operator frofiRs, |-, -]»} onto
{Rs, [, |3} such thatj;?Mt C dom U, or, equivalentlyker U, C jo0t. ThenU,U is
an isometric operator frol &y, [, -]1} to {8s, [-,-]s} which can be extended to a
unitary relation. In particularU,U is a unitary operator if and only if there exists a
fundamental symmetijyof { Ry, [-, -]1 } such that/ (j; £ndom U)Ndom U, +ker U,

is a hyper-maximal neutral subspace{df,, |-, |>}.

Proof. Note first that ifj,9t C dom Uy, thenker U, = (dom Up)H2 C (jo901)1H2
29 and, conversely, iker U, C j,M, thenj,M = (juM)H2 C (ker U,)H2 =
dom U, = dom U,,, where in the last step the boundednesEaf used.

SinceU(£) C j»M (C dom U) is a neutral subspace with equal defect numbers
andU, is a bounded unitary operatdyr,(U(£)) is a neutral subspace with equal
defect numbers. Hence, by Theorem 7.23/ is (extendable to) a unitary relation

if and only if U, U ((j1 £ Ndom U)) is (extendable to) a hyper-maximal neutral sub-
space of{ R, [, -|3}. SinceU, is a bounded unitary operator, this last condition is
equivalent tal/ (j; £ N dom U) N dom U,, (+ker U,) being (extendable to) a hyper-
maximal neutral subspace ¢R,, [-,-].}. But that follows immediately from the
fact thatU (j; £ N dom U) N dom U, is a restriction ofU (j; £ N dom U) which is a
hyper-maximal neutral subspace{ot,, [-, -]} by Lemma 7.15, becaugé is uni-
tary andg := ker (PyyU) is a hyper-maximal neutral subspace{a, [, -], }. O

Not every composition of a unitary operator with a unitary operator with closed
domain can be extended to a unitary operator as the following example shows.



106 Acta Wasaensia

Example 7.33.By Example 7.2 there exists a unitary operdfan { &, [-, -|} which
maps a neutral subspagewith unequal defect numbers onto a hyper-maximal
neutral subspace. Now &}, be the unitary operator frofi, |-, -]} to {0} whose
graph isU(£) x {0}. ThenU,U is an isometric operator frofi®, [-,-]} to {0}
whose graph is given bg x {0}. Clearly, U;,U cannot be extended to a unitary
operator, because can not be extended to a hyper-maximal neutral subspace.

Finally, Proposition 7.32 is applied to the abstract equivalent of generalized bound-
ary triplets. The following result will be used in Section A.4 to obtain results on the
boundary relations for intermediate extensions.

Corollary 7.34. Let U be a unitary operator fror{ Ry, [, ]1} to {Ra, [, ]2}, let

j» be a fundamental symmetry ffs, |-, ]o} and let9t be a hyper-maximal neu-
tral subspace of R, [, ]2} such thatPoypran U = 9t and thatker (Poxl) is a
hyper-maximal neutral subspace ff,[-,-]:}. Moreover, letU, be a bounded
unitary operator from{Rs, |-, ]2} onto {Rs, [-,-]s} such thatj;2 C dom U, or,
equivalentlyker U, C jo0. ThenU,U is a unitary operator from{ &, [-,-];} to
{Rs,[,-]3} and M := U,(9M N dom Uy) is a hyper-maximal neutral subspace of
{Rs, [, ]3} such that,

Py(ran (U,U)) =N and  ker (Pn(U,U)) = ker (PomU),
wherePy; the orthogonal projection ontdt w.r.t. [j3-, |3, j5 := UijUb‘l.
Proof. Theorem 7.19 shows that to prove the statement it suffices to shows that the

last two equalities hold. Note therefore first that since by assumkiari, C j,91,
M, := M N dom U, is a closed subspace such that

dom Ub = E)JTT Do ]29ﬁ = Sﬁr Do jzmr Do ker Ub.

Since Ry &, dom U, = jsker Uy, the above formula shows th@l, + ker U, C
dom U, is a hyper-maximal neutral subspace {o%,, [-,-].} and, hencedt :=
Uy(9M,) is a hyper-maximal neutral subspace{@§;, |-, -] }.

Next note that the assumpti@yran U = 9t together with,9T C dom U, implies
that Pop, (ran U N dom U,) = M,.. SincejsN = U,(j29N) by definition of js,
the preceding observations imply thB§(ran (U,U)) = 91. Moreover,j;9 =
Uy (5290) together with the assumptigstt C dom U, yields

ker (PoplU) = U (i NranU) = (U,U) L (§3MNran (UU)) = ker (Py(UpU)).

This completes the proof. l
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8 A CLASSIFICATION OF UNITARY RELATIONS

Extending upon the work of Calkin (1939a: Ch. 3, Section 4), here a classifi-
cation of unitary relations into three types is presented and characterized. This
classification is introduced and analyzed in order to describe what kind of closed
neutral subspaces the domain of a unitary relation can contain. In particular, this
approach is used to characterize when the domain of a unitary relation contains a
hyper-maximal neutral subspace. More specifically, in the first section a classifica-
tion of unitary relations is introduced and investigated, and the concept of strongly
equal defect numbers is introduced. In the second and third section unitary rela-
tions of type | (type la and type Ib) and II, respectively, are studied. In particular,
these classes of unitary relations are characterized by the closed neutral subspaces
contained in their domain and by their diagonal block representation.

8.1 Basic properties of the classification

The discussion in Section 6.2 shows that even if the kernel of a unitary relation
has equal defect numbers, then it is not a priori clear whether there exist hyper-
maximal neutral extensions of the kernel which are contained in the domain of
the unitary relation. As is shown in this chapter, that need not be the case, see e.g.
Example 8.11 below. Therefore it makes sense to introduce the following definition.

Definition 8.1. LetU be an isometric relation fro’y, |-, -]1 } to {Rs, |-, -]2}. Then
ker U is said to havestrongly equal defect numbeifghere exists a hyper-maximal
neutral subspacg in {&, [, J1} such thatt C dom U

Clearly, if the kernel of an isometric relation has strongly equal defect numbers,
then it also has equal defect numbers. To describe whether the kernel of a unitary
relationU has strongly equal defect numbers, in (Calkin 1939a) it was shown that
the dimensions of closed subspaces containddiin N &; anddom U N K; need

to be considered. Therefore, following Calkin, unitary relations are subdivided into
different types according to whethésm U N & anddom U N &; contain finite-
dimensional of infinite-dimensional closed subspaces, cf. (Calkin 1939a: Defini-
tion 3.5). Note that here the definition is stated only for unitary relations, but that
most statements that follow only make use of the structure of the domain of the
unitary relation and therefore also hold for certain isometric relations.

Definition 8.2. Let U be a unitary relation froM £, [-, ], } to {&, [-,-].} and let
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&7 [+]R] be a canonical decomposition ¢, [,-];}. ThenU is said to be of
type Il'if dom U N &7 anddom U N &; both contain infinite-dimensional closed
subspaces and ¢ype | otherwise. A unitary relatiol/ of type | is said to be of
type laif dom U N K] anddom U N K, contain both only finite-dimensional closed
subspaces and dfpe Ibotherwise.

The well-definedness of Definition 8.2, i.e. the independence of the type of a uni-
tary relation from the canonical decomposition, is not a priori clear. To prove this
Proposition 8.3 below suffices; it characterizes the introduced types of unitary re-
lations by means of closed neutral subspaces contained in their domain. Note first
however that ifU is a unitary relation with closed domain, thénis of type la if

and only if both defect numbers are finite, of type Ib if and only if precisely one
of the defect numbers is finite and of type Il if and only if both defect numbers are
infinite. Moreover, in that cadeer U has strongly equal defect numbers if and only

if ker U has equal defect numbers.

Note also that if Definition 8.2 is well defined, then Proposition 3.9 implies directly
that a unitary relatiort/ is of type la, Ib or Il if and only ifU~! is of type la, Ib

or Il, respectively. The same proposition also shows thét it a bounded unitary
operator from{ s, |-, -]s} to {Ry, [-,-]:} such thatlom U C ran U, thenU is of
type la, Ib or Il if and only ifUU;, is of type la, Ib or Il, respectively.

Proposition 8.3. LetU be a unitary relation from{ &y, |-, |1} to {82, [-,-]2}. Then

(i) Uisoftype llif and only if there exists a closed neutral subspace dom U
of {&, [, ]1} withn (£) = oo andn_(£) = oo such thatt*h C dom U;

(i) Uisoftype Ibif and only it/ is not of type Il and there exists a closed neutral
subspacet C dom U of {&, [, -]} with n(£) = oo andn_(£) < oo or
n. (L) < oo andn_(£) = oo such thatgell' C dom U;

(iii) U is of type la if and only if every neutral subspageof {8, [-,-];} with
g € dom U has finite defect numbers.

Proof. Since the characterizations can be proven by similar arguments, only the
equivalence in (i) is proven. First the sufficiency of the condition in (i) is proven,
which at the same time proves the well-definedness of Definition 8.2. Hence, let
£ C domU be a closed neutral subspace{di,,[-,-]:} with n (£) = co0 =
n_(£) such thattlh C dom U and let&[+]&; be a canonical decomposition

of {&,[,-]1}. Thenglh N &F and gHr N & are infinite-dimensional closed
subspaces contained dom U N & anddom U N K], respectively, i.e.[/ is of

type Il.
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Conversely, assume thétis of type Il and letR; [+]&; be a canonical decomposi-
tion of { &y, [+, -1 }, with associated fundamental symmetrysuch thatiom UN&;
anddom U N K] both contain infinite-dimensional closed subspaces. Moreover, let
M C dom U be a hyper-maximal semi-definite subspacé®f, -, -], }, see Propo-
sition 6.7, and w.l.0.g. assume tH#at is a hyper-maximal nonnegative subspace,
ie. MNjHM C K. ThenMH € M C dom U is a hyper-maximal neutral
subspace of &, ©; (M NjM),[,-]1}. Let K be the angular operator 6ftl+:
w.r.t. 87:

mih = {f~+Kf: f- e Promth = a7},

Now let ®; C domU N K, be an infinite-dimensional closed subspace, which
exists by the assumption thétis of type Il. Then, sincds is a unitary operator
from the Hilbert spac€&; , —[-, /|1 } to the Hilbert spacé&; ©, (MNj; M), [+, |1 },

K (D7) is aninfinite-dimensional closed subspacédaf U N (K] ©; (MMN;jIN)).
Consequentlyg := {f~ + Kf~ : f~ € & ©; D7 } is a closed neutral subspace
which satisfies the requirements, because by construction

gHlr — ¢ (MNjM) + D7 + K(D7) € dom U.

This completes the proof. ]

If dom U N & anddom U N K] contain both one vector, then the proof of Proposi-
tion 8.3 shows that there exists a closed neutral subspacedom U of {&, [-, |, }

with n, (£) > 1 andn_(£) > 1 such thatc'h C domU. This shows that the
number of maximal neutral subspaces contained in the domain of a unitary rela-
tion whose kernel has nonzero defect numbers is uncountable, see (Calkin 1939a:
Theorem 4.3 4.4).

If the defect numbers of the kernel of a unitary relatiérare different, then the
dimension of maximal closed subspaces containeldin U/ N & anddom U N &;
are different.

Lemma 8.4. LetU be unitary relation betweefRy, |-, -]: } and{R., |-, |»} and let
&7 [+]R] be a canonical decomposition ff;, [+, -]; } with associated fundamental
symmetryj;. If ny(kerU) > n_(kerU) or ny(kerU) < n_(kerU), then there
exists a closed subspa®y C dom UNAK; or closed subspac®; C dom UN K,
such thadim(D7) = n, (ker U) or dim(D7) = n_(ker U), respectively.

Proof. W.l.o.g. assume thater U = {0}, and thatdlom U is not closed, because
otherwise there is nothing to prove by the definition of defect numbers. Recall that,
sinceU is a unitary relation, there exists a hyper-maximal semi-definite subspace
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M = Mg, (MNj;9) of { &Ry, [-, |1} such thadlt C dom U, see Proposition 6.7.
If 91 is nonnegative, theft Nj; M C dom U N KT,

dim(&) = dim(9MH) + dim(MNj9M) and  dim(&;) = dim (M),
Similarly, if 9t is nonpositive, theft N j; M C dom U N Ky,
dim(&) = dim(9M*) and  dim(&]) = dim(9H) + dim(M N j9M).

These observations imply thatif, (ker U) # n_(ker U), thendim (9t N j; 9) >

dim (91 (note that here it is used thdtm(&) = co = dim(&; ), because
dom U is not closed). Sinc®t N j;9M is a closed subspace, the statement follows
from the above discussion. O

The difference between unitary relations of type | and Il can be characterized by
looking at the closed neutral subspaces contained in their domain. In particular,
Lemma 8.5 and Theorem 8.6 below give such type of sufficient conditions for a
unitary operator to be of type Il; note that these results are an extension of (Calkin
1939a: Lemma 4.%& part of Theorem 4.4).

Lemma 8.5. Let U be a unitary relation from{ &, [-,-];} to {8, [-, ]} and let
AT [+]R] be a canonical decomposition ¢, [+, -];}. Moreover, let¢ C dom U
be a closed neutral subspace{si;, [-,-]:}. Then

(i) if dom UNK; contains an infinite-dimensional closed subspacerand) <
oo, thendom U N & contains an infinite-dimensional closed subspace;

(ii) if dlom UNKS contains an infinite-dimensional closed subspacerand) <
oo, thendom U N K] contains an infinite-dimensional closed subspace.

Proof. Clearly, it suffices to prove only one of the two assertions. Hence, as-
sume thate C domU is a closed neutral subspace wiih (£) < oo and that

7 C domU N Ky is an infinite-dimensional closed subspace. Together the two
assumptions imply th&; N P; £ is an infinite-dimensional closed subspace con-
tained indom U N K, . Now let K be the angular operator fa&w.r.t. &;:

C={f +Kf :f ePrg}

Since,K is a closed isometric operator from the Hilbert spéég, —|-, -]: } to the
Hilbert space{&;, [-,-]:}, K maps®; N P, £ C domU N K&; onto an infinite-
dimensional closed subspacedofn U N & (becausel C dom U). l
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Theorem 8.6.LetU be a unitary relation betweefR,, [-, -];} and{Rs, [, ]2}, let
& [+]&] be a canonical decomposition @R, |-, -], } with associated projections
P;" and P;, and assume that there exist closed neutral subspac€sdom U and
£y C domU of {Ry, |-, |1} satisfying either of the following conditions:

(@) n(£1) < o0, dim (PFL; ©1Z) < oo, whereZ™ = P £, N P £,, and

ny (L) +dim (P2 61 7%) < ny (L) +dim (P €y 01 Z7);

(b) n_(£1) < oo, dim (P £161Z) < oo, whereZ~ = P; £, N P, £,, and

n_<£1) + dim (P1_£1 ©1 I_) < n_<£2) + dim (Pl_gg ©1 I_) .
Thendom U N & anddom U N K; contain infinite-dimensional closed subspaces.

Proof. To prove the statement it suffices to consider only the caseCthahd £,
satisfy (a). Hence, let the assumptions in (a) hold and denote the (closed) angular
operators of2; and£, w.r.t. & by K| and Ky:

Ci={fT+ K fr frePre} and L ={ft+Koft:ftecPe,).

ThenX := K,K; ' is a closed isometric operator in the Hilbert spé&e, —|[-, -, }
which, because of the assumptions in (a), satisfies

dim(dom X)*' < dim(ran X)** and dim(dom X)*' < oco.

This implies that there exists a finite-dimensional (closed) isometric extefSion
of X such thatdomY = K andranY # K. If ran(/ — Y’) does not contain
an infinite-dimensional closed subspace, thien Y is a compact operator, see
e.g. (Calkin 1939a: Lemma 3.1). Thereferer Y # K, implies by the Fredholm
alternative thaker Y # {0}. SinceY is an isometric operator in a Hilbert space,
this is impossible. Consequentiyin (I — Y') and, hence, alsen (I — X') contain
an infinite-dimensional closed subspace.

Next note that the assumptiofs C dom U and£, C dom U together imply that
ran (K; — K3) C dom U N K] and therefore

ran (I — X) =ran (I — KoK, ') =ran ((K; — K2)K;') CdomU N K;.

Consequently, the above arguments show that U N K, contains an infinite-
dimensional closed subspaces. In view of Lemma 8.5, this completes the proof.
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8.2 Unitary relations of type |

Now unitary relation of type la and Ib are considered. In particular, two characte-
rizations for them are given: First by means of the defect numbers of neutral sub-
spaces contained in their domain and, secondly, by specifying their block decom-
position. In order to prove the first mentioned characterization, it is shown that, as

a consequence of Theorem 8.6, closed neutral subspaces contained in the domain
(or range) of a unitary relation of type | have specific defect numbers.

Proposition 8.7. LetU be a unitary relation from{ &1, [, -]1 } to { R, [+, -]} of type
land letg; C dom U and £, C dom U be closed neutral subspaces{df,, [-,|:}
satisfying either of the following conditions:

(@) ni(£1) =n4(Lr) < occandn_(Ly) < oo;

(b) n_(£1) =n_(£s) < occandn,(£y) < co.
Thenn+(£1) = n+(£2) andn_ (21) =Nn_ (22)

Proof. W.l.0.g. only case (a) is considered. [t := P," £, N P;" £,, then the as-
sumptionn_(£,) < oo implies thatP;" £, ©, ZT is a finite-dimensional subspace.
SinceU is of type |, Theorem 8.6 implies that, (£,) + dim(P; £, ©, ZF) <
ny (L) +dim(Pf g, ©, Z%) < co. In particular,dim(P; £, ©, 1) < co. Us-
ing Theorem 8.6 once more (with; = £, and £, = £;) yields thatn, (£,) +
dim(P 21 61 Z7) <ny (L) +dim(P L6, Z7), €.

n+(£1) + dlm(PﬁSl S IJr) = n+(£2) + dlm(PﬁSQ S IJr)

The above equality together with the assumption thatl,) = n.(£;) < o
yields thatdim(P; £, ©, Z) = dim(P; £, ©, Z1). Clearly,

P1+£1 = (Pfr,ﬁl ©1 I+) D1 " and P1+£2 = (P1+£2 ©1 I+) D1 I". (81)

Sincen_(SQ) < oo and dlm(Pf_gg ©1 I+) = dlm(Pl—i_Sl ©1 IJr) < 00, (81)
implies thatdim(&] ©; Z*) < oo. This observation together with (8.1) and the
proven fact thatlim(P," £, ©, Z7) = dim(P, £, ©, I7) < oo yieldsn_(£,) =
n,(ﬁz). ]

In particular, Proposition 8.7 implies that in a separable Hilbert space each maximal

neutral subspace contained in the domain of a unitary relation of type | has the same
defect numbers, see (Calkin 1939a: Theorem 4.4). Next further properties of the

closed neutral subspaces contained in the domain of unitary relations of type | are
stated.
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Proposition 8.8. Let U be a unitary relation from{ &y, [-,-]:} to {Rs, [, ]2}, let
A [+]&; be a canonical decomposition ¢&;, [-,-|;} and, moreover, lefV;, :=
min{dim(dom U N K ), dim(dom U N K7 )}. If U is of type la, then there exists a
d € N such that either of the following two alternatives holds:

(al) for everyn € N, n < Ny, there exists a closed neutral subspdace dom U
with n(£) = n andn_(£) = n + d and, conversely, i£ C domU is a
closed neutral subspace and.(£) < oo or n_(£) < oo, thenn_(£) =
n (&) +d;

(a2) for everyn € N, n < Ny, there exists a closed neutral subspace dom U
with n(£) = n+ d andn_(£) = n and, conversely, i£ C domU is a
closed neutral subspace and (£) < oo or n_(£) < oo, thenn (£) =
n_(£) +d.

If U is of type Ib, then either of the following two alternatives holds:

(b1) for everyn € N, n < Ny, there exists a closed neutral subspace dom U
withn, (£) = n andn_(£) = co and, conversely, if C dom U is a closed
neutral subspace, then_(£) = oc;

(b2) for everyn € N, n < Ny, there exists a closed neutral subspace dom U
withn, (£) = oo andn_(£) = n and, conversely, it C dom U is a closed
neutral subspace, then, (£) = cc.

Proof. Let9t C dom U be a hyper-maximal semi-definite subspacés®f, |-, -], },
see Proposition 6.7, and w.l.o.g. assume fhais a nonnegative subspace, i.e.
M = M+ MmN &, Next letK be the angular operator @ftt w.r.t. &7

M = {f~+ Kf~: f- e P9 =8/7}.

SinceK maps closed subspacesdofin U N K, onto closed subspacesdfm U N
A&, becaus@nh C M C dom U, the closed subspad® N K] of dom U N K] is
finite-dimensional iU is of type la and infinite-dimensional & is of type Ib, see
Definition 8.2. Denote the dimension 9t N K] by d.

Clearly, there exists am-dimensional (closed) subspa®g of dom UN K, , where
n is as in the statement. Nowdefined as

L={f"+Kf :fere1D,}

can be easily seen to satisfy the first condition in (al) and (b1), beecaysy =
dim®; andn_(£) = dim(K (D;)) + dim(M N &) = dim D, + d. The second
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assertion in (al) follows from the first assertion together with Proposition 8.7. For
the second assertion in (b1) note that by the first assertion théseirUV N K,

can only contain finite-dimensional closed subspaces, see Lemma 8.5.USisice

of type Ib, that implies thaflom U N & must contain infinite-dimensional closed
subspace. Hence, Lemma 8.6 implies that£) = oo for any closed neutral
subspace which is contained in the domaid/obtherwisel/ would be of type II.

Similar arguments show that (a2) and (b2) hol@ifis a nonpositive subspacel]

In fact, from Lemma 8.15 below it follows that Proposition 8.8 yields a character-
ization of unitary relations of type la, but not of type Ib. Note also that Proposi-
tion 8.8 implies that ifU is a unitary relation of type I, thetl is of type la if and

only if there exists a closed neutral subspace in the domaihwith finite defect
numbers. As a further consequence of Proposition 8.8, a characterization of unitary
relations of type | with strongly equal defect numbers is obtained.

Corollary 8.9. LetU be a unitary relation from{ &, [+, -];} to { R, [, ]2} of type .
Then equivalent are:

(i) U has strongly equal defect numbers;

(i) there exists a closed neutral subspat& dom U of {8y, |-, -];} with finite
and equal defect numbers;

(iii) if £ C domU is a closed neutral subspace fof;, [-, -]:} withn, (£) < o
orn_(£) < oo, thenn, (L) =n_(L).

Proof. The equivalences are all a direct consequence of Proposition 8.8, because all
the conditions imply thal/ is of type la and thad in Proposition 8.8 is zero. [

Using Proposition 8.8, a block decomposition characterization of unitary operators
of type | can be obtained. That characterization shows that such unitary operators
are closely connected to compact operators, cf. (Calkin 1939a: Theorem 3.13).

Theorem 8.10.LetU be an isometric operator fro&y, [, -]1 } to { &y, [+, -]} and
let ), be a fundamental symmetry f;, [-,-]o}. ThenU is a unitary operator of
type la or Ib if and only if there exists a hyper-maximal semi-definite subspace
of {Ry, [, ]2} With dim (9 NjIMN) < oo, if U is of type la, ordim (M NjuM) = oo,

if U is of type Ib, a closed operatds in (the Hilbert space)Y M2, [j,-, -], } with
dom B = M2 = ran B andker B = {0} such thatB~' is a compact operator,



Acta Wasaensia 115

and a bounded unitary operator frofRy, [, ]:} to {Rs, [, ]} with domU C
dom U, such that
UU;l - TQ(B) D IEDTﬂjz,‘Jﬁ-

In particular, U has strongly equal defect numbers if and on®iin j,9t = {0}.

Proof. Clearly, U has the stated representation for a hyper-maximal semi-definite
subspacéent if and only if U is unitary, see Theorem 7.16. Therefore the first
statement is proven by observing tha®ifis hyper-maximal nonnegative, then

dom (UU; YN RS ={f+ijof +g: f € dom B andg € M N j,IM};
dom (UU; Y YN Ry = {f —jof : f € dom B},

and if 971 is hyper-maximal nonpositive, then

dom (UU; )N &Y = {f +jaof : f € dom B};
dom (UU; M YN Ry ={f —jof +g: f € dom B andg € M N j,M}.

Here &5 [+]RK; is the canonical decomposition ¢R,, [, -]»} corresponding tg;.
The above equalities show thitis of type | if and only ifdom B contains only
finite dimensional closed subspaces, i.e. if and onlgif is a compact operator,
see e.g. (Calkin 1939a: Lemma 3.1). Moreover, the same equalities shol that
is of type la or Ib if and only ifdim(9T N j,9) < oo or dim(MW N M) = oo,
respectively. This proves the first part of the statement.

The necessity of the condition in the last equivalence in the statement is clear by
definition, because Mt N j,9M = {0}, thenU, ' (j,9M) is a hyper-maximal neutral
subspace of Ry, |-, -|1} which is contained in the domain 6f. Conversely, assume
that U has strongly equal defect numbers &ntin j.9 # {0}. Then by the
proven decompositiod/, ! (M+)2) C dom U is a maximal neutral subspace of
{Ri1, [, -]1} which is not hyper-maximal neutral. Hence, Corollary 8.9 implies that
U does not have strongly equal defect numbers, which is in contradiction with the
assumption. ]

Note that ifU is a unitary operator of type | arffit; and9i, are two subspaces
such that the decomposition in Theorem 8.10 holds with respect to them, then
Proposition 8.7 implies thatim (9%, N j2M;) = dim (M, N j2M,). Furthermore,

if U is an unbounded unitary operator of type la, then Theorem 8.10 shows that
ny(kerU) =n_(ker U). If U is an unbounded operator of type Ib, them U need

not have equal defect numbers as the following example illustrates.

Example 8.11.Let B be an everywhere defined compact operator in the separable
(infinite-dimensional) Hilbert spacgh, (-, )} with ker B = {0} andran B = .
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Moreover, letU; be a unitary operator in the Hilbert spaf#., (-,-)} and define
[-,-]on & := 9% x H by

{5 755" e, 9 9" =il ) = (F 9] + (7 9"),

wheref, f', 9,4 € Handf” ¢" € H. Then{R, [-, ]} is a Kran space, cf. Exam-
ple 2.1. W.r.t. the decompositigh x $ x H of K defineU as

Bt 0 0
U=| 0 B* 0
0 0 U,

ThenU is a unitary operator ig R, |-, -]} with ker U = {0} and
ny(kerU) =dim($) and n_(kerU) = dim($) + dim(H). (8.2)

Now Theorem 8.10 implies that is a unitary operator of type Ib if and onlyH is
infinite-dimensional. Combining this with (8.2) shows tliats a unitary operator
of type Ib withn (ker U) = n_(ker U) if oo = dim(H) < dim($)) and thatU/ is a
unitary operator of type Ib with (ker U) < n_(ker U) if dim(H) > dim($).

Remark 8.12. Example 8.11 shows, in light of Lemma 3.11, that for every neutral
subspace in a Kréin space &y, |-, -1} with defect numbers, (£) = X, = n_(£)
there exists an (unbounded) unitary operdtoof type 1) from {8, [-,-]:} to
{Ra, [, ]2} such that¢ = ker U and that there does not exist a hyper-maximal
neutral extension of which is contained in the domain 6f, cf. Corollary 7.29.

8.3 Unitary relations of type Il

In this section two classes of unitary relations of type Il are studied: Those with
strongly equal defect numbers and those without strongly equal defect numbers.
As in the preceding section, two characterization of these classes of unitary rela-
tions are given: First by means of the defect numbers of closed neutral subspaces
contained in their domain and, secondly, by specifying their block representation.

Proposition 8.13 below gives a characterization of unitary relations of type Il with
strongly equal defect numbers among other things in terms of the closed neutral
subspaces contained in their domain.

Proposition 8.13. Let U be a unitary relation from{ &, [-,-]:} to {&,, [-, ]»} of
type Il, letj; be a fundamental symmetry @&, [-,-];} and let&; [+]&; be the
associated canonical decomposition{df;, [-, -] }. Then equivalent are:
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() U has strongly equal defect numbers;

(i) for everyn, € N there exists a closed neutral subspate_ dom U such
thatn (£) =nyandn_(£) =n_;

(ii) there exists a closed neutral subspate& dom U of {&y, [, -]} with finite
defect numbers;

(iv) there exist closed neutral subspacgés C domU and £, C domU of
{R1, [, 1} withn (£1) < coandn_(£;) < o0;

(v) for every closed subspac@, C domU N K] and every closed subspace
D7 € dom UN K there exists a closed subspa®g, C dom U N K] and a
closed subspac®;, € dom U N & such thatdim(®}) = dim(®;,) and
dim(D7) = dim(@fa);

(vi) for every hyper-maximal semi-definite subsp@@eC dom U there exists a
closed subspac®; C dom U N & and a closed subspa&@; C dom U N
£A] such thadim(M Nj; M) < dim D] anddim (M N j;9M) < dimD; .

Proof. (i) = (ii): If U has strongly equal defect numbers, then there exists a hyper-
maximal neutral subspaé® C dom U of {&y,[-,:]:}. Let K be the angular op-
erator of M w.r.t. & M = {fT+ KfT : ft € & }. ThenK is a unitary op-
erator from (the Hilbert spacd)&;, [-,-]:} onto (the Hilbert space)f;, —|[-, ]:1}-
SinceU is of type Il, there exists an infinite-dimensional closed subspceC
dom U N & and, hencep; = K(D]) C dom U N K; is an infinite-dimensional
closed subspace of the same dimensio®as For everyn. € N there exists a
closed isometric operatdr from (the Hilbert space]®7, [, ]} to (the Hilbert
space){®;, —[-,-]i} such thatdim(dom V)t = n_ anddim(ranV)*+ = n,.
Hence,£ defined as

C={f"+Kfr:ffeffed +{fr+Vvf:fedomV}
is a closed neutral subspace containeddm U with ny (£) = ny.
(ii) = (iii)) = (iv): These implications evidently hold.

(iv) = (v): Let® be a closed subspace&fm U N & and w.l.o.g. assume that
D7 is infinite-dimensional, because otherwise by the definition of type Il there is
nothing to prove. Moreover, lef, be a closed neutral subspace as in (iv) and let
K be its angular operator w.r.t&: £, = {f* + Kf* : f*: P/£,}. Since
n_(£5) = n_ < oo, ®f Ndom K is a subspace with the same dimensiorbgs
which is mapped onto a subspa@g,, of &, of the same dimension, becauses a
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closed isometric operator between Hilbert spaces. More@vef,C dom U N &,
becausel, C dom U. Since a similar reasoning can be used for subspageas
in (v), this shows that (v) holds.

(v) = (vi): This is evident from the fact that eithéR N j; 9t C dom U N & or
MNjIM C domU N K.

(vi) = (i): Let 9t C dom U be hyper-maximal semi-definite, see Proposition 6.7. If
Mt is hyper-maximal neutral, then there is nothing to prove. Hence, w.l.0.g., assume
that 91 is hyper-maximal nonnegative, th&@y := M N ;9 C dom U N K] is

a closed positive definite subspace{s%;, [, -];} and Ot is a hyper-maximal
neutral subspace dff; ©, @7,[,-]:}. Let K be the angular operator 6ftl*1

w.rt. & 6 D

gﬁ[J_]l _ {er —i—Ker . f+ c meu‘]l}-

ThenK is a Hilbert space unitary operator frgf®; ©,D7, [-, -]} to { &, — [, |1 }-
Now by assumption there exists a closed subspace C dom U N & such that
dim(®7,) = dim(D7), if dim(D}) = oo, or D7, is infinite-dimensional, i is
finite-dimensional (note that here the fact thats of type Il is used). Sincé& is

a Hilbert space unitary operat@; , := K~ '(D1,) € domU N (& © DY) is an
infinite-dimensional closed subspace with the same dimensi@n asHence, by
construction® +97, C dom UNKY is a closed subspace of the same dimension
as®;, € domU N K. Now letU, be any Hilbert space unitary operator from
{7 +97,, [, -1} onto{D7,, —[-, ]1}. Theng defined as

C={fT+Kf: ffefRfo®@ +D/ )} +{fT+Uf": ffeDf +D7,}

is by construction a hyper-maximal neutral subspace sucltthatiom U. O

The sixth characterization in Proposition 8.13 implies that in the separable case the
concepts of strongly equal defect numbers and equal defect numbers coincide for
unitary relations of type Il. Recall that for unitary relations of type I this is not true,
see e.g. Example 8.11.

Corollary 8.14. LetU be a unitary relation from{ &y, [-,]1} to { &, [-, -]} of type
[l and assume that, (ker U) = Xy = n_(ker U). ThenU has strongly equal defect
numbers.

Proof. Recall thatlom UN & anddom UNK; contain infinite-dimensional closed
subspaces, becaugeis of type Il. Hence, the statement is a direct consequence
of the characterization (vi) in Proposition 8.13 together with the assumption that
ny(kerU) = n_(kerU) = N,. O
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The following statement shows that unitary relations of type Il which do not have
strongly equal defect numbers have the same kind of closed neutral subspaces in
their domain as those of type Ib.

Lemma 8.15. LetU be a unitary relation from{ &, [+, -]:} to {&,, [-, -]} of type I
which does not have strongly equal defect numbers. Then either of the following
two alternatives holds:

(a) every hyper-maximal semi-definite subspace contained in the dom@iisof
nonnegative, for every, € N there exists a closed neutral subspate_
dom U such thatn(£) = ny andn_(£) = oo, and if £ C domU is a
closed neutral subspace, then(£) = oc;

(b) every hyper-maximal semi-definite subspace contained in the domdirsof
nonpositive, for every._ € N there exists a closed neutral subspate_
dom U such thatn_(£) = n_ andn,(£) = oo, and if £ C domU is a
closed neutral subspace, then(£) = co.

Proof. Letj; be a fundamental symmetry éfi, [-,-]:}, let & [+]&] be the as-
sociated canonical decomposition ok, |-, -], } and recall that the domain &f
contains a hyper-maximal semi-definite subspgatesee Proposition 6.7. Assume
thatt is hyper-maximal nonnegative, i.81 N j;9 C dom U N K. Thendlh

is a hyper-maximal neutral subspace{@f, ©; (9 Nj; M), [-,-]:} and

grU, = gr U N (M N300 s (U9 n o)) )

is a unitary relation from the Kia space{&; N (9 Nj; M) [, ], } to the Krén
space{&; N (UM N j; o)) [, ],}, see Corollary 3.14, with strongly equal
defect numbers. Hence, Proposition 8.13 implies that for envery. € N there
exists a closed neutral subspage_ dom U, of {&; ©; (MM N j19M), -, -]} such
thatn (£) = n, andn_(£) = n_. Now £ considered as a subspace{@f, [-, -]: }
has the defect numbers_(£) = n, andn_(£) = n_ + dim(9M N j;9M) = oc.
Note that herelim (90t Nj; M) = oo, becausé’ does not have strongly equal defect
numbers, cf. Proposition 8.13. Finally, sinee(9t4) = 0, Proposition 8.13 (iv)
implies thatn_(£) = oo for every closed neutral subspa€eC dom U. This, in
particular, implies that every hyper-maximal semi-definite subspace contained in
the domain ofU is nonnegative.

The above arguments show that alternative (a) hoftitifs hyper-maximal non-
negative. Similar arguments show that alternative (b) holfl8 is hyper-maximal
nonpositive. L
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The following two statements contain a characterization of unitary operators of type
Il in terms of their associated diagonal block representation.

Theorem 8.16.LetU be an isometric operator frof’y, [, -]1 } to {Ro, [+, -]2} and

let j» be a fundamental symmetry éR,, [-,-]o}. ThenU is a unitary operator

of type Il with strongly equal defect numbers if and only if there exists a hyper-
maximal neutral subspac®t of {R,, |-, ]»}, a closed operatoB in the Hilbert
space{M, [j2-, -]»} with dom B = 9 = ran B andker B = {0} such thatB—" is

a noncompact operator, and a bounded unitary operafpfrom {&, |-, -]:} onto

{Ra, [, ]2} withdom U C dom U, such that

UU = Ty(B).

Proof. If U has the indicated representation, tléns clearly a unitary operator

with strongly equal defect numbers, because the hyper-maximal neutral subspace
U ' (j29M) is contained in the domain @f. FurthermoreX,(B), and hence also

U, is not of type |, becausB~! is not compact, see Theorem 8.10.

Conversely, assume thétis a unitary operator and w.l.0.g. assume thatU =

{0} and let&;[+]&; be the canonical decomposition ¢f;, [, ];} associated

with the fundamental symmetry of {&;,[-,-];}, for « = 1,2. Moreover, re-

call that by Proposition 7.25 there exists a hyper-maximal semi-definite subspace
£ C domU of {&y,[-,-]:} such thatU(£) is a hyper-maximal semi-definite sub-
space of R, [-, -2 }. W.L.o.g. assume that = £ 4 (£Nj; £) is hyper-maximal
nonnegative, i.e£ Nj £ C domU N K. Now let K be the angular operator of
gl C gwirt. to &/

gl — {4y Kt fte prglth — gf o, (£n1,8)).

SinceL Nj £ C dom U N &, U is of type Il and has strongly equal defect num-
bers, there exists a closed subspageC dom U N K] such thatdim(®D; ) = oo,

if dim(£NjL) < oo, ordim(®;) = dim(L£ Nj L), if dim(£ Nj L) = oo, see
Proposition 8.13. Since the angular operators a closed isometric operator be-
tween Hilbert spacedy (D7) C domU N K is a closed subspace of the same
dimension a®; . Hence®{ := K~ 1(D]) + £Nj; £ C domU N K is a closed
subspace of the same dimensiorggs

Consequentlyg, = £n (D] + D) is a closed neutral subspace with defect
numbersy, (£,) = dim(D]) = dim(D;) =n_(£,) and

2}]1 =L, 09§D =L£+D] CdomU.

Recall that by assumptiofy (£) is a hyper-maximal nonnegative subspace and
that U (D7) is a closed uniformly definite subspace by Proposition 3.9. Hence,
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Uty = U(8)+U(Dy) is closed, because, clearty] (£))*2 + (U(D )2 =
o, see Lemma 2.2. Moreover, sindéL) is by assumption a hyper-maximal semi-
definite subspace contained in the rangé& pbne has
U(QLLh)[l]z =U(L+ @*)[le

=UQ)Hnyu@®;)Hk
(g[ih) N U(@;)[L]Q
(e NU @72 nranU
( nU(
( [

g (®7)H Ndom U)
cHhin@p)HY) = U(e,).

U
U
U
U

SinceU( [”1) = U(£) + U(D7) has been shown to be closed, the above calcula-
tion implies thatl/(£,) is closed and that’ (£5) = U(£,)2, i.e. U(L,)L2 =

Ug,) + U®]) + U(®7). From these observations it follows that any hyper-
maximal neutral extension of,, which exists becauséim(®;) = dim(D;),

is mapped onto a hyper-maximal neutral extension of the closed neutral subspace
U(£,). Consequently, the stated representation holds by Theorem 7.16. [J

Using the above characterization for unitary operators of type 1l with strongly equal
defect numbers, one can easily obtain a characterization for unitary operators of
type Il without strongly equal defect numbers.

Corollary 8.17. LetU be an isometric operator frofRy, |-, -]1} to {&s, [+, -]»} and

let j, be a fundamental symmetry of,, [-,-]2}. ThenU is a unitary operator of
type Il without strongly equal defect numbers if and only if there exists a hyper-
maximal semi-definite subspa@® of {&,, [, ]o} such that eitherdim(D;) <

dim (9 N j,9) for every closed subspac@] of ranU N &, or dim(D;) <

dim (9tNj. M), for every closed subspa@®, of ran UNK;, a closed operatoB in

the Hilbert spacg M2, [i5-, -], } with dom B = M2 = ran B andker B = {0}

such thatB~! is a noncompact operator, and a bounded unitary operatofrom
{R1,[-,-]1} onto{ Ry, [, ]2} withdom U C dom U, such that

UU,;1 = T5(B) ® Iomnj,m.

Proof. W.l.o.g. assume thater U = {0}, then by Proposition 6.7 there exists a
hyper-maximal semi-definite subspa®® C ranU in {Ry, [, ]2}. Now D, :=

M N j2 is a closed uniformly definite subspace{sf,, |-, -]»} and, hence®, :=
U~ (9 Nj9M) is a closed unlformly definite subspace{df,, -, ], }, see Proposi-
tion 3.9. Thereforel/ andU defined via

grU=grUN(®; xD,) and grl =grUn (& NnDM x &, n D)
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are a standard unitary operator frd®,, [-, -1} to {D,, [, ]2} and a unitary op-
erator from{&; N D" [, -]} to {& N D52, [-,-]o} with strongly equal defect
numbers, respectively, see Lemma 3.13 and Corollary 3.14. Therefore the repre-
sentation in the statement can be obtained via Theorem 8.16. Finally, the conditions
on the dimension of)t N j,21 are a direct consequence of the fact thiadoes not

have strongly equal defect numbers, cf. Proposition 8.13.

Conversely, iU has the indicated representation, then by Theorem(8.is®f type
Il and the assumptions on the dimensiordBifN j,Mt imply that U !, and hence
alsoU, does not have strongly equal defect numbers, see Proposition 8.13.]

Combining some of the above results it is possible to characterize when a unitary
relation has strongly equal defect numbers in the general case.

Corollary 8.18. LetU be a unitary relation from{ &, [-, -]1} to {Rs, [-,-]2}. Then
equivalent are:

() U has strongly equal defect numbers;

(i) there exists a closed neutral subspate& dom U in {&y, [+, -]: } with finite
and equal defect numbers;

(iii) there exists a hyper-maximal neutral subsp&gein {8, [-,]»}, a closed
operator B in the Hilbert space{9n, [j;-, -]»} with dom B = 9t = ran B
andker B = {0}, and a bounded unitary operatdf, from {f&, |-, -]} onto
{R, [, ]2} withdom U C dom U; such that

UU = Ty(B).

Proof. (i) < (ii): If U has strongly equal defect numbers, then by Definition 8.1,
there exists a hyper-maximal neutral subspgce domU, i.e., (ii) holds. Con-
versely, if (i) holds, andJ is of type | or Il, thenU has strongly equal defect
numbers by Corollary 8.9 or Proposition 8.13, respectively.

() < (iii): If (i) holds, then there exists a representation as in (iii) by Theorem 8.10,
if U is of type I, or by Theorem 8.16, if is of type Il. Conversely, if (iii) holds, then

U 1 (j29M) is a hyper-maximal neutral subspace{,, [-, -], } which is contained

in the domain of. []
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9 SUMMARY

In order to obtain more insight into the properties and structure of unitary relations,
broadly speaking two approaches, and their interaction, to unitary (and isometric)
relations were presented in this dissertation. In the first approach the behavior of
unitary (and isometric) relations with respect to uniformly definite subspaces was
considered and in the second approach the behavior of unitary (and isometric) rela-
tions with respect to hyper-maximal semi-definite subspaces was considered. These
approaches were used to understand the difference between isometric and unitary
relations and, secondly, to investigate their essential mapping properties.

Weyl identity approach

In the first approach, presented mainly in Chapter 5, it was shown that unitary
relations are characterized by their behavior on uniformly definite subspaces and
that this characterization can be expressed by means of the Weyl idenfityis If
unitary relation from{ &y, [-, -]1} to {Ra, [, -]2}, then this identity is given by

U(domU N &) = U(dom U N &y )2, (9.1)

As a consequence of this identity, a known quasi-block representation for unitary
operators can be obtained. That representation was shown to be extendable to the
case of maximal isometric operatoiig:is a maximal isometric operator if and only

if there exists a unitary operatéf, with ker Ux = {0} and a maximal isometric
operatorV; with closed domain ankler V; = ker VV such that

V = UxVi. (9.2)

Note that if (9.2) holds, thelr is a unitary operator if and only i; is a unitary
operator. Since isometric operators with a closed domain have a relatively simple
geometrical behavior, (9.2) implies that certain properties of unitary operators (or
relations) also hold for maximal isometric relations.

The representation in (9.2) shows that in general (maximal) isometric operators (or
relations) can not be characterized by the Weyl identity (9.1), because that repre-
sentation implies that there exist maximal isometric operators (or relafioearh
thatdom V' N & = {0} ordom V N K] = {0}. In fact, it can be shown that there
exist (non-maximal) closed isometric operatdfswith dense domain and range
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such thadom V N & = {0} = dom V N &;. l.e., isometric relations can in gen-

eral not be completely understood by considering only their behavior with respect
to uniformly definite subspaces. An exception to that case is provided by isomet-
ric operators whose domain is dense and contains a hyper-maximal semi-definite
subspace.

This Weyl identity approach to unitary relations was also used to give, based on the
work of J.W. Calkin, an expression for the defect numbers of the pre-image of a
neutral subspace under a unitary relation. Therein it was essential to compare the
angular operators of the subspace with the angular operatbiglofn U N &) and
U(dom U N K ). In particular, in that way conditions for the pre-image of a neutral
subspace under a unitary relation to be (hyper-)maximal neutral were obtained

Block representation approach

Secondly, the behavior of unitary (and isometric) relations with respect to hyper-
maximal semi-definite subspaces was investigated. In Chapter 6 a graph decom-
position characterization of unitary relations was presented, extending a domain
decomposition result of J.W. Calkin (1939a). That graph decomposition implied,
in particular, that the domain and range of a unitary relation always contain a hyper-
maximal semi-definite subspace. Note that by means of a simple example it was
shown that there exist densely defined (maximal) isometric relations whose do-
mains do not contain a hyper-maximal semi-definite subspace, see Example 5.10
and the discussion following it.

In the same chapter also some implications of the existence of a hyper-maximal
semi-definite subspace in the domain of an isometric relation were presented, but,
more importantly, the already mentioned graph decomposition was combined with

the Weyl identity approach to obtain necessary and sufficient conditions for an iso-

metric relation to be unitary and to give characterizations for the pre-image of a

neutral subspace to be (essentially) hyper-maximal neutral.

Using the above mentioned graph decomposition of unitary relations, in Chapter 7
the main contribution of this dissertation to the understanding of (unbounded) uni-

tary relations was presented. Namely, there it was shown that unitary operators
can be represented by means of operator block matrices. More specifically, it was
shown that unitary operators can be written as the composition of bounded uni-
tary operators, whose mapping behavior is easily understood, and two types of
unitary operators which have a simple block structure and reflect the possibly un-
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bounded behavior of unitary operators. Those latter unitary operators are the so-
called archetypical unitary operators, see Chapter 4.2. Foria Kpace( R, |-, -]}

with fundamental symmetry which contains a hyper-maximal neutral subspace
M, these archetypical unitary operators have w.r.t. the decompoSitient of

R the block representation
I B
. ; ‘ 0_ e (9.3)
WK 1 0 jB™
where K is a selfadjoint operator K90, [j-, -]} and B is a closed operator it
with dom B = 9t = ran B andker B = {0}.

Using the above mentioned representations for unitary operators simple proofs were
obtained for the main results from (Calkin 1939a), see Section 7.4. Moreover, in
Chapter 8 it was shown that the classification of unitary operators occurring in
(Calkin 1939a) can be characterized by the type of the opefatgpearing in the
archetypical unitary operator, see (9.3), which characterizes the unitary operator.
Note that in Chapter 8 also new characterizations and properties of the classifica-
tion of unitary operators from (Calkin 1939a) were presented and that most of the
statements proven in that chapter can directly be generalized to the case of isometric
relations which have a hyper-maximal semi-definite subspace in their domain.

Another manner in which archetypical unitary operators, and their compositions,
were used, was to give elementary examples of the behavior of unitary relations.
For instance, it was shown that a unitary relation may map a hyper-maximal neu-
tral subspace onto a neutral subspace with essentially arbitrary defect numbers and
that the domains of unitary relations can not be distinguished from the domains
isometric relations. l.e., isometric and unitary relations can only be distinguished
by their graphs (action). The block representations were also used to give different
necessary and sufficient conditions for an isometric relation to be (extendable to)
a unitary relation and, moreover, it was shown that they can be used to investigate
when the composition of a unitary and an isometric relation is (extendable to) a
unitary relation.

The above indicated block representation approach was not limited to the inves-
tigation of unitary operators. Namely, it was also shown that isometric operators
whose domain contains a hyper-maximal semi-definite subspace which is mapped
by the isometry to a subspace which is extendable to hyper-maximal semi-definite
subspace, can be represented as the composition of bounded unitary operators and
isometric operators having a block representation as in (9.3). That showed that such
isometric operators, which are the abstract equivalent of the class of quasi-boundary
triplets, see (Behrndt Langer 2007), are closely related to unitary relations.
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A BOUNDARY TRIPLETS

Here it is shortly illustrated how the results obtained for isometric and unitary re-
lations can be applied to the different types of boundary triplets appearing in the
literature, see e.g. (Behrndt Kreusler 2007; Behrndt: Langer 2007; Derkach
1995; Derkach& Hassi 2003; Derkach et al. 2006; 2009; Derkd&civalamud
1991; 1995; Mogilevskii 2006; 2011). Therefore in the first section some basic
results on symmetric relations in Krespaces are recalled. In the second section
the various notions of boundary triplets occurring in the literature are recalled and
it is shown how they are connected to each other by archetypical isometric oper-
ators. In the third section this connection between the various types of boundary
triplets is lifted to their Weyl functions. Finally, in the fourth section an application
of the composition results obtained in Section 7.5 is presented. Namely, there it is
shown that the results on boundary triplets for intermediate extensions of symmet-
ric relations in a Hilbert space presented in (Derkach et al. 2009: Section 4) remain
without change valid in the Kfa space setting.

A.1 Preliminaries for boundary triplets

The definition of symmetric and selfadjoint relations in Krepaces are recalled

and those relations are via their graph connected to neutral and hyper-maximal
neutral subspaces of a Knespace. Moreover, hyper-maximal nonnegative and
nonpositive subspaces are shown to be interpretable as a special type of maximal
dissipative or accumulative relations, respectively, and, finally, some statements on
defect subspaces of relations are presented.

Symmetric relations in Krein spaces:A relation S in { &, [-, -]} is calledsymmet-
ric or selfadjointif
Scsk o or §=5M

respectively. A symmetric relation is calledaximal symmetrid it has no sym-
metric extensions. For a symmetric relatiin {&, [, -]}, the notatiordt, (S™) is
used to denote its defect spaces:

M(SH) = {{f, Ao} s fo € M(SH) i=ker (ST =N}, AeC. (A1)
Note that (2.6) implies that for a symmetric relatién

ker S C ker S™ = (ran $))  and mul S € mul S = (dom S)H.  (A.2)
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In particular, the adjoint of a densely defined symmetric operator is an operator.

For a Krén space( &, |-, -]} define the operatgy on &2 as

io{f, [y == 1} (A.3)

Clearly, ifj is a fundamental symmetry R, [-, -]}, thenjg(j x j) = (j X j)ja. As a
consequence of this observation it follows tR&F, [j«-, |} is a Krdn space. This
introduced Krén space can be used to connect symmetric and selfadjoint relations
to neutral and hyper-maximal neutral subspaces, respectively.

Proposition A.1. Let{R, |-, -]} be a Kran space, lejs be as in(A.3) and let< | >
denote the orthogonal complement of a subspac& af.r.t. [js-,-]. Then for any
relation # in {&, [-, -]}

(gr H)$Y> = gr AV,

In particular, S is a (closed, maximal) symmetric or selfadjoint relatiod @& |-, |}
if and only ifgr S is a (closed, maximal) neutral or hyper-maximal neutral subspace
of {&2, s, -]}, respectively.

Proof. Since the final statements follow essentially frog H)<+> = gr H,
only that equality will be proven. By definitiofif, f'} € (gr H)<+> if and only if

0="[alf. f} 9. g =[{=F f}.Ag. 9 =1i(f.dT—[f 9],

for all {g,¢'} € gr H. By definition this implies tha{ f, f'} € (gr H)<+> if and
only if {f, f'} € gr H. O

Next recall that there exists a direct connection between symmetric relations in
Hilbert spaces and symmetric relations in Krepaces by means of a fundamental
symmetry of the Krin space, see (Behrndt et al. 2011a).

Proposition A.2. Letj be a fundamental symmetry R, [-, -]} and let{$, (-,-)}
be the Hilbert spac€R, |j-,-]}. ThenU; defined as

ULL [y =Afif}, f.feR

is a standard unitary operator from the Kirespace{ &2, [j«-, -]} to the Krén space
{92, (is*, ) }. Moreover, ifK is a relation in& and H is the relation in§ such that
gr H = Uj(gr K), then

U(gr Ky = gr H*.

In particular, U; establishes a bijective correspondence between the (closed, max-
imal) symmetric and selfadjoint relations #R, |-, -]} and the (closed, maximal)
symmetric and selfadjoint relations {M, (-, -) }, respectively.
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Using Proposition A.2 the defect numbers of a symmetric relation the Kran
space{R, |-, -]} are defined to be the defect numbers of the symmetric rel&jpn
defined viagr S, = Uj(gr S), in the Hilbert spacé &, |j-, -]}, see (A.6) below.

Symmetric relations in Hilbert spaces: Next shortly the main difference between
symmetric relations in Kii@ spaces and Hilbert spaces is recalled. Namely, in the
Hilbert space case the defect spaf:ess*) of the symmetric relatiof§' are, outside

the real line, uniformly definite whilst in the Kie space case they are in general
not. In particular, for a Hilbert space, (-, -)}, definest = {{f,\f}: f € o}
and$, = {{f,\f} : f € 9}, for A € C,. Then a direct calculation shows that
9T + 9 is a canonical decomposition 2, (js-, -)}. Evidently, for a symmetric
relationS in {9, (-,-)}

M(S*) =grS*NHT and N(S*) =grs NH;, reC,. (A.4)

Observe also thab;” + $; is the canonical decomposition 62, (j4-, )} corre-
sponding tg as in (A.3). The above observations together with Proposition A.1
and (2.4) shows that for a symmetric relatism {$, (-, -)} the first von Neumann
formula holds:

gr 5% = gr S+, (S*)EN;(5%), A e Cy. (A.5)
The defect numbers. (S) andn_(.S) for S are in this case defined as usual:

n,(S) = dimM;(S*) and n_(S) = dimM,(S*), e C,. (A.6)

Defect subspaces and dissipative relationgRecall that Proposition 2.20 implies
that a relationA is a (closed, maximal) dissipative or accumulative relation if
and only ifgr A is a (closed, maximal) nonnegative or nonpositive subspace of
{82 [ia-, -]}, respectively. As a generalization of these concepts, a dissipative or
accumulative relatiom is calledhyper-maximal dissipativer hyper-maximal ac-
cumulativef gr A is a hyper-maximal nonnegative or nonpositive subspace, respec-
tively. Proposition A.3 below contains a property of hyper-maximal dissipative and
accumulative relations in the Hilbert space case.

Proposition A.3. Let A be a hyper-maximal dissipative (accumulative) relation in
the Hilbert space $, (-,-)}. Then

() C- Cp(A) (Cs C p(A));

(i) ran(A—)\)=9Hforhe C, (\eC.).
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Proof. For A € C, defineP, on ©* as P {f, [} = 5{N — /AN — 1)}
Then a direct calculation shows that

ker P = {{f,\f}: fe®H} and ranP, = {{f, \f}: f€H}.

Moreover, with$)| := ker P, and$; :=ran P, 1 + ) is a canonical decom-
position of{$?, (js-, -)} with associated projections— P, = P; andP,.

Now assume w.l.0.g. that is a hyper-maximal dissipative relation, i.er A is

a hyper-maximal nonnegative subspace{6f, (j-,-)}. ThenP*(gr A) = &,
P~ (grA) = & and P~ ((gr A)<+>) = P~(gr A*) = &~ for any canonical de-
compositionR™ + &~ of {H?, (-, -)} with associated projection3™ and P~, see
Section 2.2. Hence, by taking™ and &~ as$H{ and$; as above, the aforemen-
tioned conditions become:

{r.Af}: fent =ranPy=PrgrA={{f Af}: f €ran(A -V}
UMY feny=ran Py = Pagr A= {{f,A\f}: f €ran (A - \)};
A} fe9)=ran P, = Pxgr A* = {{f,\f}: f €ran (A" — \)}.

In other wordsyan (A — \), ran (A — \) andran (A* — \) = (ker (A — X))t are
all equal to$y. This shows that the statement holds. l

In particular, by means of the canonical decomposition in the above proof it follows
that if A is a hyper-maximal dissipative or accumulative relation, then

grA=grA*+ ‘ﬁA(A), AeC,, or grA=grA*+ ‘?I)\(A), AeC_,
respectively, see Proposition 2.9 (iii).

Next a special case of Proposition 2.13 is presented, which in particular shows
that if a relation extends a hyper-maximal dissipative or accumulative relation in

a Hilbert space, then the graph of the extension can be decomposed with respect
to the dissipative or accumulative relation. Note further that the first assertion in
Corollary A.4 also follows easily from direct arguments; see e.g. (Hassi et al. 2007:
Lemma 1.4).

Corollary A.4. Let H and A be relations in{ &, [-, -]} such thatA C H. Then
ran (H — \) =ran (A — X) ifandonlyif grH =grA+M(H), \eC.

Furthermore, ifp(A) N (C\ R) # 0, then forA € p(A) N (C\ R) the following
statements hold:

(i) H is closed if and only i, (H) is closed:;
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(i) M\(H) is dense iMty(clos H).

Proof. For A € p(A4) N (C\ R) define the projectio®, on &% as P\{f, '} =
A%X{Af—f’,X(Af—f’)}. Then a direct calculation shows that P, = {{f, \f} :
f € R} andran P, = {{f,\f} : f € &} and thatR? = ker P, < + > ran P,
i.e. P, is an orthogonal projection in the Kirespace{ &2, [js-, -] }. Moreover,

PygrA={{f,Af}: fe€ran(A— N}
(1 — P)(gr A< = Pyfar AM) = {{£,Af} - € ran (44 — %)},

see Proposition A.1. Since by assumptiore p(A), the above equalities imply
that P\(gr A) = ran Py and(I — Py)(gr A)<+> = ker P,. Hence, the statement is
now a direct consequence of Corollary 2.14. O

Next it is shown how the defect subspacestbfare holomorphically connected,

cf. (Derkach et al. 2006: Proposition 4.1). In particular, this observation explains
why the Weyl function of a (quasi-)boundary triplet is a holomorphic function, see
Section A.3,

Lemma A.5. Let H and A be relations in{ &, [-, -]} and let\, u € C. Then
MA(H) CgrA+M,(H) <= IM(H)C I+ (A= p)(A—XN""N,(H).
In particular, gr A + M\ (H) = gr A + ‘YIM(H) if and only if
MA(H) = (I + (A — w)(A— NN, (H).

Proof. Assume thadt,(H) C gr A + ‘ftM(H), then for everyf, € 9,(H) there
exists anf,, € 9M,(H) such that

{f/\ - fﬂ’)‘fA _:ufu} = {f/\v)‘f/\} - {f,ua,ufu} € grA.

le, {fx = fus (A — ) fu} € gr (A —A) or, equivalently{(A — u) fu, fr — fu} €

gr ((A—X)~1). From this the inclusioM(H) C (I + (A — pu)(A = X) YN, (H)

follows (note that A — \)~! need not be an operator). The converse implication

in the first equivalence can be proven by reversing the above arguments and the
second equivalence follows from the first equivalence by symmetry. ]

In particular, ifU is an isometric relation frofi$?, (js-, )} to {H?, (i»-, )}, S and
T are the relations such thgt S = ker U andgrT" = dom U, and there exists a
hyper-maximal dissipative relatioa such thats C A C T', thenA* C A and by
Proposition A.3 combined with Corollary A.4

gr'T = gr A#—‘?IA(T), AeC_, and grT =gr A*—i-‘y{)\(T), A e Cy.
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Therefore for such isometric operators

M(T) = I+ (A=) (A" = N))N(T), A peCy

(A7)
MAT) = (1 + (A= w)(A— ) INUT), ApeC..

If Ais a hyper-maximal accumulative relation, then a similar result holds, and if
A is hyper-maximal dissipative and accumulative at the same time, i.el isf
selfadjoint, then

M(T) = (T + (A= p)(A=XN)")N(T), A\ neC\R. (A.8)

A.2 Basic properties of boundary triplets

Here the various notions of boundary triplets occurring in the literature are recalled
and it is shown how they can be interpreted as unitary or isometric operators.

Ordinary boundary triplets: First the definition of an ordinary (or standard)
boundary triplet is presented, see (Gorbackuiorbachuk 1991: Ch 3: Section
1.4) and (Derkach 1995: Definition 2.1).

Definition A.6. Let S be a closed symmetric operator{iR, [-, -] } with dom S = R.
Then the triple§H, Ty, I'; }, where{H, (-, -) } is a Hilbert space anf;, : & — H is
a linear operator foi = 0, 1, is called arordinary boundary triplefor S/ if

() the Lagrange identity (or Greens identity) holds: For every € dom S
[S[*]f, gl =1/, SMQ] = (I'1f,Tog) — (Lo f, T'19);

(ii) the mappind” : {f, SFf} — {Tof,T1f} from gr S to H? is surjective.

SincesS is a symmetric operatogy S = (gr S)<*+>, see Proposition A.1. There-
fore Definition A.6 implies that

kerI' = gr § = (gr S = (dom )<+, (A.9)

Using the operatorg; andj,, for 82 andH? as defined in (A.3) condition (i) is
saying thaf® defined ag" : {f,S*f} C &2 — {['of,T'1f} is an isometric operator
from the Kran space{£&?, [j«-, ]} to the Krén space{H?, (jx-,-)}. Combining
that observation with (A.9) and the assumption tha surjective yields thdf is a
bounded unitary operator fro’?, [ja-, |} onto {H?, (jx-,-)}, see Corollary 4.4.
In fact, sincegr S™! is a closed subspace @R?, [j«-, -]}, that statement shows that
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condition (ii) can be weakened fan I' = 2. Also the condition thalom S = £,

i.e. thatS!" is an operator, can be dropped without difficulties. By means of these
observations the following more general definition of an ordinary boundary triplet
is obtained, cf. (Derkack Malamud 1995: Definition 1.6).

Definition A.7. Let S be a closed symmetric relation {i, |-, -] }. Then the triplet
{H,Ty,T1}, where{H, (-,-)} is a Hilbert space andl; : &2 — H is a linear
operator fori = 0, 1, is called arordinary boundary triplefor S if

(i) the Lagrange identity (or Greens identity) holds: For evefyf’}, {g, ¢’} €
gr St

[f/7g] - [fa g/] = (Fl{f7 f/}7F0{g>g/}) - (FO{f> f/}7rl{g7g/}>;

(i) the mappind™ : {f, f'} — {To{f, f'},Ti{f, f'}} from gr S™ to H? is sur-
jective.

Note that ify ™ +$~ is a canonical decomposition 2, (3, -) }, thendim $H* =
dim $~. Hence, Corollary 6.5 implies that there exist ordinary boundary triplets
only for symmetric relations with equal defect numbers.

Generalized boundary triplets: Next a generalization of the ordinary boundary
triplet is presented, the so-called generalized boundary triplet, see (Detkach
Malamud 1995: Definition 6.1); note that here the irepace analogue of that
definition is stated.

Definition A.8. Let S be a closed symmetric relation {i, |-, -] }. Then the triplet
{H,Ty,T1}, where{H, (-,-)} is a Hilbert space andl; : &2 — H is a linear
operator fori = 0, 1, is called ageneralized boundary triplegor S if

(i) domI" = grS™ and the Lagrange identity (or Greens identity) holds: For
every{f, f'},{9,9'} € domT

[f/7g] - [fa gl] = (Fl{f7 f/}7F0{g>g/}) - (FO{f7 f/}7rl{g7g/}>;

(i) ranTy = H andker I'y is the graph of a selfadjoint relation {IR, [-, -] }.

Again, the first condition in Definition A.8 implies thatdefined ad™ : {f, f'} €
domT C K% — {To{f, f'},T1{f, f'}} is an isometric operator from the Kre
space{£?, [ja-, -]} to the Kran space{H?, (j»-,-)} and the second condition im-
plies thatl" is a unitary operator fror{ &2, [ja-,-]} to {H?, (in-,-)}, see Theo-
rem 7.19. Note that if the tripleH, Iy, ', } is a generalized boundary triplet for
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Sk then by (the second part of) Theorem 7.19 there exists an ordinary boundary
triplet {#+, '3, T¢} for Si, a bounded selfadjoint operatéf in {#, (-,-)} and a
closed operatoB in {H, (-, )} with dom B = 'H = ran B andker B = {0} such

that
()
I, KB B~ \1?

Conversely, if a triple{ H, 'y, I'; } has the above representation, then direct argu-
ments show that it is a generalized boundary triplet.

Remark A.9. Since a generalized boundary triplet can be interpreted as a unitary
operator, a generalized boundary triplet is said to be of type Ila, type Ib or type Il
if its interpretation as a unitary operator is of type la, type Ib or type Il, respec-
tively. In fact every generalized boundary triplet can only be of type la or type Il
(with strongly equal defect numbers), because by definition there exists a hyper-
maximal neutral subspace in the domain of every generalized boundary triplet,
see Corollary 8.18. Since composition with bounded unitary operators does not
change the type of a unitary relation, (A.10) shows that a generalized boundary
triplet {H, 'y, T'; } with the representation (A.10) is of type I if and onlyAf ! is a
compact operator, cf. Theorem 8.10.

Unitary boundary triplets: As a further generalization of generalized boundary
triplets, the notion of a unitary boundary triplet for the adjoint of a symmetric rela-
tion S was introduced, see (Derkach et al. 2006: Definition 3.1) and (Behrndt et al.
2011a: Definition 3.1).

Definition A.10. Let .S be a closed symmetric linear relation{iR, [-, -] }. Then the

triplet {H, T, T, }, where{H, (-, )} is a Hilbert space antl; : 82 — H is a linear
operator fori = 0, 1, is called aunitary boundary triplefor St if

() domI' = grS™ and the Lagrange identity (or Greens identity) holds: For
every{f, f'}.{g,¢'} € domT

[f/7g] - [fu gl] = (Fl{f7 f/}7 FO{Q?Q,}) - (FO{f7 f/}7 Fl{gmg,}))
(i) if g,¢" € $Handk, k' € H are such that
[f/ag] - [f7 g/] = (Fl{fa f/}vk) - (FO{f7 f/}’k,)7 V{f, f/} S dOH’lF,

then{g,¢'} € domI"and{k,k'} =T{g,9'} = {To{g,¢'},T1{9,9'}}.
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The first condition in Definition A.8 implies thdf defined asl’ : {f,f'} €

grT C &2 — {To{f, f'},T1{f, f'}} is an isometric operator from the Krespace
{#2,[ja, "]} to the Krdn space{H?, (j»-,-)} and the second condition implies that

[ is a unitary operator froi&?, [jg-, -]} to {H?, (j», )}, see Proposition 3.1. Con-
sequently, the condition thdbm I" = gr SI* implies thatker I' = gr S, see Propo-

sition A.1 and (3.4). As in the preceding cases, unitary boundary triplets only exist
for symmetric relation with equal defect numbers. For symmetric relations with
unequal defect numbers boundary relations or D-boundary triplets are needed, see
(Derkach et al. 2006: Proposition 3.7) or (Mogilevskii 2006), respectively.

Corollary 7.17 implies thaf*, 'y, ' } is a unitary boundary triplet fo$!*/, where
the symmetric relatiort’ has strongly equal defect numbers, if and only if there
exists an ordinary boundary triplét{,I'3, 1’9}, a closed operataB in {H, (-,)}
with dom B = ‘H = ran B andker B = {0}, and a standard unitary operatay in

{H?, (j3-,-)} such that
CIEATE R
I'y 0 B~* 9

Note also that Corollary 7.21 shows tHat(, 'y, I"; } is a unitary boundary triplet
for S such thaker I'y is the graph of a selfadjoint relation {i, |-, -]} if and only

if there exists an ordinary boundary tripkgt(, I', T'¢}, an operatoB3 in {H, (-, )}
with dom B = H = ran clos ( B) andker clos (B) = {0}, and a selfadjoint operator
Kin{$,(-,-)} with dom K = ran B such that

RN ——
I, KB B~ ) \I¢

Quasi-boundary triplet: In (Behrndt& Langer 2007: Definition 2.1) the concept

of an ordinary boundary triplet for the adjoint of a symmetric relation in a Hilbert
space was generalized to the concept of a quasi-boundary triplet; below the natural
generalization to the Kia space case is presented.

Definition A.11. Let S be a closed symmetric relation{i, |-, -|}. Then the triplet
{H,T, Ty}, where{H, (-,-)} is a Hilbert space andl; : 82 — H is a linear
operator fori = 0, 1, is called aquasi-boundary triplefor S if

(i) domI' = grS™ and the Lagrange identity (or Greens identity) holds: For
every{f, f'},{9,9'} € domT

[f/7g] - [fv gl] = (Fl{fa f/}7F0{g7g/}) - (FO{fa f/}vrl{g7g/});
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(i) kerT isthe graph of a selfadjoint relation {IR, |-, | };

(i) Tanl = M2, wherel : {f, f'} € domU — {To{f, '}, T{f, f'}}.

Condition (i) in Definition A.11 implies thal’ is an isometric operator from the
Krein space{ &%, [ja-, -]} to the Krén space{H?, (j»,-)}. Conditions (ii) and (iii)
do not guaranty thdt is a unitary operator as the following example shows.

Example A.12. Let{H, (-, )} be a Hilbert space and Iétbe a symmetric operator
in {H, (-,-)} with dom 7" = "H which is not a selfadjoint operator. Then define the
linear operator™ in {H?, (j3-,-)} as

ro (o)
T I

where the block representation Bfis w.r.t. the decompositiof{ x H of H>.
Then a direct calculation shows thgit, I'g, I'; }, wherel'y = Py o3I andT'y =
Pioyxnl's Is @ quasi-boundary triplet f&*, wheregr S* = H x H. Moreover,I’
is (extendable to) a unitary operator{itt?, (j»-,-)} if and only if T' is (extendable
to) a selfadjoint operator, see Proposition 4.8.

Like Definition A.10, Definition A.11 can be extended by allowifigo be a rela-
tion. In that case condition (iii) should be replaced by the conditionithdl® =
(ranI')<+>, where< 1 > is the orthogonal complement #? w.r.t. (j»-,-). The
conditions (i) and (iii) in Definition A.11 imply thaker I' = (dom I')<+>, where
< L> is the orthogonal complement w.r.fjs-, |, see Lemma 6.1 and Proposi-
tion A.1. Therefore, as for boundary triplets;r I' = gr.S. Note further that if
{H, Ty, T} is a quasi-boundary triplet fas*!, then also{H, clos (I'), clos (I';) }

is a quasi-boundary triplet fag!*.

Theorem 7.9 implies thdtH, Ty, ', } is a quasi-boundary triplet fa#!*! if and only
if there exists an ordinary boundary triplgt{, '3, T} for S&l, an operator3 in
{H, (-,-)} with dom B = H = ran clos (B) andker clos (B) = {0}, and a symmet-
ric operatofl” in {H, (-, -) } with dom T’ = ran B anddom 7*Nmul clos (B) = {0}

such that
Lo\ _(B o0 I9 (A13)
I TB B~*) \19)" '

In particular,{H, Ty, ' } is extendable to a unitary boundary triplet if and only if

T is extendable to a selfadjoint operator, see Proposition 7.3 and Remark 7.10 (i).
l.e., the following necessary and sufficient conditions for a quasi-boundary triplet
to be (extendable to) a unitary boundary triplet hold.
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Proposition A.13. Let S be a closed and symmetric relation {i, [-, -]} and let
{H,Ty,T1} be a quasi-boundary triplet fas!*l. Then{H, Ty, I';} is (extendable
to) a unitary boundary triplet fos!*! if and only if'(jker TyNdom I') is (extendable
to) a hyper-maximal neutral subspace {02, (j»-,-)} for some (and hence for
every) fundamental symmeirgf {82, [jx-, |}

The characterization of quasi-boundary triplets in (A.13) shows that they are very
closely connected to generalized boundary triplets, the following statement makes
that connection precise. Therefore note that for a symmetric rel&tion (the
Hilbert space)H, (-,-)} and a relationB in {H, (-, -)}, the archetypical isometric
relationsY, (S) andYy(B) in {H?, (j», )} take the form

TS, 9y =4/, 5f +9}, [fedomS, ge
Yo(B){f,9} ={Bf,B "9}, fe&domB, g€ ranB".

cf. Section 4.2. In particular, i, (S) and Yo(B) are operators, then w.r.t. the
decompositiort{ x H of H?, they have the following block representation:

T,(8) = (é ?) and T(B) (lg BO_*),

Proposition A.14. Let {H,T'{,I'{} be a quasi-boundary triplet for the adjoint of
the closed symmetric relatiafiin {£, [+, -|}. Then there exists a boundary relatton
{H,T} for SH with H x {0} C ranT andkerI'y = (ker Ty)<>, and a symmetric
operator 7" in {H, (-,-)} with dom7T = H and dom7* N mull, = {0} such
thatT', = Y, (7). Conversely, ifl” andT are as above, thefiH,I'{, I'{}, where
Il = Pruxqoy T1(T)T andT'{ = Py T1(T)T, is a quasi-boundary triplet for
St

Proof. For the direct part recall that by Theorem 7.9 there exists an opebaitor
{H,(-,-)} with dom B = H = ranclos (B) andkerclos (B) = {0}, a symmet-
ric operator?’ in {H, (-,-)} with dom7" = ran B anddom 7* N mul clos (B) =
{0}, and a bounded unitary operatorfrom {&2, [js-, -]} onto {H?, (j»-,-)} with
domI'? C dom1I such that

7 = (??) — T,(T)Ts(B)T.

Consequenthy” := Ty (clos (B))I" satisfies the stated conditions.

LA boundary relation is a unitary boundary triplet which is allowed to be multi-valued, see
(Derkach et al. 2006: Definition 3.1).



140 Acta Wasaensia

To prove the converse note that by the assumptions,eml I’ C H x {0}. Con-
sequently, arguments as in Theorem 7.19 show that there exists a closed Blation
in {H, (-,-)} with dom B = H = ran B andker B = {0}, a bounded selfadjoint
operatorK in {H, (-,-)} and a standard boundary triplght, I}, 'S } such that

Consequently,

@) T\ + K)Ts(B) (??) ,

where the righthand side is an operator as a consequence of the assumption that
dom TNmul Ty = {0}. Clearly,ker I} = I'"*({0} xH) is the graph of a selfadjoint
relation in{f,[-,-]} andran'* = H? as a consequence of the assumption that
domT* NmulT'y = {0}, see Step 3 of the proof of Theorem 7.9. O

Note that if the symmetric operat@rin Proposition A.14 has equal defect numbers,
then the quasi-boundary triplet can be extended to a unitary boundary triplet, see
e.g. Proposition 7.3

A.3 Weyl functions of boundary triplets

Here the Weyl function of boundary triplets for the adjoint of a symmetric relation
in a Hilbert space are shortly described and, in particular, it is shown how each Weyl
function is the transformation of a bounded and boundedly invertible Nevanlinna
function. Therefore recall first that by means of eigenspaces, see (A.1), a Weyl
family can be associated with boundary triplets, see (Derkach et al. 2006; Behrndt
& Langer 2007; Behrndt et al. 2011a).

Definition A.15. Let S be a closed symmetric relation in the Knespace R, [-, -] },

let {#,T,,T';} be a unitary boundary triplet or a quasi-boundary triplet§otand
let 7" be the relation in{ K, |-, -]} such thatgr 7" = dom U. Then theWeyl family
associated with' is the operator-valued functial? (\) defined for\ € C via

gr (M(N)) = TOW(T)) = {{To{ /0, AL Tl AR = {hu AR € M (D)),

or, equivalently,
M) =T1(To Ig, )" AeC.
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Recall also the definition of the so-called Nevanlinna family, see (Derkach et al.
2006: Section 2.6).

Definition A.16. A family of linear relationsM (\), A € C\ R, in {H, (-,-)} is
called aNevanlinna familyf it has the following properties:

(i) forevery\ € C, (C_) the relation) ()\) is maximal dissipative (resp. accu-
mulative);

(i) M(\)*=M(\), e C\R;

(iiiy for some, and hence for ali, € C_ (C_) the operator familyf M (\) — p)~*
is an everywhere defined operator function which depends holomorphically
onAfor\ e C, (C.).

With this definition it can easily be seen that every Weyl family of a boundary re-
lation for the adjoint of a symmetric relation in a Hilbert space is a Nevanlinna
function, i.e., a Nevanlinna family whose values are operators. Namely the condi-
tions (i) and (ii) are satisfied as a consequence of Proposition 5.1, Proposition A.1
and (A.4). In light of the fact thatM (\) — 1) ~! is everywhere defined for € C,

andu € C_, becausé/(\) is maximal dissipative foh € C,, the third condition

holds as a consequence of the definition\6f)), see Definition A.15, and (A.7).
Conversely, every Nevanlinna family can be realized (nonuniquely) as the Weyl
family of a boundary relation, see (Derkach et al. 2006: Theorem 3.9). Note also
that as a consequence of the fact that the Weyl function associated to a boundary

triplet satisfiesM (\)* = M (), the identity in Proposition 5.1 is called the Weyl
identity.

Weyl functions of ordinary boundary triplets: Let the triplet{H,T,,T';} be
an ordinary boundary triplet for the adjoint of a closed symmetric relatian
{9,(-,)}. ThenranT = ran(Ty x I';) = H? implies that the hyper-maximal
neutral subspacég x {0} and{0} x H of {H?, (j», )} are contained in the range
of I'. Hence, Ay and A; defined via

grAg=T'{0} xH) and grA, =I"'H x {0})

are selfadjoint relations if9), (-, -) }, see Proposition A.1 and Proposition 4.5. Con-
sequently, forn € C\ R

domT = gr Ay + M\(S*) and domT = gr A; + M, (S*), (A.14)

see Corollary A.4. From (A.14) it follows th&?HX{O}F(‘ftA(S*)) = PrxqoyranT
andPoy 1 '(MA(S*)) = ProyxnranT, i.e. (A.14) implies that

dom M(A) =dom M(p) and ran M(\) =ran M (p) A pe€ C\R.
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In fact, sinceranl’ = H?, the above observation yieldbm M(\) = H =
ran M (\) forall A € C\ R, i.e. the Weyl function associated to an ordinary bound-
ary triplet is a bounded and boundedly invertible Nevanlinna function.

Weyl functions of generalized boundary triplets: Using the above arguments,
one can show that the Weyl function of a generalized boundary triplet is an every-
where defined Nevanlinna function. This can also be seen from the connection
of generalized boundary triplets to ordinary boundary triplets presented above.
Namely, (A.10) implies thaf/(-) is the Weyl function of a generalized boundary
triplet {H, 'y, I'1 } if and only if there exists a bounded and boundedly invertible
Nevanlinna function\/,(-), a closed operataB in {H, (-,-)} with dom B = H =
ran B andker B = {0}, and a bounded selfadjoint operaterin {H, (-,-)} such
that

M(\) =K+ B™*M,(\MB™", XeC\R

As a consequence of Remark Ay M () is a compact operator ifH, 'y, I'1 }

is a generalized boundary triplet of type I; the converse also holds. Therefore re-
call that~,, the mapping front{ onto 0M,(7"), wheregrT = domT", such that
Co{vah, Agrh} = h, satisfies

(A =N = M(A) = MV,

see (Derkacllz Malamud 1995: (6.7)). Since by assumptionM (\) = (M (\) —
M(X\)*)/(2¢) is an everywhere defined compact operators, the above equality shows
that~3v, is a compact operator. From this it follows immediately thats a com-

pact operator and, henc®, (7") as the range of a compact operator contains only
finite-dimensional closed subspaces foe C\ R. l.e. {H,I,,I';} is a general-

ized boundary triplet of type I, see Remark A.9 and (A.4). Note that this situation
occurs for instance in the case of partial differential equations, see (Bekrndt
Langer 2007) and the references therein.

Weyl functions of unitary boundary triplets: From (A.11) it follows thatV/ () is

the Weyl function of a unitary boundary triplet for the adjoint of a closed symmet-
ric relation with strongly equal defect numbers if and only if there exists a closed
operatorB in {H, (-,-)} with dom B = ‘H = ran B andker B = {0} = mul B,
everywhere defined operatafls;, 1 <, 7 < 2 such that

All Al?
A21 A22
is a unitary operator igH?, (-, -) }, and a bounded and boundedly invertible Nevan-

linna functionM, such that

M(}\) — (A21 + AQQBi*MO()\)Bil)QAll —|— AlZBi*MO()\)Bil)il, )\ € (C \ R
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In the special case thal, defined viagr Ay = T~({0} x H) is selfadjoint, M (\)
is as a consequence of (A.12) the Weyl function of a unitary boundary triplet if and
only if there exists a bounded and boundedly invertible Nevanlinna fungtign),
a closed relatior3 in {#, (-,-)} with dom B = ‘H = ran B andker B = {0} =
mul B, and a selfadjoint operatdf in {H, (-, )} with dom K Nmul B = {0} such
that
M(\) =K+ B *M,(\)B™', AeC\R.

Note that in the preceding case the domairciof (Im M ()\)) is independent of
A € C\ R and equal td+{. The converse also holds, if for a Weyl functidfi(\)
dom (clos (Im M (X))) = H for A € C\ R, thenM ()\) is the Weyl function of a
boundary relation for whichl, is selfadjoint, see (Derkach et al. 2012).

Weyl functions of quasi-boundary triplets: Quasi-boundary triplets can also be
characterized by their associated Weyl functions, cf. (Beh&ndtanger 2007:
Proposition 2.6) and (Alpa§ Behrndt 2009: Proposition 2.6).

Proposition A.17. Let{H, (-,-)} be a Hilbert space and let/(-) be aH-valued
operator function. Thed/(-) is the Weyl family of a quasi-boundary triplet (for the
adjoint of a certain closed symmetric relation) if and only if there exists a symmet-
ric operator 7" in {H, (-, -)} such thatdom M ()\) C dom7 and thatM(-) :=

clos (M(-) + T) is a Nevanlinna family which satisfie®m M (\) = H and

ker Mr/(\) NdomT™* = {0} forall A\ € C\ R.

Proof. If {H,Ty, 1} is a quasi-boundary triplet for the adjoint of a symmetric re-
lation S in a Hilbert spacq $, (-, -) }, then by Proposition A.14 there exists a sym-
metric operatofl” in {H, (-,-)} with dom 7" = H and a boundary relatioft-{, I}
for S* with (kerI'y)* = ker I, ranI', = H anddom 7™ N mull'y = {0} such
thatl’ = Y1 (7)I". The Weyl family M1 (-) associated td” is a Nevanlinna family
of bounded operators, i.elom M (\) = H for all A € C\ R, see (Derkach et
al. 2009: Proposition 3.15). Note also that the conditiom 7* N mull'y = {0}
implies thatker M/ (A) NdomT* = {0} for all A € C\ R. Finally, a direct cal-
culation shows that the Weyl family/ (1), A € C\ R, associated td' = I'y x I';
is

M(\) =T+ Mr/(\), domM(\) =domT.
Sincedom 7' = H anddom My (-) = H, the above equality implies thaty (-) =
clos(M(-) = T).

Conversely, if M = clos(M(-) + T') is a Nevanlinna family which satisfies
dom M (A\) = H for all A € C\ R, then, see (Derkach et al. 2009: Proposition
3.15), there exists a closed symmetric relatitbm a Hilbert space 9, (-, -)} and
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a boundary relatioq H, I} for S* satisfying (ker ['))* = ker['j andranI, =

H such that its associated Weyl family ig. Then, sincedlom7 = H and
ker Mp(A)Ndom T = {0}, {H, Prxioy Y1 (=T)I", Proyxn Y1(=1)I"} is a quasi-
boundary triplet forS* by Proposition A.14 and a calculation shows that its Weyl
family is My () =T = M(+). O

Note that if 7" has equal defect numbers in the above statement, then the quasi-
boundary triplet forM/(-) can be extended to a boundary relation.

A.4 Boundary triplets for intermediate extensions

The results in (Derkach et al. 2009: Section 4) for boundary relations in the Hilbert
space setting are here shown to remain valid in th@rkKspace setting. Therefore

first observe the following simple statement about the renormalization of the Weyl
function of a unitary boundary triplet, see (Derkach et al. 2009: Proposition 3.11).

Lemma A.18. LetS be a closed symmetric relation{iR, |-, -|} and let{H, 'y, T'; }
be a unitary boundary triplet fo*! with associated Weyl functiak/r-(-). More-
over, let B be a closed operator i{H, (-,-)} with dom B = H = ran B and
ker B = {0}, and let K be a bounded selfadjoint operator {#, (-,-)}. Then,

with
F6 o Iy
<F’1> = T1(K)T(B) <F1> :

also{H, T}, I} is a unitary boundary triplet foS™l. Its Weyl functionV/r (-) is

Mpr(\) =K+ B *M(\)B™', dom Mp =dom(M(\)B™'), AeC\R.

Proof. SinceY;(K) and T,(B) are standard unitary operators §t?, (j», ")},

T, (K)Y2(B)(Ty x Ty) is a unitary operator frod &2, (ja-, )} to {H?, G, )},
see Lemma 3.10. Consequentl§{, I';, T} is a unitary boundary triplet fag!.
The expression folMt follows from a direct calculation after the observation that
domI" = domI" and, hence‘?tA(T) = ‘YIA(T’), whereT andT” are the relations
in {&,[-,-]} such thagr 7" = domI" andgr 7" = dom I"". O

To obtain results on generalized boundary triplets for intermediate extensions, the
above lemma is combined with Proposition A.19 below. Note that the following
statement is a generalization of a similar statement for generalized boundary triplets
from the Hilbert space setting to the Kinespace setting.
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Proposition A.19. Let S be a closed and symmetric relation {i, [-, -]} and let
{H, Ty, T} be ageneralized boundary triplet f6f*) with associated Weyl function
Mr(-). Moreover, letH’ be a closed subspace &fand define the operatoig, and
I, from 82 to H’' as

Lo{f, /'y =Tolf. Sy and T {f, f'} = Pl S '}

for all {f, f'} € domI such thatl'o{f, f'} € H'. Then{H' I'|,I"}} is a gener-
alized boundary triplet forst! ¢ g, wheregr S, = kerI"”. Its associated Weyl
function My () is

MF’()\) = P’H’MF(/\)y dom MF/ = dom MF(/\) N Hl = Hl, e C.

Proof. The first part is a direct consequence of Corollary 7.34 Wwildefined as
ULSf, f'} =A{f,Pwf'}, f € H andf € H. The formula for the Weyl function
is a direct consequence of the definitionldftogether with the observation that
domI” C domT and, hencef, (T") C MN\(T), whereT andT” are the relations
in {&, [-,-]} such thagr 7" = domI" andgr 7" = dom I". O

In the Hilbert space setting the above result corresponds to (Derkach et al. 2009:
Proposition 4.1). The other statements from (Derkach et al. 2009: Section 4) can
be obtained by combining Proposition A.19 with Lemma A.18; following is an
example, cf. (Derkach et al. 2009: Corollary 4.5).

Corollary A.20. Let S; be a closed and symmetric relation {i&;, [-, -];} and let
{H,T%, T} be ageneralized boundary triplet fétf*] with associated Weyl function
M;, fori = 1,2. With & := R, @ R, define the operatorg, andI’; from &2 to H
as

Co{f1 @ fo, 1 ® fo} = To{ f1. f1}

and

Fl{fl 69f27f{ GBfé} = F%{flaf{} +F%{f27fé}a

where

domT = {{fi D fo, /i ® f3} € &2 : {f1, fI} €dom T, {fy, fo} € domT?
and To{f1, i} = T5{f2, [5}}-

Then{H, Ty, T;} is a generalized boundary triplet fa™ C S &SI, where
gr S = kerI', and its associated Weyl function/i$, + M.
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Proof. Definel'j andI", as

Lol fi. fi} I'i{f fi}
I8{fe, f3} IHf fa} )

where{f1, fi} € domT! and{fs, f3} € domT%. Then{H? T},T} is a general-
ized boundary triplet fos!” @ S with associated Weyl functiofs; (-) & Ma(-).

L{fi® fo, 1@ fa} = ( )a DH{fi® fo, 1@ fo} = (

Next define the operatds onH> by B{f, f'} = {f', f—f'}, [, [ € H. Then with
'8 andl'? defined vial'¥ x TP = T,(B)(I'y x I'}), {H? T'F, '8} is a generalized
boundary triplet fors! &SI, Here

2 /
FoB{fl@fz,f{@fé}:< T3 fa f1} )

Uo{fo, f53 = Tidfis 1}
and

F%{f% fé}
for {f1, fi} € dom Tt and{fs, f3} € dom I Its associated Weyl function is

s [ Mi(N) 0 1 [ Mi(N) + Ma(X) My(N)
M) =5 (o M2<A>>B ‘( M) M1<A)>’

see Lemma A.18. After these observations the statement follows from Proposi-
tion A.19. O
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