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1 INTRODUCTION

The subject of this dissertation is unitary relations between Kreı̆n spaces. As is well
known, unitary operators between Hilbert spaces are bounded everywhere defined
isometric operators with bounded everywhere defined inverses. I.e., if{H1, (·, ·)1}
and{H2, (·, ·)2} are Hilbert spaces, thenU is a unitary operator from{H1, (·, ·)1}
to {H2, (·, ·)2} if and only if ran U = H2 and

(f, g)1 = (Uf, Ug)2, ∀f, g ∈ dom U = H1.

Unitary operators between Kreı̆n spaces were initially introduced as everywhere de-
fined isometric operators with everywhere defined inverse, see (Azizov& Iokhvi-
dov 1989: Ch. II,§5 and the remarks to that section). I.e., if{K1, [·, ·]1} and
{K2, [·, ·]2} are Krĕın spaces, thenU is a unitary operator between{K1, [·, ·]1} and
{K2, [·, ·]2} if and only if ran U = K2 and

[f, g]1 = [Uf, Ug]2, ∀f, g ∈ dom U = K1.

Such unitary operators, which are here called standard unitary operators, are closely
connected to unitary operators between Hilbert spaces. In particular, they behave
geometrically essentially the same as those unitary operators. R. Arens (1961)
introduced an alternative, very general, definition of unitary relations (multi-valued
operators): a relationU between Krĕın spaces isunitary if

U−1 = U [∗],

where the adjoint is taken with respect to the underlying indefinite inner products,
cf. Yu.L. Shmul’jan (1976) and P. Sorjonen (1980). Note that all standard uni-
tary operators satisfy the above equality. With this definition unitary relations are
closed, however, they need not be bounded nor densely defined and they can be
multi-valued. Therefore their behavior differs essentially from Hilbert space uni-
tary operators.

Example 1.1. Let B be a closed relation in the Hilbert space{H, (·, ·)} and onH2

define the indefinite inner product< ·, · > by

< {f, f ′}, {g, g′} >= i [(f, g′)− (f ′, g)] , f, f ′, g, g′ ∈ H.

Then{H2, < ·, · >} is a Krĕın space andU defined onH2 as

U{f1, f2} = {Bf1, (B
∗)−1f2}, f1 ∈ dom B, f2 ∈ ran B∗
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is a unitary relation in{H2, < ·, · >} with ker U = ker B × mul B∗ andmul U =

mul B × ker B∗. Clearly,U has closed domain (and range) if and only ifB and
B−1 have closed domain. Moreover,U is a unitary operator with a trivial kernel if
and only ifker B = {0} = mul B anddom B = H = ran B. In particular, ifB
satisfies the preceding conditions, thenU has an operator block representation:

U =

(
B 0

0 B−∗

)
,

where the representation is with respect to the decompositionH⊕ H of H2.

Motivation

The motivation for the present study of unitary relations between Kreı̆n spaces
comes from the extension theory of symmetric relations in Hilbert and Kreı̆n spaces.
Therein unitary relations naturally appear, although usually under a different name.
In particular, this work was motivated by the rediscovery of J.W. Calkin’s 1939 pa-
per on extension theory by V. Derkach, the recent investigations of extension theory
in connection with partial differential equations by J. Behrndt and M. Langer, see
(Behrndt& Langer 2007), and by the recent papers of V. Derkach, S. Hassi, M.
Malamud and H.S.V. de Snoo where unitary relations between Kreı̆n spaces ap-
peared in the setting of extension theory, see (Derkach et al. 2006; 2009). In order
to make this motivation more concrete, a short overview of the extension theory
of symmetric relations is presented. This overview at the same time shows how
unitary relation appear/can be used in a more practical setting.

Maximal symmetric extensions of (unbounded) symmetric operators in (separable)
Hilbert spaces have initially been studied by J. von Neumann in the late twenties.
He used the Cayley transform to obtain a formula which expresses the domain of
the adjointS∗ of a symmetric operatorS in terms of the domain of the symmetric
operator and its defect spaces:

dom S∗ = dom S + {fi : (S∗ − i)fi = 0}+ {f−i : (S∗ + i)f−i = 0},

see (von Neumann 1930: Satz 29). The above expression is now known as the
von Neumann formula and has formed the basis for the early investigations of ex-
tensions of symmetric operators. In particular, J. von Neumann showed that the
defect numbers of a symmetric operator, which can be defined by means of the von
Neumann formula, characterize which type of maximal symmetric extensions an
(unbounded) symmetric operator has.
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Motivated by questions connected with selfadjoint realizations of partial differen-
tial equations, cf. Example 1.5 below and see (Calkin 1939b), the investigations
of maximal extension of symmetric operators was continued by J.W. Calkin almost
a decade later. As the main tool in his investigations J.W. Calkin introduced re-
duction operators for the adjoint of symmetric operators (in Hilbert spaces), see
(Calkin 1939a); these operators can in fact be interpreted as unitary operators be-
tween Krĕın spaces, see (Hassi& Wietsma 2012: Proposition 2.7). For instance, us-
ing bounded reduction operators an elegant and complete description was given for
all the maximal symmetric extensions of a symmetric operator, see (Calkin 1939a:
Theorem 4.1); that result would only later be rediscovered, see (Gorbachuk& Gor-
bachuk 1991). Moreover, using unbounded reduction operators J.W. Calkin studied
maximal extensions of a symmetric operator whose graph is contained in a dense
subspace of the graph of the adjoint of the symmetric operator; this is a problem
which naturally occurs in connection with partial differential equations. As in the
case of bounded reduction operators, he showed that there are two possibilities:
Either each maximal symmetric extension of a symmetric operator has the same
defect numbers or there exist maximal symmetric extensions with ”arbitrary” de-
fect numbers. J.W. Calkin also investigated the structure and mapping properties
of reduction operators. Of particular interest is his domain decomposition of such
operators, see (Calkin 1939a: Theorem 3.5); that decomposition is the central result
in the aforementioned paper.

The parametrization of selfadjoint extensions of symmetric operators resurfaced
in the book of N. Dunford and J.T. Schwartz (1963). Recall therefore that one
can associate to ordinary differential equation a symmetric operator, the so-called
minimal operator, and that its adjoint is called the maximal operator. Wanting to
apply the spectral theory of selfadjoint operators to this setting, they needed to
describe the selfadjoint restrictions of the maximal operator. This they in fact did
by means (of systems) of so-called boundary values for the maximal operator, see
Example 1.2 below.

Example 1.2. In the Hilbert spaceL2(ı), whereı = [0, 1], consider the following
differential expression

(`f)(x) = f ′′(x) + f(x), x ∈ ı.

To study this differential equation, a maximal and minimal operator,Tmax andTmin,
are associated to it:

Tmaxf = `f, dom Tmax = {f ∈ L2(ı) : `f ∈ L2(ı), f, f ′ ∈ ACloc(ı)}
and

Tminf = `f, dom Tmin = {f ∈ dom Tmax : f(0) = f ′(0) = f(1) = f ′(1) = 0},
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see e.g. (Behrndt et al. 2011b). Boundary values for this setting, in terms of Dun-
form and Schwartz (1963), would be for example

a1f = f(0) or a2f = f ′(1), dom a1 = dom a2 = dom Tmax.

Note that it can be shown that the operatorA defined as

Af = `f, dom A = {f ∈ dom Tmax : a1(f) = 0 = a2(f)}.

is a selfadjoint restriction ofTmax.

In the seventies V.M. Bruck and A.N. Kochubeı̆ independently introduced so-called
boundary value spaces (BVS’s) to describe the selfadjoint extensions of densely de-
fined symmetric operators in Hilbert spaces with equal defect numbers, see (Gor-
bachuk& Gorbachuk 1991) and the references therein. For a densely defined sym-
metric operatorS, this BVS is a triple{H, Γ0, Γ1}, whereH is a auxiliary Hilbert
space, often called the boundary space, andΓ0 andΓ1 are mappings defined on the
domain ofS∗ and mapping ontoH. As a consequence of their structure, BVS’s
would later usually be called ordinary boundary triplets. By means of these objects
the selfadjoint extensions ofS can be parameterized by selfadjoint relations inH.

Example 1.3. For the situation in Example 1.2 a possible choice of a boundary
triplet {H, Γ0, Γ1} for Tmax is

H = C2, Γ0{f, Tmaxf} =

(
f(0)

f ′(1)

)
andΓ1{f, Tmaxf} = −

(
f ′(0)

f(1)

)
. (1.1)

Note that with this definition the selfadjoint extensionA of Tmin in Example 1.2
is the restriction ofTmax to ker Γ0 and thatΓ = Γ0 × Γ1 is a (bounded) reduction
operator forTmax in the terminology of J.W. Calkin.

Not only was the boundary triplet introduced to describe selfadjoint extensions of
symmetric operators, it was also used to describe maximal dissipative and accumu-
lative extensions of symmetric operators and to describe spectral properties of those
extensions. In order to obtain the latter results the so-called characteristic function
of a symmetric operator was introduced by A.N. Kochubeı̆, see (Gorbachuk et al.
1989) and the references therein. In the middle of the eighties V. Derkach and
M.M. Malamud investigated the Cayley transform of this characteristic function,
see (Derkach& Malamud 1985; 1991), and showed that this transform is a so-
called Q-function for the symmetric operator; thoseQ-functions had been studied
earlier by M.G. Krĕın and H. Langer. In the literature of boundary triplets this trans-
formed characteristic function is nowadays called the Weyl function (associated to
a boundary triplet).
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Later V. Derkach and M.M. Malamud generalized the concept of a boundary triplet
to the concept of a generalized boundary triplet, see (Derkach& Malamud 1995).
This generalization allows for the realization of a greater class of functions as
Weyl functions and also allows for the applicability of boundary triplet methods
to a larger class of problems (without regularizing). For instance, the closure of
the triplet {L2(∂Ω), Γ1,−Γ0} from Example 1.5 below is a generalized bound-
ary triplet which is not an ordinary boundary triplet, see (Behrndt& Langer 2007:
Proposition 4.6). There is however a price to pay for using generalized boundary
triplets instead of ordinary boundary triplets, the latter are bounded (with respect to
the appropriate topologies) while the former are not.

In the present millennium the aforementioned two authors together with S. Hassi
and H.S.V. de Snoo developed the boundary triplet approach by, among other things,
incorporating Krĕın space terminology and methods into it, see (Derkach et al.
2006; 2009). In particular, they showed that ordinary boundary triplets, and their
various generalizations, can be seen as unitary relations between Kreı̆n spaces
whose inner products have a specific, fixed, structure.

Example 1.4. Recall that for a Hilbert space{H, (·, ·)H}, H2 equipped with the
indefinite inner product< ·, · >H, defined by

< {f, f ′}, {g, g′} >H= i [(f, g′)H − (f ′, g)H] , f, f ′, g, g′ ∈ H,

becomes a Krĕın space. With this notation consider the mappingΓ = Γ0×Γ1 from
L2([0, 1])×L2([0, 1]) toC4, whereΓ0 andΓ1 are as in (1.1). ThenΓ is a (bounded)
unitary operator from the Kreı̆n space{L2([0, 1])×L2([0, 1]), < ·, · >L2([0,1])} onto
the Krĕın space{C2 × C2, < ·, · >C2}.

In order to apply boundary triplet type techniques to partial differential equations,
J. Behrndt and M. Langer generalized the concept of a generalized boundary triplet
to the concept of a quasi-boundary triplet in their 2007 paper. Quasi-boundary
triplets can not be interpreted as unitary operators between Kreı̆n spaces. How-
ever, they can be interpreted as a special type of isometric operators between Kreı̆n
spaces, which are closely related to unitary operators between Kreı̆n spaces. Quasi-
boundary triplets naturally appear in the setting of partial differential equations as
the following example taken from (Behrndt& Langer 2007) shows.

Example 1.5.Let Ω be a bounded domain inR2 with C∞-boundary∂Ω and define
the differential expressioǹas

(`f)(x, y) =
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y), (x, y) ∈ Ω,
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i.e.,` is the Laplacian inR2. With ` associate a maximal operatorT and a minimal
operatorS in the Hilbert spaceL2(Ω) via

Tf = `f, dom T = H2(∆)

and

Sf = `f, dom S =

{
f ∈ H2(∆) : f |∂Ω = 0 =

∂f

∂ν

∣∣∣∣
∂Ω

}
,

whereH2(∆) is the Sobolev space of order two. Define the mappingsΓ0 andΓ1

from L2(Ω)× L2(Ω) to L2(∂Ω) via

Γ0{f, Tf} = f |∂Ω and Γ1{f, Tf} = − ∂f

∂ν

∣∣∣∣
∂Ω

, f ∈ dom T.

Thenker Γ0 ∩ ker Γ1 = gr S and with these operators the Laplace (or Green’s)
identity takes the following form:

(Tf, g)Ω − (f, Tg)Ω = (Γ1{f, Tf}, Γ0{g, Tg})∂Ω − (Γ0{f, Tf}, Γ1{g, Tg})∂Ω.

The above equality is precisely saying thatΓ = Γ0 × Γ1 is an isometric operator
from the Krĕın space{L2(Ω)×L2(Ω), < ·, · >L2(Ω)} to the Krĕın space{L2(∂Ω)×
L2(∂Ω), < ·, · >L2(∂Ω)}, see Example 1.4 for the notation. Moreover, it can be
shown thatran Γ = L2(∂Ω)× L2(∂Ω) and thatAN defined via

ANf = Tf, dom AN = {f ∈ dom T : Γ0{f, Tf} = f |∂Ω = 0}

is a selfadjoint extension of the symmetric operatorS. As a consequence of these
properties,{L2(∂Ω), Γ0, Γ1} is a quasi-boundary triplet for the adjoint ofS. More-
over, the closure ofΓ is a unitary operator between{L2(Ω)×L2(Ω), < ·, · >L2(Ω)}
and{L2(∂Ω)× L2(∂Ω), < ·, · >L2(∂Ω)}, see (Behrndt& Langer 2007: Proposition
4.6).

Other extensions of the concept of a boundary triplet have been made by V.A.
Derkach, who introduced boundary triplets in Kreı̆n spaces so as to be able to
study extension theory of symmetric operators in Kreı̆n spaces, see (Derkach 1995;
1999), and by V. Mogilevskii, who introduced D-boundary triplets to investigate
extensions of symmetric operators with unequal defect numbers, see (Mogilevskii
2006). Also those objects can be interpreted as unitary operators between Kreı̆n
spaces. Note also that for instance the notion of a (split) Dirac structure, which
appears in system theory, can be interpreted as a unitary relation, see (Behrdnt et
al. 2010: Proposition 4.6).
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Aims

The main aim of this dissertation is to obtain a better understanding of the structure
and geometrical behavior of unitary relations between Kreı̆n spaces; in particular,
of unitary relations with an unbounded operator part or, equivalently, with a non-
closed domain. More specifically, it is first of all attempted to understand how much
(special types of) isometric relations differ from unitary relations (here a relation
V between Krĕın spaces is isometric ifV ⊆ V −[∗]) and how unitary relations with
a closed domain differ from those with a non-closed domain. The second major
aim of this dissertation is to investigate the essential mapping properties of unitary
relations. In particular, an aim is to obtain conditions for the pre-image of a neutral
subspace under a unitary relation (or, more generally, under an isometric relation)
to be (hyper-)maximal neutral.

Outline

Following is an outline of this dissertation which consists out of nine chapters,
including this introduction, and an appendix.

The second chapter contains preparations for the later chapters. In particular, there
the basics of Krĕın spaces are recalled and the Kreı̆n space notation that will be
used in this dissertation is fixed. Thereafter a special class of maximal semi-definite
subspaces is introduced and characterized. This is followed by a short section on
decompositions of a subspace with respect to another subspace and a section on
multi-valued operators. The final section of this chapter contains some representa-
tions of semi-definite subspaces by means of multi-valued operators.

In the third chapter the basic properties and characterizations of (maximal) iso-
metric and unitary relations are given. In particular, it is shown that the behavior of
unitary relations with respect to their kernel, multi-valued part and closed uniformly
definite subspaces contained in their domain and range is of a simple nature.

Thereupon, in Chapter 4, special classes of unitary relations are investigated. More
specifically, unitary relations with a closed domain and standard unitary operators
are considered and, moreover, two types of isometric (unitary) relations having a
simple block representation are introduced. Those latter isometric (unitary) rela-
tions, which will be called archetypical isometric (unitary) relations, will play a big
role in the later chapters; they, and their composition, essentially show what kind
of geometrical behavior unitary relations can exhibit.
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In the fifth chapter it is shown how unitary relations are characterized by means of
their behavior with respect to uniformly definite subspaces. In particular, it is there
shown that unitary relations can essentially be characterized by one identity; the
so-called Weyl identity. Using this approach a known quasi-block representation
for unitary operator is obtained which is thereafter extended to a quasi-block repre-
sentation for maximal isometric operators. Also some applications of this approach
to unitary relations are presented there.

Thereafter, complementing the fifth chapter, the behavior of unitary relations with
respect to hyper-maximal semi-definite subspaces is investigated in the sixth chap-
ter. In particular, there it is shown that unitary relations contain hyper-maximal
semi-definite subspaces in their domain (and range).

Extending upon the results from Chapter 6, block representations for unitary rela-
tions, and also for certain types of isometric relations, are presented in the seventh
chapter. Those block representations will be expressed in terms of the archetypical
isometric operators introduced in the fourth chapter. In particular, it is shown that
the obtained block representations for unitary operators are a useful tool by giving
simple proofs for the most important statements from (Calkin 1939a).

In the eight chapter a classification from (Calkin 1939a) is considered; that classifi-
cation was introduced by J.W. Calkin in order to describe the maximal neutral sub-
spaces contained in the domain of an unbounded unitary operator (between Kreı̆n
spaces). In Chapter 8 that classification is extended, further implications of it are
stated and new characterizations for it are given. In particular, a characterization of
the classification in terms of a block representation for unitary operators is given.

Finally, Chapter 9 contains a summary of obtained results. In particular, there it is
shown how the above formulated aims have been fulfilled. Furthermore, to indicate
the applicability of the results the bibliography is followed by an appendix in which
part of the obtained results are applied to different types of boundary triplets.
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2 PRELIMINARIES

This chapter containing preliminary results consists out of five sections. In the
first section some elementary facts about Kreı̆n spaces are recalled from (Azizov&

Iokhvidov 1989) and (Bogńar 1974), and the Kreı̆n space notation used in this dis-
sertation is fixed. Thereupon in the second section the notion of hyper-maximality
of a neutral subspace in a Kreı̆n space is recalled from (Azizov& Iokhvidov 1989)
and that notion is extended to all semi-definite subspaces of a Kreı̆n spaces; such
subspaces will be naturally encountered when unitary relations are considered, see
Chapter 6. The most important property of hyper-maximal semi-definite subspaces
is that they induce a orthogonal decomposition of the space. In the third section the
abstract equivalents of the von Neumann formulas, used in the analysis of symmet-
ric operators, are identified/stated. The fourth section contains a short introduction
to multi-valued operators, which are also called linear relations. In the last sec-
tion of this chapter representations of semi-definite subspaces by means of (Hilbert
space) relations are presented. Two types of angular representation are given: The
traditional representation with respect to a canonical decomposition of the space,
see (Azizov& Iokhvidov 1989: Ch. 1,§8), and a second representation with respect
to hyper-maximal neutral subspaces.

2.1 Basic properties of Kreı̆n spaces

A vector spaceK with an indefinite inner product[·, ·] is called aKrĕın spaceif
there exists a decomposition ofK into the direct sum of two subspaces (linear sub-
sets)K+ andK− of K such that{K+, [·, ·]} and{K−,−[·, ·]} are Hilbert spaces and
[f+, f−] = 0, f+ ∈ K+ andf− ∈ K−; a decompositionK+[+]K− of K is called a
canonical decompositionof {K, [·, ·]}. (Here the sum of two subspacesM andN

is said to bedirect if M ∩N = {0}, in which case the sum is denoted byM+̇N.)
The dimensions ofK+ andK− are independent of the canonical decomposition of
{K, [·, ·]} and are denoted byk+ andk−, respectively.

For a Krĕın space{K, [·, ·]} there exists a linear operatorj in K such that{K, [j·, ·]}
is a Hilbert space and with respect to its inner productj∗ = j−1 = j. Any mapping
j satisfying the preceding properties is calleda fundamental symmetryof {K, [·, ·]}.
Conversely, if{H, (·, ·)} is a Hilbert space andj is a fundamental symmetry in
{H, (·, ·)}, then{H, (j·, ·)} is a Krĕın space. Each fundamental symmetry induces
a canonical decomposition and, conversely, each canonical decomposition induces
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a fundamental symmetry. However, all the norms generated by the different funda-
mental symmetries are equivalent. Hence a subspace of the Kreı̆n space{K, [·, ·]}
is calledclosedif it is closed with respect to the definite inner product[j·, ·] for one
(and hence for every) fundamental symmetry of{K, [·, ·]}.

Example 2.1.Let {H, (·, ·)} be a Hilbert space and definej onH2 as

j{f, f ′} = i{−f ′, f}, f, f ′ ∈ H.

Thenj is a fundamental symmetry in the Hilbert space{H2, (·, ·)}, i.e. j = j−1 = j∗.
Hence, with the sesqui-linear form< ·, · > defined onH2 by

< {f, f ′}, {g, g′} >= (j{f, f ′}, {g, g′}) = i [(f, g′)− (f ′, g)] , f, f ′, g, g′ ∈ H,

{H2, < ·, · >} is a Krĕın space for whichj is a fundamental symmetry. Note that
if K+[+]K− is the canonical decomposition of{H2, < ·, · >} corresponding to the
fundamental symmetryj, then

K+ = ker (j− I) = {{f, if} : f ∈ H};
K− = ker (j + I) = {{f,−if} : f ∈ H}.

For a subspaceL of the Krĕın space{K, [·, ·]} the orthogonal complementof L,
denoted byL[⊥], is the closed subspace of{K, [·, ·]} defined as

L[⊥] = {f ∈ K : [f, g] = 0, ∀g ∈ L}.

If j is a fixed fundamental symmetry of{K, [·, ·]}, then thej-orthogonal comple-
ment ofL, i.e. the orthogonal complement with respect to[j·, ·], is denoted byL⊥.
Clearly,L[⊥] = jL⊥ = (jL)⊥. For subspacesM andN of the Krĕın space{K, [·, ·]}
with a fixed fundamental symmetryj the notationM[+]N andM ⊕ N is used to
indicate that the sum ofM andN is orthogonal orj-orthogonal, respectively. Note
that

M[⊥] ∩N[⊥] = (M + N)[⊥] and M[⊥] + N[⊥] ⊆ (M ∩N)[⊥] . (2.1)

Lemma 2.2 below gives a condition for the inclusion in (2.1) to be an equality, see
(Kato 1966: Ch. IV: Theorem 4.8).

Lemma 2.2. LetM andN be closed subspaces of the Kreı̆n space{K, [·, ·]}. Then

M + N is closed if and only ifM[⊥] + N[⊥] is closed.

Moreover, if either of the above equivalent conditions holds, then

M[⊥] + N[⊥] = (M ∩N)[⊥].
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A projection P or P onto a closed subspace of the Kreı̆n space{K, [·, ·]} with
fundamental symmetryj is calledorthogonalor j-orthogonalif

K = ker P [+]ran P or K = kerP ⊕ ranP ,

respectively. Recall in this connection that{ker P, [·, ·]} and{ran P, [·, ·]} are Krĕın
spaces, see (Azizov& Iokhvidov 1989: Ch. 1, Theorem 7.16). Note that for a
canonical decompositionK+[+]K− of {K, [·, ·]}, with associated fundamental sym-
metry j, the projectionsP+ andP− ontoK+ andK−, respectively, are orthogonal
andj-orthogonal projections. For a subspaceL those projections satisfy

L[⊥] ∩ K+ = K+ ª P+L and L[⊥] ∩ K− = K− ª P−L. (2.2)

A subspaceL of {K, [·, ·]} is calledpositive, negative, nonnegative, nonpositiveor
neutral if [f, f ] > 0, [f, f ] < 0, [f, f ] ≥ 0, [f, f ] ≤ 0 or [f, f ] = 0 for every
f ∈ L \ {0}, respectively. A positive or negative subspaceL is calleduniformly

positiveor negativeif there exists a constantα > 0 such that[jf, f ] ≤ α[f, f ] or
[jf, f ] ≤ −α[f, f ] for all f ∈ L \ {0} and a fundamental symmetryj of {K, [·, ·]},
respectively. Note that a subspaceL of {K, [·, ·]} is neutral if and only ifL ⊆ L[⊥].
This observation together with (2.2) yields the following result.

Proposition 2.3. (Azizov& Iokhvidov 1989: Ch. 1, Corollary 5.8) LetL be a

neutral subspace of the Kreı̆n space{K, [·, ·]}. Then{L[⊥]/clos (L), [·, ·]} is a Krĕın

space1.

Furthermore, a subspace of{K, [·, ·]} having a certain property is said to bemaximal

with respect to that property, if there does not exist an extensions of it having the
same property. A subspace is said toessentiallyhave a certain property if its closure
has the indicated property.

Remark 2.4. In this dissertation the notation{H, (·, ·)} and {K, [·, ·]} is always
used to denote Hilbert and Kreı̆n spaces, respectively. To distinguish different
Hilbert and Krĕın spaces subindexes are used:H1,K1,H2,K2, etc.. Closed sub-
spaces of{Ki, [·, ·]i}, which are themselves Kreı̆n spaces with the inner product
[·, ·]i, are denoted bỹKi or K̂i. A canonical decomposition of{Ki, [·, ·]i} is denoted
by K+

i [+]K−i , its associated fundamental symmetry is denoted byji, andP+
i and

P−
i always denoted the orthogonal projection ontoK+

i andK+
i , respectively.

1The indefinite inner product on the quotient space, induced by the indefinite inner product on
the original space, is always indicated by the same symbol.
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2.2 Hyper-maximal semi-definite subspaces

Recall the following characterizations of maximal nonnegative and maximal non-
positive subspaces, see (Bognár 1974: Ch. V, Section 4).

Proposition 2.5. Let L be a nonnegative (nonpositive) subspace of{K, [·, ·]} and

let K+[+]K− be a canonical decomposition of{K, [·, ·]} with associated projections

P+ andP−. Then equivalent are

(i) L is a maximal nonnegative (nonpositive) subspace of{K, [·, ·]};

(ii) P+L = K+ (P−L = K−);

(iii) L is closed andL[⊥] is a nonpositive (nonnegative) subspace of{K, [·, ·]};

(iv) L is closed andL[⊥] is a maximal nonpositive (nonnegative) subspace of

{K, [·, ·]}.

Next recall that a (neutral) subspaceL of {K, [·, ·]} is calledhyper-maximal neutral

if it is simultaneously maximal nonnegative and maximal nonpositive, see (Azizov
& Iokhvidov 1989: Ch. 1, Definition 4.15). Equivalently,L is hyper-maximal
neutral if and only ifL = L[⊥], cf. Proposition 2.5. I.e., ifj is a fundamental
symmetry for{K, [·, ·]}, thenL is hyper-maximal neutral if and only ifK has the
following orthogonal decomposition:

K = L⊕ jL. (2.3)

The following result gives additional characterizations of hyper-maximal neutral-
ity by means of a canonical decomposition of the corresponding Kreı̆n space, see
(Azizov & Iokhvidov 1989: Ch. 1, Theorem 4.5& Theorem 8.10).

Proposition 2.6. Let L be a neutral subspace of{K, [·, ·]} and let K+[+]K− be

a canonical decomposition of{K, [·, ·]} with associated projectionsP+ and P−.

Then equivalent are

(i) L is hyper-maximal neutral;

(ii) P+L = K+ andP−L = K−;

(iii) UL defined viagr UL = {{P+f, P−f} ∈ K+ × K− : f ∈ L} is a standard

unitary operator from{K+, [·, ·]} onto{K−,−[·, ·]}.
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Note thatUL in Proposition 2.6 (iii) is called the angular operator w.r.t.K+ of L,
see Section 2.5 below. As a consequence of Proposition 2.6,k+ = k− if there
exists a hyper-maximal neutral subspace in{K, [·, ·]}. The converse also holds:
If k+ = k−, then there exist hyper-maximal neutral subspaces in{K, [·, ·]}, see
Example 2.7 below. By definition hyper-maximal neutral subspaces are maximal
neutral subspaces, the converse does not in general hold as the next example shows.

Example 2.7. Let {H, (·, ·)} be a separable Hilbert space with orthonormal basis
{en}n≥0, en ∈ H. Define the indefinite inner product[·, ·] onH2 by

[{f, f ′}, {g, g′}] = (f, g)− (f ′, g′), f, f ′, g, g′ ∈ H.

Then{H2, [·, ·]} is a Krĕın space. Now define the subspaceL1 andL2 of K as

L1 = span {{en, en} : n ∈ N} and L2 = span {{en, e2n} : n ∈ N}.

Then L1 and L2 are maximal neutral subspaces of{H2, [·, ·]}, but only L1 is a
hyper-maximal neutral subspace of{H2, [·, ·]}.

The above example can be modified to show that there also exist different types of
maximal nonpositive and nonnegative subspaces of Kreı̆n spaces. Hence the notion
of hyper-maximality can meaningfully be extended to semi-definite subspaces.

Definition 2.8. Let L be a nonnegative or nonpositive subspace of{K, [·, ·]}. Then
L is calledhyper-maximal nonnegativeor hyper-maximal nonpositiveif L is closed
andL[⊥] is a neutral subspace of{K, [·, ·]}.

Some alternative characterizations for semi-definite subspaces to be hyper-maximal
semi-definite are provided by the following proposition.

Proposition 2.9.LetL be a nonnegative (nonpositive) subspace of{K, [·, ·]} and let

K+[+]K− be a canonical decomposition of{K, [·, ·]} with associated fundamental

symmetryj and projectionsP+ andP−. Then equivalent are

(i) L is hyper-maximal nonnegative (nonpositive);

(ii) L is closed,L[⊥] ⊆ L andP−L[⊥] = K− (P+L[⊥] = K+);

(iii) L is closed andL = L[⊥] + L ∩ K+ (L = L[⊥] + L ∩ K−);

(iv) L is closed and induces the following orthogonal decomposition ofK:

K = L[⊥] ⊕ (L ∩ jL)⊕ jL[⊥].
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Proof. The statement will only be proven in the case thatL is a nonnegative sub-
space, the other case can be proven by similar arguments.

(i) ⇒ (ii): Since L[⊥] is neutral,L[⊥] ⊆ L[⊥][⊥]
= clos L = L. Next let f− ∈

K− ª P−L[⊥] = clos (L) ∩ K−, see (2.2). SinceL is by assumption closed and
nonnegative, it follows thatf− = 0, i.e.,P−L[⊥] = K−.

(ii) ⇒ (iii): It suffices to prove the inclusionL ⊆ L[⊥] + L ∩ K+. Hence, letf ∈ L

be decomposed asf+ + f−, wheref± ∈ K±. Then the assumptionP−L[⊥] =

K− implies that there exists ag+ ∈ K+ such thatg+ + f− ∈ L[⊥] and, hence,
f − (g+ + f−) = f+ − g+ ∈ L ∩ K+, because by assumptionL[⊥] ⊆ L.

(iii) ⇒ (iv): SinceL is closed,L ∩ K+ = L ∩ jL is a closed subspace. Moreover,
sinceL is nonnegative, the second assumption in (iii) implies thatL is the orthog-
onal sum ofL[⊥] andL ∩ K+. In other words,L[⊥] is a hyper-maximal neutral
subspace of the Kreı̆n space{Kª (L ∩ jL), [·, ·]}. Hence, (2.3) implies (iv).

(iv) ⇒ (i): The decomposition in (iv) implies thatL∩ jL is closed and the assump-
tion thatL is nonnegative implies thatL ∩ jL ⊆ K+. Consequently, the decom-
position in (iv) implies thatL[⊥] is a hyper-maximal neutral subspace of the Kreı̆n
space{Kª (L∩ jL), [·, ·]}, see (2.3). Hence,L[⊥] is a maximal neutral subspace of
{K, [·, ·]} and, consequently, (i) holds, becauseL is by assumption closed.

Recall that by definitionL[⊥] is a maximal neutral subspace ifL is a hyper-maximal
semi-definite subspace. Proposition 2.9 shows that the converse also holds: ifL is
a maximal neutral subspace, thenL[⊥] is a hyper-maximal semi-definite subspace.
Corollary 2.10 below shows that hyper-maximal semi-definite subspaces can also
be characterized by means of projections associated with canonical decompositions
of the space. Note that different from the case of hyper-maximal neutral subspaces,
see Proposition 2.6, here conditions on one pair of projections do not suffice.

Corollary 2.10. Let L be a semi-definite subspace of{K, [·, ·]}. ThenL is hyper-

maximal semi-definite if and only ifP+L = K+ andP−L = K− for every canonical

decompositionK+[+]K− of {K, [·, ·]} with associated projectionsP+ andP−.

Proof. To prove the statement w.l.o.g. assume thatL is nonnegative.

Let L be hyper-maximal nonnegative and letK+[+]K− be a canonical decomposi-
tion of {K, [·, ·]} with associated projectionsP+ andP−. Then Proposition 2.9 (iv)
implies thatL ∩ jL = L ∩ K+ is closed and thatL[⊥] is a hyper-maximal neutral
subspace of the Kreı̆n space{Kª (L∩ jL), [·, ·]}. Hence,P±L[⊥] = K±ª (L∩ jL),
see Proposition 2.6, andL[⊥] + L ∩ jL ⊆ L, becauseL is by assumption closed.
These observations show that the stated characterization holds.
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Conversely, ifP+L = K+ andP−L = K− for every projectionP+ andP+ as
in the statement. ThenP+L = K+ implies thatL is maximal nonnegative, and
hence closed, and thatL[⊥] is a maximal nonpositive subspace, see Proposition 2.5.
Suppose thatf ∈ L[⊥] is such that[f, f ] < 0, then there exists a canonical de-
compositionK+

a [+]K−a of {K, [·, ·]} such thatf ∈ K−a , see (Bogńar 1974: Ch. V,
Theorem 5.6). I.e.,f ∈ L[⊥]∩K−a = K−a ªP−

a L, see (2.2), which is in contradiction
with the assumption thatP−

a L = K−a . Consequently,L[⊥] is neutral and, hence,L
is a hyper-maximal nonnegative subspace.

Corollary 2.10 shows that hyper-maximal nonnegative (nonpositive) subspaces are
also maximal nonnegative (nonpositive), justifying the terminology. It also shows
that in a Krĕın space{K, [·, ·]} with k+ > k− or k+ < k− every hyper-maximal
semi-definite subspace is nonnegative or nonpositive, respectively. Ifk+ = k−, then
a hyper-maximal semi-definite subspace can be neutral, nonnegative or nonpositive.

Example 2.11.With the notation as in Example 2.7,{H2, [·, ·]} is a Krĕın space
with k+ = k−. In this Krĕın spaceL1 is a hyper-maximal neutral subspace, whilst
L

[⊥]
2 is a hyper-maximal nonpositive subspace.

2.3 Abstract von Neumann formulas

Let L be a neutral subspace of the Kreı̆n space{K, [·, ·]} with a canonical decom-
positionK+[+]K−. Then the(abstract) first von Neumann formula holds:

L[⊥] = clos (L)[⊕](L[⊥] ∩ K+)[⊕](L[⊥] ∩ K−), (2.4)

see (Azizov& Iokhvidov 1989: Ch. 1, 4.20) and (2.2). Note that (2.4) is noth-
ing else than the canonical decomposition for the Kreı̆n space{L[⊥] ª L, (j·, ·)}
induced by the canonical decompositionK+[+]K− of {K, [·, ·]}. As a consequence
of the first von Neumann formula and Lemma 2.3, the notion of defect numbers
for neutral subspaces of Kreı̆n spaces as introduced below is well-defined, see (Az-
izov & Iokhvidov 1989: Ch. 1, Theorem 6.7). This definition extends the usual
definition of defect numbers for symmetric relations, see Appendix A.

Definition 2.12. Let L be a neutral subspace of{K, [·, ·]} and letK+[+]K− be a
canonical decomposition of{K, [·, ·]}. Then the defect numbersn+(L) andn−(L)

of L are defined as

n+(L) = dim(L[⊥] ∩ K−) and n−(L) = dim(L[⊥] ∩ K+).
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The following generalization of thesecond von Neumann formulawill be useful in
the analysis of unitary relations.

Proposition 2.13. Let L andM be subspaces of{K, [·, ·]} such thatM ⊆ L and

let P be an orthogonal projection in{K, [·, ·]}. Then

PL = PM if and only if L = M + L ∩ ker P. (2.5)

Furthermore, ifM is closed,PL = PM and(I−P )M[⊥] +(I−P )(L∩ker P )[⊥]

is closed, then

(i) L ∩ ker P is closed if and only ifL is closed;

(ii) clos (L ∩ ker P ) = (clos L) ∩ ker P .

Proof. Clearly, if L = M + L ∩ ker P , thenPL = PM. To prove the converse
let f ∈ L, then the assumption thatPL = PM implies that there exists ag ∈ M

such thatPf = Pg, i.e. f − g ∈ ker P . Since by assumptionM ⊆ L, f − g

is also contained inL, i.e. f − g ∈ L ∩ ker P . These arguments show thatL ⊆
M + L ∩ ker P . Since the reverse inclusion clearly holds, this completes the proof
of (2.5).

(i): If L is closed, thenL ∩ ker P is clearly closed. To prove the converse note
first thatran P ⊆ (L ∩ ker P )[⊥]. Therefore the assumption that(I − P )M[⊥] +

(I − P )(L ∩ ker P )[⊥] is closed implies thatM[⊥] + (L ∩ ker P )[⊥] is closed. This
fact together with the assumptions thatM andL ∩ ker P are closed implies that
M + L ∩ ker P is closed, see Lemma 2.2. Consequently, the closedness ofL now
follows from (2.5).

(ii): The assumptionsPL = PM andM ⊆ L yield by (2.5) that

L = M + (L ∩ ker P ) ⊆ M + clos (L ∩ ker P ) ⊆ clos (L).

SinceM + clos (L ∩ ker P ) is closed (see the proof of (i)), taking closures in
the above equation yields thatclos (L) = M + clos (L ∩ ker P ) and therefore
P (clos L) ⊆ PM. Now, (2.5) implies thatclos (L) = M + (clos L) ∩ ker P ,
i.e.,

M + clos (L ∩ ker P ) = clos (L) = M + (clos L) ∩ ker P.

From this it follows that (ii) holds.

Let j be a fundamental symmetry of{K, [·, ·]}. Then observe that(I − P )M[⊥] +

(I − P )(L ∩ ker P )[⊥] is closed, if the following inclusion holds

(I − P )M[⊥] ⊇ ((I − P )(L ∩ ker P )[⊥])⊥ ∩ ker P

= jclos (L ∩ ker P ) ∩ ker P + (jran P ) ∩ ker P.
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Corollary 2.14. Let L andM be subspaces of{K, [·, ·]} such thatM ⊆ L and let

K+[+]K− be a canonical decomposition of{K, [·, ·]} with associated projections

P+ andP−. Then

P−L = P−M if and only if L = M + L ∩ K+;

P+L = P+M if and only if L = M + L ∩ K−.

Furthermore, ifM is closed,P−L = P−M andclos (L ∩ K+) ⊆ P+M[⊥], then

(i) L ∩ K+ is closed if and only ifL is closed;

(ii) clos (L ∩ K+) = (clos L) ∩ K+;

and ifM is closed,P+L = P+M andclos (L ∩ K−) ⊆ P−M[⊥], then

(i’) L ∩ K− is closed if and only ifL is closed;

(ii’) clos (L ∩ K−) = (clos L) ∩ K−.

Proof. The observation preceding this statement shows that the condition that the
subspace(I − P )M[⊥] + (I − P )(L ∩ ker P )[⊥] is closed forP = P− or P = P+,
if clos (L ∩ K+) ⊆ P+M[⊥] or clos (L ∩ K−) ⊆ P−M[⊥], respectively. Hence, this
statement follows from Proposition 2.13 by takingP to beP− andP+.

Note that ifL is a subspace of{K, [·, ·]}, then the conditionsP−L = P−M and
clos (L∩K+) ⊆ P+M[⊥] are satisfied for any hyper-maximal nonpositive subspace
M ⊆ L, and the conditionsP+L = P+M and clos (L ∩ K−) ⊆ P−M[⊥] are
satisfied for any hyper-maximal nonnegative subspaceM ⊆ L.

2.4 Multi-valued operators in Kreı̆n spaces

Recall that a mappingH from a setX to setY is called a multi-valued mapping if
Hx := H(x) is a subset ofY for everyx ∈ X. Using this conceptH is called a
(linear) multi-valued operatorfrom {K1, [·, ·]1} to {K2, [·, ·]2} if H is a linear multi-
valued mapping from a subspace ofK1, called the domain ofH or dom H for short,
to K2 such that

H(f + cg) = Hf + cHg, f, g ∈ dom H, c ∈ C,
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see (Cross 1998). HereHf +cHg is the sum of subspaces ofK2, i.e.,Hf +cHg =

{f ′ + cg′ : f ′ ∈ Hf andg′ ∈ Hg}. For a (linear) multi-valued operatorH and a
subspaceL ⊆ dom H, the subspaceH(L) of K2 is defined as

H(L) = {f ′ ∈ K2 : ∃f ∈ L s.t. f ′ ∈ Hf}.

Using this definition, the range, the multi-valued part and the kernel of a multi-
valued operatorH are defined as follows:

ran H = H(dom H), mul H = H0, ker H = {f ∈ dom H : Hf = mul H}.

Since a multi-valued operator is linear, for a fixed fundamental symmetryj2 of
{K2, [·, ·]2} there exists for everyf ∈ dom H a uniquef ′ ∈ (mul H)⊥2 such that
Hf = f ′ + mul H. A (single-valued) linear operator which on the basis of the
preceding observation can be associated to a multi-valued operator, will be called
an operator partof a multi-valued operatorH (w.r.t. j2) and is denoted byHo. In
particular,Hf = Hof + mul H, f ∈ dom H, and, hence,H = Ho if and only if
mul H = {0}. In that case the multi-valued operator is an ordinary (linear) operator
and the above definitions of the domain and kernel reduce to their usual form. A
multi-valued operator is calledclosedif an operator part is a closed operator and
mul H is closed subspace (of{K2, [·, ·]2}). The graph of a multi-valued operatorH

is the subspacegr H of K1 × K2 defined as

gr H = {{f, f ′} ∈ K1 × K2 : f ∈ dom H andf ′ ∈ Hf}.

Conversely, with each subspace ofK1 × K2 a multi-valued operator can be associ-
ated. Recall that subspaces ofK1 × K2 are called (linear) relations, see e.g. (Arens
1961). Here, following Cross (1998), the term relation will be used as a synonym
for a multi-valued operator2.

The inverse of a relationH is the relationH−1 defined as

H−1f ′ = {f ∈ K1 : f ′ ∈ Hf}, f ′ ∈ dom H−1 := ran H.

Clearly,(H−1)−1 = H, ker H = mul H−1, mul H = ker H−1 and

H−1Hf = f + ker H, f ∈ dom H, HH−1f ′ = f ′ + mul H, f ′ ∈ ran H.

The adjoint of a relationH is the relationH [∗] whose graph is given by

gr H [∗] = {{f, f ′} ∈ K2 × K1 : [f ′, g]1 = [f, g′]2, ∀{g, g′} ∈ gr H}.
2It is emphasized that here the multi-valued operator (relation) and its graph will not be iden-

tified; a multi-valued operator (relation) is always to be understood as a multi-valued mapping be-
tween two spaces and its graph is used to describe the geometrical properties of this mapping.
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If {K1, [·, ·]1} and{K2, [·, ·]2} are Hilbert spaces, then the usual notationH∗ is used
for the adjoint of a relationH. From the above definition of the adjoint of a relation
it follows immediately that

(dom H)[⊥]1 = mul H [∗] and (ran H)[⊥]2 = ker H [∗]. (2.6)

For relationsG andH from K1 to K2 the notationG + H is used to denote the sum
of relations:

(G + H)f = Gf + Hf, f ∈ dom G ∩ dom H.

Moreover, the notationG ⊆ H is used to denote thatH is an extension ofG, i.e.
gr G ⊆ gr H. In particular, with this notation

G = H if and only if G ⊆ H, dom H ⊆ dom G, mul H ⊆ mul G (2.7)

or, by passing to the inverses,

G = H if and only if G ⊆ H, ran H ⊆ ran G, ker H ⊆ ker G. (2.8)

If G is a relation from{K1, [·, ·]1} to{K2, [·, ·]2} andH is a relation from{K2, [·, ·]2}
to {K3, [·, ·]3}, then their composition is the relationHG defined as

(HG)f = {f ′ ∈ K2 : ∃g ∈ Gf s.t. f ′ ∈ Hg}, f ∈ G−1(ran G ∩ dom H).

The following basic facts about relations can essentially be found in e.g. (Arens
1961); for the last statement in Lemma 2.15 below see also (Derkach et al. 2009:
Lemma 2.9).

Lemma 2.15. Let G be a relation from{K1, [·, ·]1} to {K2, [·, ·]2} and letH be a

relation from{K2, [·, ·]2} to {K3, [·, ·]3}. Then

(
H [∗])−1

=
(
H−1

)[∗]
, (HG)−1 = G−1H−1 and G[∗]H [∗] ⊆ (HG)[∗].

Moreover, ifG is closed,ran G is closed anddom H ⊆ ran G or H is closed,

dom H is closed andran G ⊆ dom H, thenG[∗]H [∗] = (HG)[∗].

In particular, as a consequence of Lemma 2.15, the notationH−[∗] is used as a
shorthand notation for

(
H [∗])−1

= (H−1)[∗].

Let Pi be a projection in{Ki, [·, ·]i}, for i = 1, 2, then the projectionP1 × P2 in
K1×K2 is defined as(P1×P2)(f1×f2) = P1f1×P2f2, f1 ∈ K1 andf2 ∈ K2. From
gr H ⊆ dom H× ran H for a relationH from K1 to K2, it follows immediately that
(P1 × P2)gr H ⊆ (P1 × P2)(dom H × ran H). Characterizations for when the
inverse inclusion holds are provided by the following statement.
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Proposition 2.16.LetH be a relation from{K1, [·, ·]1} to {K2, [·, ·]2} and letPi be

an orthogonal projection in{Ki, [·, ·]i}, for i = 1, 2. Then equivalent are

(i) (P1 × P2)(dom H × ran H) ⊆ (P1 × P2)gr H;

(ii) P1dom H = P1H
−1(ran H ∩ ker P2);

(iii) P2ran H = P2H(dom H ∩ ker P1);

(iv) dom H = H−1(ran H ∩ ker P2) + (dom H ∩ ker P1);

(v) ran H = H(dom H ∩ ker P1) + (ran H ∩ ker P2).

Proof. (i) ⇒ (ii): If (i) holds, then for everyf1 ∈ P1dom H there exists{f, f ′} ∈
gr H such thatP1f = f1 andP2f

′ = 0. Thereforef ′ ∈ ran H ∩ ker P2 and hence
P1dom H ⊆ P1H

−1(ran H∩ker P2). Since the inverse inclusion clearly holds, this
shows that (ii) holds.

(ii) ⇔ (iv): Let f ∈ dom H, then by (ii) there exists{g, g′} ∈ gr H such that
P1g = P1f andg′ ∈ ran H ∩ ker P2. Hencef = g +h, whereh = f − g ∈ dom H

andP1h = P1(f−g) = 0, i.e.,dom H ⊆ H−1(ran H∩ker P2)+(dom H∩ker P1).
Since the inverse inclusion clearly holds, this proves the implication from (ii) to (iv).
The reverse implication is direct.

(iii) ⇔ (v): This is similar to the equivalence of (ii) and (iv).

(iv) ⇔ (v): This follows by applyingH andH−1.

(ii) & (iii) ⇒ (i): If f ∈ P1dom H andf ′ ∈ P2ran H, then by (ii) there exists
{g, g′} ∈ gr H such thatP1g = f , P2g

′ = 0 and by (iii) there exists{h, h′} ∈ gr H

such thatP1h = 0 andP2h
′ = f ′. Hence,{g + h, g′ + h′} ∈ gr H, P1(g + h) =

P1g = f andP2(g
′ + h′) = P2h

′ = f ′.

This section is concluded by stating a several properties of operator ranges which
will be used throughout the dissertation. Therefore recall that a subspace of a
Hilbert space is called anoperator rangeif it is the range of a bounded (or, equiva-
lently, of a closed) operator in that space. Most of the below stated operator range
results can be found from (Fillmore& Williams 1971); it is however worth mention-
ing that statements (iii) and (vi) (in the separable case) of Proposition 2.17 go back
to Calkin (1939a: Lemma 3.1& Lemma 4.2). For the proof of (vi) Calkin used the
well-known part of Proposition 2.17 (v), which goes back to von Neumann (1929).

Proposition 2.17.Let{H, (·, ·)} be a Hilbert space. Then the following statements

hold:
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(i) if R1 ⊆ H andR2 ⊆ H are operator ranges, thenR1 + R2 andR2 ∩R2 are

also operator ranges;

(ii) if R ⊆ H is an operator range such thatclos R = H, then there exists

a nonnegative selfadjoint operatorB in {H, (·, ·)} such thatdom B = H,

ran B = R andker B = {0};

(iii) if R ⊆ H is an operator range which does not contain an infinite-dimensional

closed subspaces, thenR is a ”compact operator range”: IfB is an operator

in {H, (·, ·)} such thatran B = R, thenB is a compact operator;

(iv) if R1 ⊆ H is the operator range of a compact operator andR2 ⊆ H is an

operator range such thatclos (R1 + R2) = H, whereR2 is nonclosed or the

co-dimension ofR2 is infinite, thenR1 + R2 6= H;

(v) if R1 ⊆ H is a nonclosed operator range and{H, (·, ·)} is a separable Hilbert

space, then there exists an operator rangeR2 of a noncompact operator with

clos (R2) = H such that

R1 ∩R2 = {0} and clos (R1 + R2) 6= H;

(vi) if R ⊆ H is a nonclosed operator range such thatclos (R) = H, then there

exists an infinite-dimensional closed subspaceL ⊆ H such thatR∩L = {0}.

Proof. (i): These two statements can be found in (Fillmore& Williams 1971: The-
orem 2.2& Corollary 2 on p. 260).

(ii): If R is an operator range, then the polar decomposition of closed operators
implies that there exists a bounded nonnegative selfadjoint operatorB in {H, (·, ·)}
such thatR = ran B. Hence, the fact that (ii) holds, follows now from the assump-
tion thatclos (R) = ran B = H, see (2.6).

(iii): For this statement see (Calkin 1939a: Lemma 3.1) or (Fillmore& Williams
1971: Theorem 2.5).

(iv): To prove (iv) assume the converse, i.e. thatR1 + R2 = H. Then by (Fillmore
& Williams 1971: Theorem 2.4) there exist closed disjoint subspacesM1 ⊆ R1

andM2 ⊆ R2 such thatM1 + M2 = H. Now by either of the assumptions on
R2 in (iv) it follows that M1 must be an infinite-dimensional subspace. SinceM1

is contained in the range of a compact operator, that is not possible, see (iii). This
contradiction shows thatR1 + R2 6= H.

(v): The first part of this statement is the contents of (Fillmore& Williams 1971:
Theorem 3.6) and the second part of it follows from an inspection of that proof.
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That proof consists out of two parts: First a dense operator rangeL is constructed
such thatL ∩ V L = {0} for a unitary operatorV in {H, (·, ·)} and secondly it
is shown that there exists a unitary operatorW in {H, (·, ·)} such thatWR1 ⊆ L .
From these two fact it follows that the first assertion in (v) holds by takingR2 to be
W−1V L . Hence, to show that the second assertion in (v) holds it suffices to show
thatL + V (L ) 6= H and thatclos L = H. Therefore note thatL andV are in
(Fillmore & Williams 1971: Theorem 3.6) constructed as countably infinite sums:
L =

⊕∞
i=1 Li andV =

⊕∞
i=1 Vi, whereLi is the operator range of a compact

operator in an infinite-dimensional Hilbert space{Hi, (·, ·)} with clos Li = Hi and
Vi is a unitary operator in{Hi, (·, ·)}. Clearly, fromclos Li = Hi, it follows that
clos L = H. Moreover, sinceLi is the operator range of a compact operator,
(iv) implies thatLi + V Li 6= Hi and, hence,L + V L 6= H. Note also that
the above construction shows thatR2 = W−1V L is not the operator range of a
compact operator, becauseL contains by construction infinite-dimensional closed
subspaces, cf. (iii).

(vi): Let B be a bounded nonnegative selfadjoint operator in{H, (·, ·)} such that
R = ran B, see (ii). Moreover, let{Et}t∈R be its spectral family and defineFn =

E2−n||B|| − E2−n−1||B||, n ∈ N, then

ran B =

{ ∞∑
n=0

φn : φn ∈ ran Fn and
∞∑

n=0

4n(φn, φn) < ∞
}

, (2.9)

see (Fillmore& Williams 1971: proof of Theorem 1.1). To prove that (vi) holds
two disjoint cases are considered.

Case 1:There exist infinitely many Hilbert spaces{ran Fn, (·, ·)}which are infinite-
dimensional. Then let{nk}k∈N be a subsequence ofN such that{ran Fnk

, (·, ·)} is
an infinite-dimensional Hilbert space, and let{φi

nk
}i∈N be an infinite orthonormal

sequence in{ran Fnk
, (·, ·)}. Defineψi =

∑∞
k=0 2−nkφi

nk
, i ∈ N, thenψi /∈ ran H

by (2.9) whilstψi ∈ H, because

(ψi, ψi) =
∞∑

k=0

(2−nkφi
nk

, 2−nkφi
nk

) =
∞∑

k=0

4−nk ≤
∞∑

k=0

4−k < ∞.

Since theφi
nk

are orthogonal by construction,L := span {ψ1, ψ2, . . .} is an infinite-
dimensional closed subspace such thatL ∩ ran B = {0}.
Case 2:There do not exist infinitely many Hilbert spaces{ran Fn, (·, ·)} which are
infinite-dimensional. ThenB is the orthogonal sum of a compact operator and a
bounded and boundedly invertible operator. W.l.o.g. assume thatB is an (every-
where defined) compact operator in{H, (·, ·)}. Sinceran B = H andran B 6= H,
{H, (·, ·)}must be an (infinite-dimensional) separable Hilbert space and, hence, the



Acta Wasaensia 23

existence of an infinite-dimensional closed subspaceL such thatL ∩ ran B = {0}
follows from (v) and (iii).

Corollary 2.18. LetH be a closed unbounded operator in{H, (·, ·)}withdom H =

H, ran H = H andker H = {0}. Then for every0 ≤ m ≤ ℵ0, there exists anm-

dimensional closed subspaceLm of H such that

H = clos (H−∗(L⊥m)).

Proof. Note first that the assumptions onH imply that H∗ is an operator with
ran H∗ = H and that by Proposition 2.17 (vi) (applied to the operator rangedom H)
there exists form as in this statement a closed subspaceLm ⊆ H such thatLm ∩
dom H = {0}. Now letg ∈ H be orthogonal toH−∗(L⊥m), then

0 = (g, H−∗f) = (H−1g, f), ∀f ∈ L⊥m.

This implies thatH−1g ∈ dom H ∩ Lm = {0}. Consequently,g = 0 and, hence,
H = clos (H−∗(L⊥2)).

2.5 Angular and quasi-angular operators

In this section first the concept of an angular operator for (semi-definite) subspaces
of a Krĕın space is shortly recalled; for details see (Azizov& Iokhvidov 1989:
Ch. 1,§8). That overview is followed by an other manner of characterizing semi-
definite subspace of a Kreı̆n space by means of operators.

Let K+[+]K− be a canonical decomposition of{K, [·, ·]}, then the angular operators
K+ andK− of a subspaceL of K w.r.t. K+ andK− are the relations fromK+ to K−

and fromK− to K+ defined via

gr K+ := {{P+f, P−f} : f ∈ L} and gr K− := {{P−f, P+f} : f ∈ L},

respectively. In other words,K+ andK− are such that

L = gr K+ = {f+ + (K+)of
+ : f+ ∈ dom K+}+ mul K+;

L = gr K− = {f− + (K−)of
− : f− ∈ dom K−}+ mul K−,

wheremul K+ = L∩K− andmul K− = L∩K+. Proposition 2.19 below contains
the characterizations of semi-definite subspaces by means of angular operators.

Proposition 2.19.LetL be a subspace of{K, [·, ·]} and letK+ andK− be the an-

gular operators ofL w.r.t. K+
1 andK−1 , respectively, for a canonical decomposition

K+
1 [+]K−1 of {K, [·, ·]}. Then the following equivalences hold:
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(i) the subspaceL is a (closed, maximal) neutral or hyper-maximal neutral sub-

space of{K, [·, ·]} if and only ifK+ or (K−)−1 is a (closed, maximal) iso-

metric or unitary operator from (the Hilbert space){K+, [·, ·]} to (the Hilbert

space){K−,−[·, ·]}, respectively;

(ii) the subspaceL is a (closed, maximal) (uniform) nonnegative subspace of

{K, [·, ·]} if and only ifK+ is a (closed, everywhere defined) (uniform) con-

traction from{K+, [·, ·]} to {K−,−[·, ·]};
(iii) the subspaceL is a (closed, maximal) (uniform) nonpositive subspace of

{K, [·, ·]} if and only ifK− is a (closed, everywhere defined) (uniform) con-

traction from{K−,−[·, ·]} to {K+, [·, ·]}.

Moreover, the angular operator forL[⊥] w.r.t. K− or K+ is (K+)∗ or (K−)∗, re-

spectively. Here the adjoint is taken as a relation from{K+, [·, ·]} to {K−,−[·, ·]}
or as a relation from{K−,−[·, ·]} to {K+, [·, ·]}, respectively.

Proof. The equivalences in (i)-(ii) can all be found in (Azizov& Iokhvidov 1989:
Ch. 1, §8) and there also special cases of the last statement can be found. For
completeness, a proof for the general case of the last statement is included here.

LetK+ be the angular operator for the subspaceL w.r.t. K+. If g = g++g− ∈ L[⊥],
g+ ∈ K+ andg− ∈ K−, then

0 = [f + K+f, g+ + g−] = [f, g+] + [K+f, g−], ∀f ∈ P+
1 L.

This shows thatg+ = (K+)∗g−. Conversely, ifg+ = (K+)∗g−, then reversing the
above arguments shows thatg+ + g− ∈ L[⊥]. Consequently,(K+)∗ is the angular
operator forL[⊥] w.r.t. K−.

Above semi-definite subspaces have been characterized by means of a canonical
decomposition of the space. Next a characterization of semi-definite subspaces by
means of a neutral decomposition of the space is presented. More precisely, let
{K, [·, ·]} be a Krĕın space for whichj is a fundamental symmetry and assume that
there exists a hyper-maximal neutral subspaceM in {K, [·, ·]}. Then recall that
M induces an orthogonal decomposition of the space into hyper-maximal neutral
subspaces:K = M ⊕ jM. If L is now a subspace ofK, then itsquasi-angular

operator w.r.t.M is the relationA in the Hilbert space{M, [j·, ·]} defined via

gr A = {{PMf, iPMjf} : f ∈ L}, (2.10)

wherePM is the orthogonal projection ontoM w.r.t. [j·, ·]. I.e.,A is such that

L = {f − jiAf : f ∈ dom A} = {f − jiAof : f ∈ dom A}+ j(mul A),
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wheremul A = L ∩ jM. Proposition 2.20 below contains a characterization of
the different types of semi-definite subspacesL in terms of their associated quasi-
angular operators. Therefore recall that a relationH in {K, [·, ·]} is calleddissipa-

tiveor accumulativeif

Im [f ′, f ] ≥ 0 or Im [f ′, f ] ≤ 0, ∀{f, f ′} ∈ gr H,

respectively. A dissipative or accumulative relationH is calledmaximal dissipative

or maximal accumulativeif it has no proper dissipative or accumulative extensions,
respectively. In particular, a dissipative or accumulative relationH in a Hilbert
space{H, (·, ·)} is maximal dissipative or maximal accumulative if and only ifλ ∈
ρ(A) for a (and hence for every)λ ∈ C− or λ ∈ C+, respectively.

Proposition 2.20. Let j be a fundamental symmetry of{K, [·, ·]} and assume that

there exists a hyper-maximal neutral subspaceM in {K, [·, ·]}. Moreover, letL

be a subspace ofK with quasi-angular operatorA w.r.t. M. Then the following

equivalences hold:

(i) the subspaceL is a (closed, maximal) neutral or hyper-maximal neutral sub-

space of{K, [·, ·]} if and only ifA is a (closed, maximal) symmetric or self-

adjoint relation in the Hilbert space{M, [j·, ·]}, respectively;

(ii) the subspaceL is a (closed, maximal) nonnegative or nonpositive subspace of

{K, [·, ·]} if and only ifA is a (closed, maximal) dissipative or accumulative

operator in{M, [j·, ·]}, respectively.

Moreover, the quasi-angular operator ofL[⊥] w.r.t. M is A∗.

Proof. First the final assertion is shown to hold. Therefore observe that by defini-
tion g − jig′ ∈ L[⊥], g, g′ ∈ M, if and only if

0 = [f − jif ′, g − jig′] = [f,−jig′] + [−jif ′, g] = −i([jf ′, g]− [jf, g′])

for all {f, f ′} ∈ gr A. This shows thatg− jig′ ∈ L[⊥] if and only if {g, g′} ∈ gr A∗.
I.e., the final assertion holds. Clearly, (i) follows immediately from the proven
assertion. Next assume thatL is a nonnegative subspace, then

0 ≤ [f − jif ′, f − jif ′] = i[−jf ′, f ]− i[f,−jf ′] = 2Im ([jf ′, f ])

for all {f, f ′} ∈ gr A. I.e.,A is a dissipative relation in the Hilbert space{M, [j·, ·]}.
The converse is proven by reserving the above arguments. Furthermore, it is clear
thatL andA are closed simultaneously, see Section 2.4, and thatL has a nonnega-
tive extension if and only ifA has a dissipative extension.
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3 BASIC PROPERTIES OF UNITARY RELATIONS

Basic properties of isometric and unitary relations are presented here. More pre-
cisely, in the first of the five sections of this chapter the definition of isometric and
unitary relations are stated and some basic characterizations of them are recalled.
In the second and third section, the behavior of isometric and unitary relations with
respect to special subspaces is investigated. More specifically, first the kernel and
multi-valued part of isometric relations are investigated and, secondly, the behavior
of isometric relations with respect to the closure of subspaces is investigated. In that
connection it is shown that basically only for uniformly definite subspaces one can
say something in general about the closedness of their image after mapping them
by a (closed) isometric relation. In the fourth section it is shown how from isomet-
ric relations the kernel, multi-valued part and closed uniformly definite subspaces
contained in their domain, which were studied in the preceding sections, can be
removed. Thereby one remains with the more involved part of isometric relations.
Finally, in the fifth section maximal isometric relations are shortly considered.

3.1 Isometric and unitary relations

A relationU from {K1, [·, ·]1} to {K2, [·, ·]2} is calledisometricor unitary if

U−1 ⊆ U [∗] or U−1 = U [∗], (3.1)

respectively, see (Arens 1961). An isometric relation is calledmaximalisometric,
if it has no proper isometric extension. The above definition says that a relationV

from {K1, [·, ·]1} to {K2, [·, ·]2} is isometric if and only if

[f, g]1 = [f ′, g′]2, ∀{f, f ′}, {g, g′} ∈ gr V.

Hence, polarization yields thatV is isometric if and only if[f, f ]1 = [f ′, f ′]2, for
all {f, f ′} ∈ gr V . Furthermore, (3.1) implies that unitary relations are maximal
isometric relations in a special sense.

Proposition 3.1. Let U be a relation from{K1, [·, ·]1} to {K2, [·, ·]2}. ThenU is

unitary if and only ifU is isometric and if{f, f ′} ∈ K1 × K2 is such that

[f, g]1 = [f ′, g′]2, ∀{g, g′} ∈ gr U,

then{f, f ′} ∈ gr U .
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Proof. If {f, f ′} ∈ K1 × K2 satisfies the stated condition, then{f ′, f} ∈ gr U [∗] by
the definition ofU [∗]. Hence the equivalence follows directly from the definition of
unitary relations, see (3.1).

Since
(
U [∗])−1

= (U−1)[∗], the definitions of isometric and unitary relations in (3.1)
imply that a relation is isometric or unitary if and only if its inverse is isometric or
unitary, respectively. In particular, the action of an isometric or a unitary relation
and their inverse are of the same type and, hence, the structure of their domain and
range is of the same type. Since the adjoint of a relation is automatically closed,
(3.1) also implies that every unitary relation is closed and that a relation is isometric
if and only if its closure is isometric.

For Krĕın spaces{K1, [·, ·]1} and{K2, [·, ·]2} the notation[·, ·]1,−2 is used to denote
the indefinite inner product onK1 × K2 defined by

[f1 × f2, g1 × g2]1,−2 = [f1, g1]1 − [f2, g2]2, f1, g1 ∈ K1, f2, g2 ∈ K2. (3.2)

With this inner product,{K1 × K2, [·, ·]1,−2} is a Krĕın space and for a relationH
from K1 to K2 one has that(gr H)[⊥]1,−2 = gr H−[∗]. The preceding observation
yields the following result which can be partly found in (Shmul’jan 1976).

Proposition 3.2. Let U be a relation from{K1, [·, ·]1} to {K2, [·, ·]2}. ThenU is

a (closed, maximal) isometric or unitary relation if and only ifgr U is a (closed,

maximal) neutral or hyper-maximal neutral subspace of{K1 × K2, [·, ·]1,−2}, re-

spectively.

In light of Proposition 2.6 and the discussion following tit, Proposition 3.2 implies
that if U is a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, then

k+
1 + k−2 = k−1 + k+

2 .

The following statement, which generalizes an equivalence in Proposition 2.6, can
be interpreted as an inverse to Proposition 3.2; it shows how hyper-maximal neutral
subspaces can be interpreted (nonuniquely) as unitary relations.

Proposition 3.3. Let L be a subspace of{K, [·, ·]} and let P be an orthogonal

projection in{K, [·, ·]}. ThenL is a (closed, maximal) neutral or hyper-maximal

neutral subspace of{K, [·, ·]} if and only if the relationUL defined via

gr UL := {{Pf, (I − P )f} : f ∈ L}

is a (closed, maximal) isometric or unitary relation, respectively, from the Kreı̆n

space{ran P, [·, ·]} to the Krĕın space{ker P,−[·, ·]},
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Proof. If L is neutral, then forf, g ∈ L

0 = [f, g] = [(I −P )f + Pf, (I −P )g + Pg] = [Pf, Pg] + [(I −P )f, (I −P )g],

i.e. UL is an isometric relation. Reversing the above argument shows thatL is
neutral ifUL is an isometric relation. From the fact that a relation is closed if and
only if its graph is closed it follows immediately thatL andUL are simultaneously
closed. Furthermore, by the proven equivalence it is also clear thatL can be ex-
tended neutrally if and only ifUL can be extended isometrically.

Hence it only remains to prove thatL is hyper-maximal neutral if and only ifUL

is a unitary relation between the indicated Kreı̆n spaces. Therefore assume thatL

is hyper-maximal neutral and let{g, g′} ∈ ran P × ker P be such that[Pf, g] =

−[(I − P )f, g′] for all f ∈ L. Then [f, g + g′] = 0 for all f ∈ L, i.e. g +

g′ ∈ L, becauseL is hyper-maximal neutral. HenceUL is a unitary relation, see
Proposition 3.1. Conversely, ifUL is a unitary relation, thenL is hyper-maximal
neutral by Proposition 3.2.

Combing the preceding two propositions with Proposition 2.6 shows that with each
unitary operator between Kreı̆n spaces one can associate a unitary relation between
Hilbert spaces; that association is a so-called Potapov-Ginzburg transformation, see
(Azizov & Iokhvidov 1989: Ch. 5,§1) or Proposition 4.14 below.

3.2 Kernels and multi-valued parts of isometric relations

For an isometric relationV from {K1, [·, ·]1} to {K2, [·, ·]2} (2.6) becomes

ker V ⊆ (dom V )[⊥]1 and mul V ⊆ (ran V )[⊥]2 . (3.3)

Hence, in particular,ker V and mul V are neutral subspaces of{K1, [·, ·]1} and
{K2, [·, ·]2}, respectively. For a unitary relationU from {K1, [·, ·]1} to {K2, [·, ·]2}
the inequalities in (3.3) become equalities:

ker U = (dom U)[⊥]1 and mul U = (ran U)[⊥]2 . (3.4)

Lemma 3.4 below contains a useful consequence for an isometric relation if equality
holds in (3.3) for one of the inclusions therein.

Lemma 3.4. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} with

ker V = (dom V )[⊥]1 and letK+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}

with associated orthogonal projectionsP+
1 andP−

1 . Then

P+
1 dom V = K+

1 and P−
1 dom V = K−1 .
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Proof. The assumptionker V = (dom V )[⊥]1 together with (2.2) implies that

dom V ∩ K+
1 = K+

1 ª1 P+
1 ker V and dom V ∩ K−1 = K−1 ª1 P−

1 ker V.

Sinceker V ⊆ dom V , the conclusion follows from the preceding equalities.

Next a condition is given under which the inequalities in (3.3) become equalities
given that equality holds in either of the two inclusions, cf. (Derkach et al. 2006:
Section 2.3).

Lemma 3.5. LetV be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

{
ker V = (dom V )[⊥]1

(ran V )[⊥]2 ⊆ ran V
if and only if

{
mul V = (ran V )[⊥]2

(dom V )[⊥]1 ⊆ dom V

Proof. SinceV −1 is an isometric relation if and only ifV is an isometric relation, it
suffices to prove only one implication. Therefore assume thatker V = (dom V )[⊥]1

and that(ran V )[⊥]2 ⊆ ran V . Then, clearly,(dom V )[⊥]1 ⊆ dom V . Moreover, the
assumptionker V = (dom V )[⊥]1 and an application of Lemma 3.8 below yield

mul V = V (ker V ) = V ((dom V )[⊥]1) = (V (dom V ))[⊥]2 ∩ ran V

= (ran V )[⊥]2 ∩ ran V.

Hence, the assumption(ran V )[⊥]2 ⊆ ran V yieldsmul V = (ran V )[⊥]2.

A further condition for the equalityker V = (dom V )[⊥]1 to hold is contained in the
following statement.

Lemma 3.6. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

assume that there exists a hyper-maximal semi-definite subspaceL of {K1, [·, ·]1}
such thatL ⊆ dom V . Thenker V = (dom V )[⊥]1 if and only ifj1L∩dom V +ker V

is an essentially hyper-maximal semi-definite subspace of{K1, [·, ·]1} for a (and

hence for every) fundamental symmetryj1 of {K1, [·, ·]1}.

Proof. Note first thatker V ⊆ L, because the hyper-maximality ofL implies that
L[⊥] ⊆ L and (3.3) implies thatker V ⊆ (dom V )[⊥]1. SinceL being hyper-
maximal semi-definite is closed, the inclusionker V ⊆ L implies thatker V is
closed. Using this observation and the hyper-maximality ofL, it follows thatK1

has the followingj1-orthogonal decomposition:

K1 = ker V ⊕1 (L[⊥]1ªker V )⊕1 (L∩ j1L)⊕1 j1(L
[⊥]1ª1 ker V )⊕1 j1ker V, (3.5)
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cf. Proposition 2.9 (iv). Hence,dom V ⊆ (ker V )[⊥]1 and (ker V )[⊥]1 have the
decompositions:

dom V = ker V ⊕1 (L[⊥]1 ª1 ker V )⊕1 (L ∩ j1L)⊕1 (j1L
[⊥]1 ∩ dom V ),

(ker V )[⊥]1 = ker V ⊕1 (L[⊥]1 ª1 ker V )⊕1 (L ∩ j1L)⊕1 j1(L
[⊥]1 ª1 ker V ).

Sinceker V is closed,ker V = (dom V )[⊥]1 if and only if (ker V )[⊥]1 = dom V .
Hence, the above two formula lines show thatker V = (dom V )[⊥]1 if and only
if clos (j1L

[⊥]1 ∩ dom V ) = j1L
[⊥]1 ª1 j1ker V . Sincej1L ª1 j1ker V = (L ∩

j1L) ⊕ j1(L
[⊥]1 ª1 ker V ), it follows from (3.5) together with Proposition 2.9 that

the statement holds.

This section is concluded with necessary and sufficient conditions for an isometric
relation to be unitary which can be found in (Sorjonen 1980: Proposition 2.3.1).

Proposition 3.7. Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}.
ThenU is a unitary if and only ifdom U [∗] ⊆ ran U and (dom U)[⊥]1 ⊆ ker U or,

equivalently,ran U [∗] ⊆ dom U and(ran U)[⊥]2 ⊆ mul U .

Proof. If U is a unitary relation, then (3.1) and (3.4) imply thatdom U [∗] = ran U

and(dom U)[⊥]1 = ker U , respectively. Conversely, sinceU is isometricU−1 ⊆
U [∗], see (3.1). Moreover, the assumptions imply thatdom U [∗] ⊆ dom U−1 and
thatmul U [∗] = (dom U)[⊥]1 ⊆ ker U = mul U−1, see (2.6). Hence, the equality
U−1 = U [∗] holds, see (2.7). I.e.,U is unitary.

The second equivalence is obtained from the first by passing to the inverses.

3.3 Isometric relations and closures of subspaces

A standard unitary operatorU from {K1, [·, ·]1} to {K2, [·, ·]2} satisfies for every
subspaceL of K1 the following equality:

U(L[⊥]1) = (U(L))[⊥]2 . (3.6)

Since a unitary relation between Kreı̆n spaces need not be everywhere defined,
(3.6) does not in general hold for unitary relations between Kreı̆n spaces. Instead a
weaker form of (3.6) holds for all isometric relations.

Lemma 3.8. LetV be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

L ⊆ dom V . Then

V (L[⊥]1 ∩ dom V ) = (V (L))[⊥]2 ∩ ran V.
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Proof. If f ′ ∈ V
(
L[⊥]1 ∩ dom V

)
, then there exists af ∈ L[⊥]1 ∩ dom V such that

f ′ ∈ V f . In particular,[f, h]1 = 0 for all h ∈ L. SinceV is isometric, this implies
that [f ′, h′]2 = 0 for all h′ ∈ V (L), i.e.,f ′ ∈ (V (L))[⊥]2 ∩ ran V . This shows that
V

(
L[⊥]1 ∩ dom V

) ⊆ (V (L))[⊥]2 ∩ ran V . The inverse inclusion follows from the
proven inclusion by applying it toV −1 andV (L).

If U is a standard unitary operator from{K1, [·, ·]1} to{K2, [·, ·]2}, then (3.6) implies
that U(clos L) = clos (U(L)) for any subspaceL of K1. This equality does not
in general hold for unitary relations, and a similar result only holds for certain
subspaces. For instance, ifV is an isometric relation from{K1, [·, ·]1} to{K2, [·, ·]2}
andker V ⊆ L ⊆ dom V is such that

clos L = (L[⊥]1 ∩ dom V )[⊥]1 and clos (V (L)) = (V (L)[⊥]2 ∩ ran V )[⊥]2 .

Then applying Lemma 3.8 twice yields

V (clos (L) ∩ dom V ) = (clos V (L)) ∩ ran V.

The above example indicates that the behavior of isometric relations with respect to
the closure of subspaces is in general not easy to describe. However, for uniformly
definite subspaces this behavior is specific.

Proposition 3.9. Let V be a closed isometric relation between{K1, [·, ·]1} and

{K2, [·, ·]2} and letD ⊆ dom V be a uniformly definite subspace of{K1, [·, ·]1}.
Then the following statements hold:

(i) if D = clos (D) ∩ dom V , thenV (D) is closed;

(ii) D is closed if and only ifV (D) + [mul V ] is a closed uniformly definite

subspace of{(mul V )[⊥]2/mul V, [·, ·]2}.

Proof. To prove the statements w.l.o.g. assumeD to be uniformly positive and let
j1 andj2 be fundamental symmetries of{K1, [·, ·]1} and{K2, [·, ·]2}, respectively.

(i) : Let f ′ ∈ clos (V (D)), then there exists a sequence{{fn, f
′
n}}n≥0, where

fn ∈ D andf ′n ∈ V fn, such thatf ′ = limn→∞ f ′n in the Hilbert space{K2, [j2·, ·]2}.
By the isometry ofV

[j2(f
′
m − f ′n), f ′m − f ′n]2 ≥ [f ′m − f ′n, f

′
m − f ′n]2 = [fm − fn, fm − fn]1.

SinceD is uniformly positive, there exists a constantα > 0 such thatα[j1g, g]1 ≤
[g, g]1 for all g ∈ D. Combining this with the above inequality yields

[j2(f
′
m − f ′n), f ′m − f ′n]2 ≥ α[j1(fm − fn), fm − fn]1.



32 Acta Wasaensia

Since{f ′n}n≥0 converges by assumption in{K2, [j2·, ·]2}, the preceding inequality
shows that{fn}n≥0 is a Cauchy-sequence in the Hilbert space{K1, [j1·, ·]1} and,
hence, converges to anf ∈ clos (D). Consequently,{{fn, f ′n}}n≥0 converges (in
the graph norm) to{f, f ′} ∈ K1 ×K2 and, hence,{f, f ′} ∈ gr V by the closedness
of V . Thereforef ∈ clos (D) ∩ dom V = D and, hence,f ′ ∈ V (D).

(ii) : For simplicity assume thatmul V = {0}. Let D ⊆ dom V be closed, then
V ¹D is an everywhere defined closed (isometric) operator from the Hilbert space
{D, [·, ·]1} to {K2, [·, ·]2}. I.e., there exists aM > 0 such that[j2V f, V f ]2 ≤
M [f, f ]1, for all f ∈ D. Hence, using the fact thatV is isometric, it follows that

[j2V f, V f ]2 ≤ M [f, f ]1 = M [V f, V f ]2, f ∈ D.

I.e.,V (D) is a uniformly definite subspace of{K2, [·, ·]2}. The converse implication
is obtained by applying (i) toV −1 andV (D).

Note that (ii) essentially also holds for non-closed isometric relations. This follows
by considering instead of non-closed isometric relations their closure.

3.4 Reduction of isometric relations

Here unitary relations are reduced in two different ways: By means of neutral sub-
spaces contained in their domain (or range) and by splitting them. These reductions
allow us to remove from unitary relations that part of their behavior which is well
understood. In order to obtain the mentioned results the following composition
results for isometric relations are used, see (Derkach et al. 2009: Section 2.2).

Lemma 3.10.LetS be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

T be an isometric relation from{K2, [·, ·]2} to {K3, [·, ·]}. Then

(i) TS is an isometric relation from{K1, [·, ·]1} to {K3, [·, ·]3};

(ii) if S and T are unitary,ran S ⊆ dom T and dom T is closed ordom T ⊆
ran S and ran S is closed, thenTS is a unitary relation from{K1, [·, ·]1} to

{K3, [·, ·]3}.

Proof. Combine Lemma 2.15 with (3.1).

Lemma 3.11 below associates with each neutral subspace a unitary operator which
can be used to reduce unitary relations, see Corollary 3.12 below.
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Lemma 3.11.LetL be a closed neutral subspace of{K, [·, ·]}. ThenUL defined as

ULf = f + [L], f ∈ dom UL = L[⊥]

is a bounded unitary operator from{K, [·, ·]} onto the Krĕın space{L[⊥]/L, [·, ·]}.

Proof. Recall that the fact that{L[⊥]/L, [·, ·]} is a Krĕın space is the contents of
Proposition 2.3 and note that the isometry ofUL is a direct consequence of the
neutrality ofL. Next leth ∈ K andk ∈ L[⊥]/L be such that[f, h] = [ULf, k] for
all f ∈ L[⊥] = dom UL. SinceUL maps ontoL[⊥]/L by its definition, there exists
a g ∈ dom UL such thatULg = k and, hence,[f, h − g] = 0 for all f ∈ L[⊥]. This
shows thath − g ∈ clos (L) = L ⊆ ker UL. Consequently,{h, k} = {g, ULg} +

{h− g, 0} ∈ gr UL and, hence, Proposition 3.1 implies thatUL is unitary.

Sinceker V andmul V are neutral subspaces for an isometric relationV , see (3.3),
composing isometric relations with unitary operators provided by Lemma 3.11
yields isometric operators without kernel and multi-valued part. In other words
the interesting behavior of isometric relations takes place on the quotient spaces
(ker V )[⊥]1/ker V and(mul V )[⊥]2/mul V . Therefore Corollary 3.12 below can be
for instance used to simplify proofs for statements concerning isometric relations
to the case of isometric operators.

Corollary 3.12. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

Ur andUd defined via

gr Ur = {{f, f ′ + [mul U ]} ∈ K1 × ran U/mul U : {f, f ′} ∈ U};
gr Ud = {{f + [ker U ], f ′} ∈ dom U/ker U × K2 : {f, f ′} ∈ U},

are a unitary operator from{K1, [·, ·]1} to the Krĕın space{ran U/mul U, [·, ·]2}
with dense range and a unitary relation from the Kreı̆n space{dom U/ker U, [·, ·]1}
to {K2, [·, ·]2} with dense domain.

In particular, (Ur)d = (Ud)r is a unitary operator from{dom U/ker U, [·, ·]1} to

{ran U/mul U, [·, ·]2} with dense domain and dense range.

Proof. Sinceker U and mul U are closed neutral subspaces by (3.4),Uker U and
Umul U are unitary operators by Lemma 3.11 with closed domain and closed range,
respectively. Consequently, Lemma 3.10 implies thatUr := Umul UU andUd :=

U(Uker U)−1 are a unitary operator and relation, respectively, and a direct calculation
shows that they have the stated form.

Lemma 3.13 below is a statement about splitting a unitary relation into two unitary
relations.
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Lemma 3.13. Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let {K̃i, [·, ·]i}[+]{K̂i, [·, ·]i} be an orthogonal decomposition of{Ki, [·, ·]i} into two

Krĕın spaces, fori = 1, 2, such thatgr U = gr Ũ + gr Û , where the isometric

relationsŨ andÛ are defined via

gr Ũ := gr U ∩ (K̃1 × K̃2) and gr Û := gr U ∩ (K̂1 × K̂2).

ThenU is unitary if and only ifŨ andÛ are unitary.

Proof. This follows from the definition of unitary relations (U [∗] = U−1) and the
orthogonal decomposition ofU .

Recall from Proposition 3.9 that if a unitary relation contains a closed uniformly
definite subspace in its domain, then the unitary relation behaves like a Hilbert
space unitary operator on that part of the space. Hence, using Lemma 3.13, one can
reduce a unitary relation by taking out such parts.

Corollary 3.14. LetU be a closed and isometric relation between{K1, [·, ·]1} and

{K2, [·, ·]2}, letD1 ⊆ dom U be a closed uniformly definite subspace of{K1, [·, ·]1}
and letD2 be a closed uniformly definite subspace of{K2, [·, ·]2} such thatU(D1) =

D2 + mul U . ThenU is a unitary relation if and only if̃U defined via

gr Ũ = gr U ∩ (D
[⊥]1
1 ×D

[⊥]2
2 )

is a unitary relation from the Krĕın space{K1 ∩ D
[⊥]1
1 , [·, ·]1} to the Krĕın space

{K2 ∩D
[⊥]2
2 , [·, ·]2}.

Proof. Note first that the existence ofD2 as stated follows from Proposition 3.9 and
that

Ûf = (Uf) ∩D2, f ∈ dom Û = D1

is an everywhere defined isometric operator from the Hilbert space{D1, [·, ·]1} onto
the Hilbert space{D2, [·, ·]2} and, hence, unitary. Sincegr U = gr Ũ + gr Û , the
statement follows now from Lemma 3.13.

3.5 Maximal isometric and unitary relations

Recall that an isometric relation is calledmaximal isometricif there does not ex-
ist a proper isometric extension of it. In particular, unitary relation are maximal
isometric. As a consequence of the graph characterizations in Proposition 3.2, the
following characterizations of maximal isometric and unitary relations hold.
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Corollary 3.15. LetV be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projec-

tionsP+
i andP−

i , for i = 1, 2. ThenV is maximal isometric if and only if

(P+
1 × P−

2 ) gr V = K+
1 × K−2 or (P−

1 × P+
2 ) gr V = K−1 × K+

2 .

Moreover,V is unitary if and only if both the above equalities hold.

Proof. Clearly,(K+
1 ×K−2 )[+](K−1 ×K+

2 ) is a canonical decomposition of (the Kreı̆n
space){K1 × K2, [·, ·]1,−2}, see (3.2). Hence, the statement is a direct consequence
of Proposition 3.2, Proposition 2.5 and Proposition 2.6.

Using Proposition 2.16 alternative characterizations for the conditions in Corol-
lary 3.15 can be obtained.

Proposition 3.16. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}
and letK+

i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated pro-

jectionsP+
i andP−

i , for i = 1, 2. Then equivalent are:

(i) (P+
1 × P−

2 ) gr V = K+
1 × K−2 ;

(ii) P+
1 V −1(ran V ∩ K+

2 ) = K+
1 andP−

2 V (dom V ∩ K−1 ) = K−2 ;

(iii) P+
1 dom V = K+

1 , P−
2 ran V = K−2 and

dom V = dom V ∩ K−1 + V −1(ran V ∩ K+
2 ),

Similarly, equivalent are:

(i) (P−
1 × P+

2 ) gr V = K−1 × K+
2 ;

(ii) P−
1 V −1(ran V ∩ K−2 ) = K−1 andP+

2 V (dom V ∩ K+
1 ) = K+

2 ;

(iii) P−
1 dom V = K−1 , P+

2 ran V = K+
2 and

dom V = dom V ∩ K+
1 + V −1(ran V ∩ K−2 ).

Proof. Clearly, it suffices to prove only the first equivalences. By Proposition 2.16,
the assumption(P+

1 × P−
2 ) gr V = K+

1 × K−2 yields that (ii) holds. If (ii) holds,
then, clearly,P+

1 dom V = K+
1 andP−

2 ran V = K−2 , and the domain decomposition
in (iii) holds by Proposition 2.16. Finally, if (iii) holds, then the domain decom-
position therein implies that(P+

1 dom V ) × (P−
2 ran V ) ⊆ (P+

1 × P−
2 )gr V , see

Proposition 2.16. Hence, the assumptionsP+
1 dom V = K+

1 andP−
2 ran V = K−2

imply that (i) holds.
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In particular, Proposition 3.16 implies that ifU is a unitary relation, then

P+
1 dom U = K+

1 , P−
1 dom U = K−1 , P+

2 ran U = K+
2 , P−

2 ran U = K−2 . (3.7)

Combining Proposition 3.16 with Corollary 3.15 yields necessary and sufficient
conditions for an isometric relation to be unitary.

Corollary 3.17. LetU be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projec-

tionsP+
i andP−

i , for i = 1, 2. ThenU is a unitary relation if and only(3.7)holds

and the domain ofU has the following decompositions:

dom U ∩ K+
1 + U−1(ran U ∩ K−2 ) = dom U = dom U ∩ K−1 + U−1(ran U ∩ K+

2 ).

Note that the domain decomposition conditions in Corollary 3.17 are equivalent to
the graph ofU having the following decompositions:

gr U = {{f, f ′} ∈ gr U : f ∈ K+
1 }+ {{f, f ′} ∈ gr U : f ′ ∈ K−2 };

gr U = {{f, f ′} ∈ gr U : f ∈ K−1 }+ {{f, f ′} ∈ gr U : f ′ ∈ K+
2 },

(3.8)

cf. (Calkin 1939a: Theorem 3.9). For an isometric relation (3.7) can be satis-
fied while neither of the domain decompositions in Corollary 3.17 holds; consider
for instance the identity mapping on a hyper-maximal semi-definite subspace of
{K, [·, ·]}. Conversely, if both the equalities in (3.8) are satisfies for an isometric
relation, then the relation is already very close to being unitary.

Proposition 3.18. Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}
and letK+

i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated pro-

jectionsP+
i andP−

i , for i = 1, 2. ThenU is unitary if and only if

(i) U is closed;

(ii) ker U = (dom U)[⊥]1 andmul U = (ran U)[⊥]2;

(iii) the domain ofU has the following decompositions:

dom U∩K+
1 +U−1(ran U∩K−2 ) = dom U = dom U∩K−1 +U−1(ran U∩K+

2 ).

Proof. If U is unitary, then the closedness ofU follows from U−1 = U [∗] and (ii)
holds by (3.4). Moreover, Corollary 3.17 shows that (iii) holds.

Conversely, if (iii) holds, then by Proposition 2.16

(P+
1 × P−

2 )gr U = P+
1 dom U × P−

2 ran U ;

(P−
1 × P+

2 )gr U = P−
1 dom U × P+

2 ran U.
(3.9)
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Moreover, by condition (i) and Proposition 3.2gr U is a closed neutral subspace of
the Krĕın space{K1×K2, [·, ·]1,−2} and thus(P+

1 ×P−
2 )gr U and(P−

1 ×P+
2 )gr U are

closed subspaces, see (Azizov& Iokhvidov 1989: Ch. 1,§4). In view of (3.9), this
implies thatP+

1 dom U , P−
1 dom U , P+

2 ran U andP−
2 ran U are closed subspaces.

Now the assumption (ii) implies by Lemma 3.4 thatP+
1 dom U = K+

1 , P−
1 dom U =

K−1 , P+
2 ran U = K+

2 andP−
2 ran U = K−2 . Consequently, Corollary 3.17 yields that

U is unitary.

Using Corollary 2.14 the following properties of maximal isometric relations are
obtained.

Lemma 3.19.LetV be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projections

P+
i andP−

i , for i = 1, 2. If (P+
1 × P−

2 ) gr V = K+
1 × K−2 , then

clos (dom V ∩ K−1 ) = dom V ∩ K−1 and clos (ran V ∩ K+
2 ) = ran V ∩ K+

2 .

Similarly, if (P−
1 × P+

2 ) gr V = K−1 × K+
2 , then

clos (dom V ∩ K+
1 ) = dom V ∩ K+

1 and clos (ran V ∩ K−2 ) = ran V ∩ K−2 .

Proof. The statement follows from Corollary 2.14 applied toM = gr V , L =

dom V × ran V , P+ = P+
1 × P−

2 andP− = P−
1 × P+

2 .

Corollary 3.20. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projections

P+
i andP−

i , for i = 1, 2. Then

clos (dom U ∩ K+
1 ) = dom U ∩ K+

1 , clos (ran U ∩ K+
2 ) = ran U ∩ K+

2 ;

clos (dom U ∩ K−1 ) = dom U ∩ K−1 , clos (ran U ∩ K−2 ) = ran U ∩ K−2 .

Proof. Combine Lemma 3.19 with Corollary 3.15.

Combining Corollary 3.20 with the first von Neumann formula (2.4) (applied to
L = ker U = (dom U)[⊥]1) yields that for a unitary relationU

dom U = ker U + clos (dom U ∩ K+
1 ) + clos (dom U ∩ K−1 ), (3.10)

see also (Derkach et al. 2006: Lemma 2.14 (ii)). Combining the above equality
with (3.7) yields the following useful equalities:

K+
1 = P+

1 ker U + clos (dom U ∩ K+
1 );

K−1 = P−
1 ker U + clos (dom U ∩ K−1 ).

(3.11)
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4 SPECIAL CLASSES OF UNITARY RELATIONS

In this chapter some special classes of unitary relations are introduced and inves-
tigated. More specifically, in the first section unitary relations with a closed do-
main, or equivalently with a closed range, are considered. They are shown to be
almost completely characterized by their behavior on uniformly definite subspaces
and they are also shown to have essentially the same behavior as standard uni-
tary operators. In the second section two types of unitary relations with a simple
structure are introduced, which will be calledarchetypical unitary relations. Later
results, see e.g. Section 7.3, show that essentially all the mapping properties of
(unbounded) unitary relations can be understood by considering only (unbounded)
archetypical unitary operators. Finally, in the third section standard unitary oper-
ators are shortly considered. In particular, it is shown how they can be written in
terms of the introduced archetypical unitary operators.

4.1 Unitary relations with closed domain

As a starting point for investigating unitary relations with closed domain, consider
the following characterization of such relations. Note that the following statement
is a generalization of (Bognár 1974: Ch. VI, Theorem 3.5).

Proposition 4.1. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

U has closed domain if and only ifU maps every uniformly positive (negative)

subspace of{K1, [·, ·]1} contained in the domain ofU onto the sum a uniformly

positive (negative) subspace of{K2, [·, ·]2} and the multi-valued part ofU .

Proof. Let (Ur)d be the unitary operator with dense domain associated withU as
in Corollary 3.12. Then one can easily see thatU has closed domain if and only
if (Ur)d has closed domain. In other words, it suffices to prove the statement for a
densely defined unitary operator.

If U has closed domain andD ⊆ dom U is a uniformly positive (negative) sub-
space, thenclos (D) ⊆ dom U = dom U is a closed uniformly positive (negative)
subspace which is mapped byU onto a uniformly positive (negative) subspace, see
Proposition 3.9. HenceD itself is also mapped onto a uniformly positive subspace.
To prove the converse implication letK+

1 [+]K−1 be a canonical decomposition of
{K, [·, ·]}. ThenK1 = dom U = clos (dom U∩K+

1 )+clos (dom U∩K−1 ), see (3.10).
By the assumption together with Proposition 3.9dom U ∩K+

1 anddom U ∩K−1 are
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closed. Hence,K1 = dom U ∩ K+
1 + dom U ∩ K−1 ⊆ dom U shows thatdom U is

closed.

The proof of Proposition 4.1 shows that ifU is a unitary operator with closed
domain, thendom U = ker U [+]dom U ∩ K+

1 [+]dom U ∩ K−1 . Hence, in that
caseran U = U(dom U ∩ K+

1 )[+]U(dom U ∩ K−1 ), whereU(dom U ∩ K+
1 ) and

U(dom U ∩K−1 ) are closed uniformly definite subspaces of{K2, [·, ·]2}, see Propo-
sition 3.9. Since the orthogonal sum of closed uniformly definite subspaces is a
closed subspace, see e.g. (Bognár 1974: Ch. V, Theorem 3.4& Theorem 5.3),
an elementary proof for the following statement has been obtained, see (Shmul’jan
1976; Sorjonen 1978/1979).

Proposition 4.2. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

dom U is closed if and only ifran U is closed.

Proof. SinceU is unitary if and only ifU−1 is unitary, it suffices to prove that if
dom U is closed, thenran U is closed. Ifmul U 6= {0}, thenmul (Umul UU) = {0},
see Lemma 3.11. SinceUmul UU has closed range if and only ifU has closed range,
the statement follows now from the discussion preceding this statement.

Corollary 4.3. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

the following statements hold:

(i) if {K1, [·, ·]1} is a Hilbert space, thendom U = K1;

(ii) if {K1, [·, ·]1} and{K2, [·, ·]2} are Hilbert spaces, thenU is a standard unitary

operator.

Proof. Clearly, (ii) follows from (i). If the assumption in (i) holds, then by Proposi-
tion 4.1 (applied toU−1) U has closed range and, hence, closed domain, see Propo-
sition 4.2. Sinceker U = (dom U)[⊥]1 is a neutral subspace of{K1, [·, ·]1}, the
assumption also implies thatker U = {0} and, hence,dom U = dom U = K1.

Proposition 4.2 can be extended to the case of isometric relations: If equalities hold
in (3.3) for an isometric relation and, additionally, its domain or range is closed,
then the isometry relation must be a unitary relation with closed domain and range.

Corollary 4.4. LetU be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}which

has closed domain or closed range and satisfies

ker U = (dom U)[⊥]1 and mul U = (ran U)[⊥]2 .

ThenU is a unitary relation with closed domain and range.
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Proof. Assume thatU has closed range, then the assumptions together with (2.6)
yield

dom U [∗] ⊆ dom U [∗] = (mul clos (U))[⊥]2 ⊆ (mul U)[⊥]2 = ran U.

ThereforeU is unitary by Proposition 3.7 andU has closed domain by Proposi-
tion 4.2. The case thatU has closed domain follows by passing to the inverse.

Note that the assumptionsker U = (dom U)[⊥]1 andmul U = (ran U)[⊥]2 in Corol-
lary 4.4 can by Lemma 3.5 be weakened toker U = (dom U)[⊥]1 and(ran V )[⊥]2 ⊆
ran V or mul U = (ran U)[⊥]2 and(dom V )[⊥]1 ⊆ dom V , cf. (Derkach et al. 2006:
Section 2.3).

Proposition 4.5 below shows that unitary relations with closed domain and range
have almost the same properties as standard unitary operators (everywhere defined
unitary operators with everywhere defined inverse, see (Derkach et al. 2009: Defi-
nition 2.5)).

Proposition 4.5. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} with

closed domain. IfL, ker U ⊆ L ⊆ dom U , is a subspace of{K1, [·, ·]1}, then

U(L[⊥]1) = (U(L))[⊥]2 and U(clos (L)) = clos (U(L)), (4.1)

Moreover, ifL, ker U ⊆ L ⊆ dom U , is a neutral subspace of{K1, [·, ·]1}, then

n+(L) = n+(U(L)) and n−(L) = n−(U(L)). (4.2)

In particular, L is an (essentially, closed) (hyper-maximal, maximal) nonnegative,

nonpositive or neutral subspace of{K1, [·, ·]1} if and only if U(L) is an (essen-

tially, closed) (hyper-maximal, maximal) nonnegative, nonpositive or neutral of

{K2, [·, ·]2}, respectively.

Proof. Let ker U ⊆ L ⊆ dom U , then(dom U)[⊥]1 ⊆ L[⊥]1 ⊆ (ker U)[⊥]1. Hence,
using (3.4) and the closedness of the domain (and range) ofU , it follows that
ker U ⊆ L[⊥]1 ⊆ dom U . Similar arguments show thatmul U ⊆ (U(L))[⊥]2 ⊆
ran U . Consequently, the equalityU(L[⊥]1) = (U(L))[⊥]2 follows directly from
Lemma 3.8. The second equality in (4.1) follows by applying the first equality
therein twice to a subspaceL.

As a consequence (4.1), (4.2) needs only to be proven for the case thatL and
U(L) are closed. Now letUL andUU(L) be the bounded unitary operators asso-
ciated toL andU(L) as in Lemma 3.11, thenUa := UU(L)U(UL)−1 is an every-
where defined isometric operator from the Kreı̆n space{L[⊥]1/L, [·, ·]1} to the Krĕın
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space{(U(L))[⊥]2 /U(L), [·, ·]2}. I.e.,Ua is a standard unitary operator and, hence,
n±(0d) = n±(0r), where0d and0r are the trivial subspaces in{L[⊥]1/L, [·, ·]1} and
{(U(L))[⊥]2 /U(L), [·, ·]2}, respectively. This, together with the first von Neumann
formula (2.4), shows thatn±(L) = n±(U(L)).

Next further characterizations of the closedness of the domain of a unitary relation
are given; they are closely related to results on Weyl families of boundary relations
stated in (Derkach et al. 2006). Note that the equivalence of (i), (ii) and (iii) in
Proposition 4.6 goes back to Calkin (1939a: Theorem 3.10) and that the character-
ization (vii) is an inverse to a statement in (Derkach et al. 2006: Lemma 4.4).

Proposition 4.6. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. Then equivalent are

(i) dom U is closed;

(ii) dom U ∩ K+
1 is closed;

(iii) dom U ∩ K−1 is closed;

(iv) U(dom U∩K+
1 )+[mul U ] is a uniformly positive subspace of the Kreı̆n space

{ran U/mul U, [·, ·]2};
(v) U(dom U ∩ K−1 ) + [mul U ] is a uniformly negative subspace of the Kreı̆n

space{ran U/mul U, [·, ·]2};
(vi) dom U = ker U + dom U ∩ K+

1 + dom U ∩ K−1 ;

(vii) ran U = U(dom U ∩ K+
1 ) + U(dom U ∩ K−1 );

Proof. (i)-(v): The implication from (i) to (ii) and (iii) is clear, the equivalences
of (ii) and (iv), and (iii) and (v) follows from Proposition 3.9. Furthermore, the
equivalence of (iv) and (v) follows from Proposition 2.5, (Bognár 1974: Ch. V,
Corollary 7.4), and Proposition 5.1 below, and (3.10) shows that (ii) and (iii) imply
(i).

(i)-(v) ⇔ (vi) : By (3.10) the conditions (i)-(iii) imply (vi). If (vi) holds, then
K+

1 = P+
1 dom U = P+

1 ker U +dom U∩K+
1 , whereP+

1 is the orthogonal projection
ontoK+

1 , see (3.7). Comparing this with (3.11) shows that (ii) holds.

(vi) ⇔ (vii) : This follows by applyingU andU−1.

Observe that the characterizations (ii) and (iii) in Proposition 4.6 in particular imply
that a unitary relation has closed domain (and range) if either of the defect numbers
of the kernel ofU is finite.
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4.2 Archetypical unitary relations

Two types of unitary operators having a simple block structure are here intro-
duced; they will be calledarchetypicalunitary operator. Recall that, in the bounded
case, archetypical unitary operators appear as so-called transformers in (Shmul’jan
1980). They also appear naturally in the framework of boundary relations; there
they are used to normalize the Weyl family associated with a boundary relation,
see (Derkach et al. 2009). Here archetypical unitary operators are considered in the
general case.

Let j be a fundamental symmetry of{K, [·, ·]} and letM be a hyper-maximal semi-
definite subspace of{K, [·, ·]}. Then recall thatM induces an orthogonal decompo-
sition ofK: K = M[⊥]⊕ (M∩ jM)⊕ jM[⊥], see Proposition 2.9. Clearly,M∩ jM

is a closed uniformly definite subspace of{K, [·, ·]} and the behavior of isometric
operators on this subspace is essentially like a Hilbert space unitary operator, see
Proposition 3.9. Hence, assume thatM is hyper-maximal neutral and introduce for
a relationS in (the Hilbert space){M, [j·, ·]}, the relationΥ1(S) in {K, [·, ·]} as

Υ1(S)(f + jg) = f + j(iSf + g), f ∈ dom S, g ∈ M.

Note thatΥ1(S) is a relation or, equivalently, has a kernel if and only ifS is a
relation, and that(Υ1(S))−1 = Υ1(−S). If S is an operator, thenΥ1(S) is an
operator (without kernel) which has the following block representation:

Υ1(S) =

(
I 0

jiS I

)
,

where the righthand side block decomposition is w.r.t. the decompositionM⊕ jM

of K. As a consequence of its definition,Υ1(S) is an isometric operator or re-
lation if and only if S is a symmetric operator or relation, respectively. Since
clos (Υ1(S)) = Υ1(clos (S)), Υ1(S) can be an operator whilst its closure is a
relation. Proposition 4.8 below summarizes the above discussion and provides a
characterization forΥ1(S) to be unitary, see (Derkach et al. 2009: Example 2.11).
Here a short proof for the characterization ofΥ1(S) to be unitary is included; it is
based on the following lemma, which yields in fact a characterization for unitary
relations, see Theorem 6.8 below.

Lemma 4.7. Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

assume that there exist hyper-maximal neutral subspacesM1 andM2 in {K1, [·, ·]1}
and{K2, [·, ·]2}, respectively, such thatM1 ⊆ dom U andU(j1M∩ dom U) = M2

for a fundamental symmetryj1 of {K1, [·, ·]1}. ThenU is a unitary relation.
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Proof. Let j2 be a fundamental symmetry of{K2, [·, ·]2} and letk ∈ K1 andk′ ∈ K2

be such that[f, k]1 = [f ′, k′]2 for all {f, f ′} ∈ gr U . Then by the assumptions there
exists{h, h′} ∈ gr U such thatk − h ∈ j1M1 andk′ − h′ ∈ j2M2. Clearly,

[f, k − h]1 = [f ′, k′ − h′]2, ∀{f, f ′} ∈ gr U. (4.3)

By the assumption thatU(j1M1 ∩dom U) = M2, there exists ag ∈ j1M1 ∩dom U

such that{g, j2(k
′ − h′)} ∈ gr U . Therefore (4.3) implies that

0 = [g, k − h]1 = [j2(k
′ − h′), (k′ − h′)]2.

This shows thatk′− h′ = 0 and, hence,[f, k− h]1 = 0 for all f ∈ dom U by (4.3),
i.e. k − h ∈ (dom U)[⊥]1 ⊆ M

[⊥]1
1 = M1. Sincek − h ∈ j1M1, this implies that

k − h = 0, i.e. {k, k′} = {h, h′} ∈ gr U . Consequently, Proposition 3.1 implies
thatU is a unitary relation.

Proposition 4.8. Let j be a fundamental symmetry of{K, [·, ·]}, assume that there

exists a hyper-maximal neutral subspaceM in {K, [·, ·]} and letS be a relation in

M. ThenΥ1(S) is a (closed) isometric relation or (extendable to) a unitary relation

in {K, [·, ·]} if and only if S is a (closed) symmetric relation or (extendable to) a

selfadjoint relation in the Hilbert space{M, [j·, ·]}, respectively. Moreover,Υ1(S)

is an isometric operator without kernel if and only ifS is an operator andΥ1(S) is

a standard unitary operator if and only ifS is a bounded selfadjoint operator.

Proof. Only the first equivalence is proven, the remaining statements follow di-
rectly from it and the definition ofΥ1(S). To prove that equivalence first note that
if T is a symmetric extension ofS, thenΥ1(T ) is an isometric extension ofΥ1(S).
Hence, it suffices to prove thatΥ1(S) is unitary if and only ifS is selfadjoint.

If S is selfadjoint, thenjM ⊆ dom (Υ1(S)) andΥ1(S)(M∩dom (Υ1(S))) = {f +

jiSf : f ∈ dom S} is a hyper-maximal neutral subspace of{K, [·, ·]}, see Proposi-
tion 2.20. Hence, Lemma 4.7 implies thatΥ1(S) is unitary. To prove the converse
assume thatS is a maximal symmetric relation which is not selfadjoint, and that
Υ1(S) is unitary. Then there exists{f, f ′} ∈ gr S∗ such thatIm [jf, f ′] 6= 0, and a
direct calculation shows that[f, g] = [f + jif ′, g′] for all {g, g′} ∈ gr (Υ1(S)), i.e.,
{f, f + jif ′} ∈ gr (Υ1(S)) by Proposition 3.1. On the other hand,[f, f ] = 0 and,
by assumption[f + jif ′, f + jif ′] = i([jf ′, f ]− [f, jf ′]) 6= 0. Therefore{f, f + jif ′}
cannot belong to the graph of an isometric relation. This contradiction completes
the proof.

Observe that Proposition 4.8 yields elementary examples of isometric operators
which can not be extended to unitary operators (or relations); namelyΥ1(S) for
symmetric operators in{M, [j·, ·]} with unequal defect numbers.
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Next define for a relationB in the Hilbert space{M, [j·, ·]}, with adjointB∗, the
relationΥ2(B) as

Υ2(B)(f + jg) = Bf + jB−∗g, f ∈ dom B, g ∈ dom B−∗.

A direct calculation shows thatΥ2(B) is an isometric relation in{K, [·, ·]}, which
is an operator if and only ifmul B = {0} andker B∗ = (ran B)⊥ = {0}, and that
clos (Υ2(B)) = Υ2(clos (B)). Hence, ifB is a non-closable operator withran B =

M, thenΥ2(B) is an isometric operator whilstclos (Υ2(B)) is an isometric relation.
If Υ2(B) is an operator, then it has the following block representation w.r.t the
decompositionM⊕ jM of K:

Υ2(B) =

(
B 0

0 jB−∗j

)
.

Note thatΥ2(B) is an isometric operator without kernel if and only ifB satisfies

ker B = {0}, dom B = M, mul B = {0} and ran B = M. (4.4)

Furthermore, using (2.6), it follows thatΥ2(B) andclos (Υ2(B)) are both isometric
operators without kernel if and only ifB satisfies

dom B∗ = M, dom B = M, ran B∗ = M and ran B = M. (4.5)

Clearly, the conditions in (4.5) are equivalent to those in (4.4) ifB is a closed
operator. Proposition 4.9 below summarizes the above discussion and provides a
characterization forΥ2(B) to be unitary.

Proposition 4.9. Let j be a fundamental symmetry of{K, [·, ·]}, assume that there

exists a hyper-maximal neutral subspaceM in {K, [·, ·]} and letB be a relation

in M. ThenΥ2(B) andΥ2(clos (B)) = clos (Υ2(B)) are an isometric and a uni-

tary relation in {K, [·, ·]}, respectively. Moreover,Υ2(B) or Υ2(clos (B)) is an

isometric or unitary operator without kernel if and only ifB satisfies(4.4)or (4.5),
respectively, andΥ2(B) is a standard unitary operator if and only ifB andB−1

are everywhere defined operators.

Proof. It suffices to prove thatΥ2(clos (B)) is unitary. Leth, h′, k, k′ ∈ M be
such that[h + jh′, f + jg] = [k + jk′, f ′ + jg′] for all {f, f ′} ∈ gr (clos B) and
{g, g′} ∈ gr B−∗. Then[jh′, f ] = [jk′, f ′] for all {f, f ′} ∈ gr (clos B) and[h, jg] =

[k, jg′] for all {g, g′} ∈ gr B−∗, i.e., {h′, k′} ∈ gr B−∗ and{h, k} ∈ gr (clos B).
Consequently,{h + jh′, k + jk′} ∈ gr (Υ2(clos (B))) and, hence, Proposition 3.1
implies thatΥ2(clos (B)) is unitary.
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Henceforth, the introduced isometric (unitary) relationsΥ1(S) andΥ2(B) will be
calledarchetypicalisometric (unitary) relations.

Next it is shown that unitary operators of the typeΥ2(B) can map hyper-maximal
neutral subspaces onto closed neutral subspaces with equal, but nonzero, defect
numbers. In light of Theorem 7.16 below, this provides a simple proof for (Calkin
1939a: Lemma 4.4), see Corollary 7.25 below.

Proposition 4.10.Let j be a fundamental symmetry of{K, [·, ·]}, assume that there

exists a hyper-maximal neutral subspaceM in {K, [·, ·]} and let U := Υ2(B),

whereB is a closed unbounded operator in the Hilbert space{M, [j·, ·]} with

dom B = M = ran B and ker B = {0}. Then for every0 ≤ m ≤ ℵ0 there

exists a hyper-maximal neutral subspaceL ⊆ dom U of {K, [·, ·]} such thatU(L)

is a closed neutral subspace of{K, [·, ·]} with

n+(U(L)) = m and n−(U(L)) = m.

Proof. SinceB∗ is a densely defined unbounded operator withran B∗ = M and
ker B = {0}, there exists anm-dimensional closed subspaceNm of {M, [j·, ·]}
such thatdom B∗∩Nm = {0} andM = clos (B−1(MªNm)), see Corollary 2.18.
Hence,

Cf = Bf, f ∈ dom C = B−1(MªNm),

considered as an operator fromM to M ªNm is a closed operator which satisfies
dom C = M, ran C = M ª Nm andker C = {0}. Now define the isometric
operatorUa from {K, [·, ·]} to {Kª (Nm + jNm), [·, ·]} as

Ua(f + jf ′) = Cf + jC−∗f ′, f ∈ dom C, f ′ ∈ M.

Then by definitiondom Ua ⊆ dom U and arguments as in Proposition 4.9 show
thatUa is a unitary operator from{K, [·, ·]} to {K ª (Nm + jNm), [·, ·]}. Let WK

be the polar decomposition ofC, thenK is a (nonnegative) selfadjoint operator in
{M, [j·, ·]} with dom K = dom C and, hence,L := {f + jiKf : f ∈ dom K} is a
hyper-maximal neutral subspace of{K, [·, ·]} contained in the domain ofUa.

By definition ofK, KC−1 is a closed operator from{MªNm, [j·, ·]} to {M, [j·, ·]}
with domainM ªNm. Moreover,KB−1 coincides withKC−1 when the latter is
considered as a mapping in{M, [j·, ·]}, becausedom K = dom C andC ⊆ B.
ThereforeS := B−∗KB−1 is a closed symmetry operator with domainMªNm, i.e.
S is a bounded symmetric operator withn±(S) = m. Now the proof is completed
by observing thatL ⊆ dom U and thatU(L) = {f + jiSf : f ∈ dom S}.
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4.3 Standard unitary operators

Let j be a fundamental symmetry of{K, [·, ·]} and assume that in{K, [·, ·]} there
exists a hyper-maximal neutral subspaceM, i.e.,K = M⊕ jM. Let L be a hyper-
maximal neutral subspace of{K, [·, ·]}, then by Proposition 2.17 (ii) and Proposi-
tion 2.20 there exists a selfadjoint relationK in (the Hilbert space){M, [j·, ·]} and
a closed operatorB in {M, [j·, ·]} with dom B = M, ran B = dom K ⊕ mul K

andker B = {0}, respectively, such that

L = {PKBf + j(iPKKBf + (I −PK)Bf) : f ∈ M}.

HerePK is the orthogonal projection ontodom K = (mul K)⊥ in {M, [j·, ·]}.
Using this observation, standard unitary operators can almost be decomposed in
terms of the, in general unbounded, archetypical unitary operators introduced in the
previous section. In particular, Theorem 4.11 below together with Theorem 7.16
below shows that to investigate compositions of unitary operators, it suffices to
consider compositions of archetypical unitary operators.

Theorem 4.11. Let U be an isometric operator in{K, [·, ·]} with fundamental

symmetryj and assume that there exists a hyper-maximal neutral subspaceM

in {K, [·, ·]}. ThenU is a standard unitary operator if and only if there exists a

closed subspaceN of M, selfadjoint operatorsK1 and K2 in the Hilbert space

{M, [j·, ·]} with dom K2 = M andclos (K−1
2 −K1) being a selfadjoint relation in

{M, [j·, ·]}, a closed operatorB in {M, [j·, ·]} satisfyingdom B = M, ran B =

dom K1, ker B = {0}, dom clos (K2B
−∗) = M, mul clos (K2B

−∗) = {0} and

ran clos (K2B
−∗) = dom clos (K−1

1 −K2) such that

U−1
N U = clos (Υ1(K1)jΥ1(K2)jΥ2(B)) . (4.6)

Here, withPN the orthogonal projection ontoN in {M, [j·, ·]}, UN is the standard

unitary operator in{K, [·, ·]} defined as

UN(f + jf ′) = PNf + (I − PN)f ′ + j((I − PN)f + PNf ′), f, f ′ ∈ M.

Proof. If U is a standard unitary operator, thenU(M) is a hyper-maximal neutral
subspace of{K, [·, ·]}, see Proposition 4.5. Hence, by the discussion preceding this
statement, there exists a selfadjoint relationK in {M, [j·, ·]} and a closed operator
B in {M, [j·, ·]} with dom B = M, ran B = dom K ⊕ mul B andker B = {0}
such that withPK the orthogonal projection ontodom K in {M, [j·, ·]}

U ¹M=

(
PKB

j(iPKKB + (I − PK)B)

)
= UN

(
B

jiPKKB

)
,
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whereN = dom K and the block decomposition on the range is w.r.t. the decom-
positionM⊕ jM of K. Note thatK1 := PKK ⊕ 0mul K is a selfadjoint operator in
{M, [j·, ·]}. These observations show that there exist operatorsC andD in M with
dom C = M = dom D such that w.r.t. decompositionM⊕ jM of K:

U−1
N U =

(
B iCj

jiK1B jDj

)
. (4.7)

Note thatU−1
N U being a standard unitary operator is bounded. Hence, (4.7) implies

thatC andD are also bounded. Sincedom C = M = dom D, this implies thatC
andD are closed operators. Since(Υ1(K1))

−1 = Υ1(−K1), it follows that

(Υ1(K1))
−1U−1

N U = Υ1(−K1)

(
B iCj

jiK1B jDj

)
=

(
B iCj

0 j (D + K1C) j

)
. (4.8)

SinceUN andU are both standard unitary operators and(Υ1(K1))
−1 is a unitary

operator, the righthand side of (4.8) is also a unitary operator, see Lemma 3.10.
The isometry of that operator implies that(D + K1C) ⊆ B−∗ and the fact that
jM ⊆ ran ((Υ1(K1))

−1U−1
N U) = dom Υ1(K1) implies thatran (D + K1C) =

M. Sinceker B−∗ = (dom B)⊥ = {0}, the preceding observations imply that
(D + K1C) = B−∗, see (2.8). Hence,dom B∗ = ran B−∗ = M and

(
B iCj

0 j (D + K1C) j

)
=

(
I iCB∗j
0 I

)(
B 0

0 jB−∗j

)
= jΥ1(CB∗)jΥ2(B).

(4.9)
SinceB is a closed operator satisfyingdom B = M = ran B and ker B =

{0}, Υ2(B) is a unitary operator without kernel. Consequently, (4.9) implies that
Υ1(CB−∗) is isometric and, hence,K2 := CB∗ is a symmetric operator, see Propo-
sition 4.8. Sincedom B∗ = M = dom C, K2 is in fact an everywhere defined sym-
metric operator, i.e.,K2 is a (bounded) selfadjoint operator in{M, [j·, ·]}. Com-
bining (4.8) and (4.9) yields thatUt := IranΥ1(K1)U

−1
N U can be decomposed as

follows:

Ut = Υ1(K1)jΥ1(K2)jΥ2(B) =

(
B iK2B

−∗j
jiK1Bj (I −K1K2)B

−∗j

)
. (4.10)

Sinceran (Υ1(K1)) = K, the closure ofUt coincides withU−1
N U , i.e., (4.6) holds.

As a consequence of (4.7), (4.10) and the proven closedness ofC, clos (K2B
−∗) =

C which yieldsdom clos (K2B
−∗) = M andmul clos (K2B

−∗) = {0}. More-
over, sinceclos (Ut) is a standard unitary operator andclos (dom Ut ∩ jM) = jM,
clos (Ut(dom Ut ∩ jM)) = clos ({if + j(K−1

2 − K1)f : f ∈ ran (K2B
−∗)}) is

a hyper-maximal neutral subspace. Consequently, Proposition 2.20 implies that
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clos (K−1
2 − K1) is a selfadjoint operator and also thatdom clos (K−1

2 − K1) ⊆
ran clos ((K2B

−∗)). Finally, (4.10),dom Ut = K anddom (clos (K2B
−∗)) = M

imply thatdom clos (K−1
2 −K1) = ran (clos (K2B

−∗)).

Conversely, the assumptions imply that the closure of the righthand side of (4.10) is
an everywhere defined isometric operator with dense range, i.e.U−1

N U and, hence,
alsoU is a standard unitary operator.

Next some properties of standard unitary operators are presented. Recall that if
U is a standard unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} andK+

1 [+]K−1 is
a canonical decomposition of{K1, [·, ·]1}, then the discussion preceding Proposi-
tion 4.2 shows thatU(K+

1 )[+]U(K−1 ) is a canonical decomposition of{K2, [·, ·]2}.
Consequently, standard unitary operators in Kreı̆n spaces are the orthogonal sum
of two Hilbert space unitary operators. This implies that standard unitary operators
give a one-to-one correspondence between fundamental symmetries.

Lemma 4.12.LetU be a standard unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}.
Thenj1 7→ U j1U

−1 is a bijective mapping from the set of all fundamental symme-

tries of{K1, [·, ·]1} onto the set of all fundamental symmetries of{K2, [·, ·]2}.

Proof. Let j1 be a fundamental symmetry of{K1, [·, ·]1} and letj2 := U j1U
−1. Then

j−1
2 = j2 and, clearly,{K2, [j2·, ·]2} is a Hilbert space. Hence,j2 is a fundamental

symmetry of{K2, [·, ·]2}. Since for any fundamental symmetryj2 of {K2, [·, ·]2} one
has thatj2 = UU−1j2UU−1 and similar arguments as above show thatU−1j2U is a
fundamental symmetry of{K1, [·, ·]1}, the bijectivity of the mapping is evident.

Analogues of Lemma 4.12 hold for unitary relations with closed domain and range.
For instance, ifran U = K2, then the mapping in Lemma 4.12 is surjective.

For technical purposes the following property of standard unitary operators will be
useful later on.

Lemma 4.13. Let j and j′ be fundamental symmetries of{K, [·, ·]} and letM and

M′ be hyper-maximal neutral subspaces in{K, [·, ·]}. Then there exists a standard

unitary operatorU in {K, [·, ·]} such that

U(M) = M′ and U(jM) = j′M′.

Proof. If the assumptions hold, then{M, [j·, ·]} and{M′, [j′·, ·]} are Hilbert spaces
of equal dimension. LetUt be a (standard) unitary operator between these Hilbert
spaces, thenU defined byU(f0 + jf1) = Utf0 + j′Utf1, wheref0, f1 ∈ M, is a
standard unitary operator which has the stated properties.



Acta Wasaensia 49

As a conclusion of this section it is shown that the Potapov-Ginzburg transforma-
tion, see (Azizov& Iokhvidov 1989: Ch. 5,§1), can be interpreted as a stan-
dard unitary operator. This transformation, which yields a one-to-one correspon-
dence between unitary relations between Kreı̆n spaces and Hilbert spaces (for fixed
canonical decompositions of the spaces), can in turn be used to obtain conditions
for when an isometric relation is unitary, see Lemma 5.2 below. To formulate the
following statement introduce for Kreı̆n spaces{K1, [·, ·]1} and {K2, [·, ·]2} with
canonical decompositionsK+

1 [+]K−1 andK+
2 [+]K−2 , respectively, the Hilbert spaces

{H1, (·, ·)1} := {K+
1 × K−2 , (·, ·)1} and{H2, (·, ·)2} := {K+

2 × K−1 , (·, ·)2}, where

(f × f ′, g × g′)1 = [f, g]1 − [f ′, g′]2, f, g ∈ K+
1 , f ′, g′ ∈ K−2 ;

(f × f ′, g × g′)2 = [f, g]2 − [f ′, g′]1, f, g ∈ K+
2 , f ′, g′ ∈ K−1 .

(4.11)

Proposition 4.14.Let{K1, [·, ·]1} and{K2, [·, ·]2} be Krĕın spaces with associated

Hilbert spaces{H1, (·, ·)1} and{H2, (·, ·)2} as defined above for the fundamental

symmetriesj1 andj2. Then the Potapov-Ginzburg transformationPj1,j2 defined by

Pj1,j2{f, g} = {P+
1 f × P−

2 g, P+
2 g × P−

1 f}

is a standard unitary operator from the Kreı̆n space{K1, [·, ·]1} × {K2,−[·, ·]2} to

the Krĕın space{H1, (·, ·)1} × {H2,−(·, ·)2}. For a relationH from {K1, [·, ·]1}
to {K2, [·, ·]2} denote its Potapov-Ginzburg transformation byHPG, i.e. gr HPG =

Pj1,j2(gr H). Then

(H−[∗])PG = (HPG)−∗.

In particular, Pj1,j2 maps the graphs of (closed, maximal) isometric and unitary

relations from the Krĕın space{K1, [·, ·]1} to the Krĕın space{K2, [·, ·]2} onto the

graphs of (closed, maximal) isometric and unitary relations from the Hilbert space

{H1, (·, ·)1} to the Hilbert space{H2, (·, ·)2}, respectively.

Proof. Let f, g ∈ K1 andf ′, g′ ∈ K2, then with the introduced inner products

[f, g]1 − [f ′, g′]2 =

= [P+
1 f, P+

1 g]1 + [P−
1 f, P−

1 g]1 − [P+
2 f ′, P+

2 g′]2 − [P−
2 f ′, P−

2 g′]2

= (P+
1 f × P−

2 f ′, P+
1 g × P−

2 g′)1 − (P+
2 f ′ × P−

1 f, P+
2 g′ × P−

1 g)2.

Hence the Potapov-Ginzburg transformationPj1,j2 is an everywhere defined iso-
metric operator from the Kreı̆n space{K1, [·, ·]1} × {K2,−[·, ·]2} onto the Krĕın
space{H1, (·, ·)1} × {H2,−(·, ·)2}, i.e., it is a standard unitary operator. Finally,
the equalityPj1,j2(H

−[∗]) = (Pj1,j2(H))−∗ follows from Proposition 4.5 combined
with an interpretation of the orthogonal complement, cf. the arguments preceding
Proposition 3.2.
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5 THE WEYL IDENTITY APPROACH

Proposition 4.1 showed that unitary relations with closed domain are essentially
completely characterized by their behavior with respect to uniformly definite sub-
spaces contained in their domain. Here it is shown how unitary relations can in
general be distinguished from isometric relations by looking at their behavior with
respect to uniformly definite subspaces contained in their domain. This approach
to unitary relations will be calledthe Weyl identity approachto unitary relations.
Therefore, continuing from the results obtained in Section 3.5, in the first section of
this chapter it is shown that unitary relations satisfy the so-called Weyl identity and,
moreover, that identity is also shown to characterize unitary relations. By means of
the Weyl identity it is shown in the second section that unitary operators possess a
quasi-block representation. That representation in particular shows that unitary re-
lations in Krĕın spaces are closely connected to nonnegative selfadjoint relations in
Hilbert spaces; that connection will be used in the Chapter 6. In the third section it
is shown that the obtained quasi-block decomposition for unitary operators can be
generalized to a quasi-block representation for maximal isometric operators. There
it is also shown that the Weyl identity approach can not be used to investigate gen-
eral isometric relations. Finally, in the fourth section the Weyl identity approach to
unitary relations is applied to obtain two types of results on unitary relations: First
it is shown that this approach can be used to split unitary relations and, secondly,
that it can be used to indicate how the defect numbers of neutral subspaces change
under mapping by a unitary relation. In particular, in this last section of this chap-
ter necessary and sufficient conditions are presented for the pre-image of a neutral
subspace under a unitary relation to be a (hyper-)maximal neutral subspace.

5.1 The Weyl identity

Here it is shown that a unitary relation satisfies an identity which will be calledthe

Weyl identity. The reason for this name is that in the case of boundary relations,
which can be interpreted as unitary relations, see Section A.2, this identity is an
identity for the Weyl family associated with the boundary relation, see Section A.3.

Proposition 5.1. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. Then the Weyl identity

holds:

U(dom U ∩ K+
1 ) =

(
U(dom U ∩ K−1 )

)[⊥]2 .
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In particular,U(dom U ∩K+
1 ) andU(dom U ∩K−1 ) are a maximal nonnegative and

maximal nonpositive subspace of{K2, [·, ·]2}, respectively.

Proof. Let K+
2 [+]K−2 be a canonical decomposition of{K2, [·, ·]2} and letP+

i and
P−

i be the projections associated toK+
i [+]K−i , i = 1, 2. Then Proposition 3.16

together with Corollary 3.15 implies thatU(dom U ∩ K+
1 ) andU(dom U ∩ K−1 )

are a maximal nonnegative and a maximal nonpositive subspace of{K2, [·, ·]2},
respectively. Since, evidently,dom U ∩ K+

1 ⊆ (dom U ∩ K−1 )[⊥]1, applyingU and
using Lemma 3.8 yields

U(dom U ∩ K+
1 ) ⊆ (U(dom U ∩ K−1 ))[⊥]2 ∩ ran U.

SinceU(dom U ∩ K+
1 ) and(U(dom U ∩ K−1 ))[⊥]2 are both maximal nonnegative,

see Proposition 2.5, the Weyl identity follows from the previous inclusion.

Note also that the equality(dom U ∩ K+
1 ) ∩ (dom U ∩ K−1 ) = {0} yields

U(dom U ∩ K+
1 ) ∩ U(dom U ∩ K−1 ) = mul U. (5.1)

Using the Potapov-Ginzburg transformation, see Proposition 4.14, the following
necessary and sufficient conditions for an isometric relation to be unitary are ob-
tained, cf. Proposition 3.18. Those conditions are subsequently used to prove that
the Weyl identity characterizes unitary relations almost completely.

Lemma 5.2. LetU be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projections

P+
i andP−

i , for i = 1, 2. ThenU is unitary if and only if

(i) U is closed,ker U = (dom U)[⊥]1 andmul U = (ran U)[⊥]1;

(ii) there exists a subspaceM+ ⊆ dom U ∩ K+
1 with P+

2 U(M+) = K+
2 ;

(iii) there exists a subspaceM− ⊆ dom U ∩ K−1 with P−
2 U(M−) = K−2 .

Proof. Necessity of (i) is clear by (3.1) and (3.4). SinceP±
2 U(dom U ∩ K±1 ) = K±2

by Proposition 3.16 and Corollary 3.15, (ii) and (iii) hold forM± = dom U ∩ K±1 .

Conversely, assume that (i)-(iii) hold and letUPG be the Potapov-Ginzburg trans-
formation ofU , i.e.,

gr UPG = {{P+
1 f × P−

2 f ′, P+
2 f ′ × P−

1 f} : {f, f ′} ∈ gr U},
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see Proposition 4.14. SinceU is by assumption a closed isometric relation,UPG is
a closed isometric operator from the Hilbert space{K+

1 ×K−2 , (·, ·)1} to the Hilbert
space{K+

2 × K−1 , (·, ·)2}, see (4.11). Now observe that the assumption (ii) implies
thatK+

2 ×{0} ⊆ ran UPG. Moreover, the assumptionker U = (dom U)[⊥]1 implies
thatP−

1 dom U = K−1 , see Lemma 3.4, and, hence, there exists a subspaceN−
1 ⊆ K−1

satisfyingclos N−
1 = K−1 , such thatP−

1 ran UPG = N−
1 . Combining the preceding

observations shows thatK+
2 × N−

1 ⊆ ran UPG and, hence,ran UPG = K+
2 × K−1 .

Similar arguments show thatdom UPG = K+
1 × K−2 . Consequently,clos (UPG) =

UPG is a (Hilbert space) unitary operator and therefore, using the inverse Potapov-
Ginzburg transformation,U is a unitary relation.

Theorem 5.3. Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. ThenU is unitary if and

only if

(i) U is closed;

(ii) ker U = (dom U)[⊥]1;

(iii) U(dom U ∩ K+
1 ) =

(
U(dom U ∩ K−1 )

)[⊥]2.

Proof. Necessity of the conditions (i)-(iii) follows from (3.1), (3.4) and Proposi-
tion 5.1. Conversely, if (iii) holds, then

(ran U)[⊥]2 ⊆ (
U(dom U ∩ K−1 )

)[⊥]2 = U(dom U ∩ K+
1 ) ⊆ ran U.

By Lemma 3.5 the above inclusion combined with the assumption (ii) implies that
mul U = (ran U)[⊥]2. Moreover, Proposition 3.9 yields thatU(dom U ∩ K+

1 ) and
U(dom U ∩ K−1 ) are closed and, hence, assumption (iii) combined with Proposi-
tion 2.5 implies thatU(dom U ∩K+

1 ) andU(dom U ∩K−1 ) are a maximal nonnega-
tive and nonpositive subspace of{K2, [·, ·]2}, respectively. Hence the sufficiency of
the conditions (i)-(iii) follows now from Lemma 5.2.

Geometrically Theorem 5.3 says that closed isometric relation are unitary precisely
when they map certain uniformly definite subspaces onto maximal definite sub-
spaces. It can be seen as an abstract extension of (Derkach et al. 2006: Proposition
3.6).
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5.2 A quasi-block representation for unitary operators

Here a quasi-block representation for unitary operators and a consequence of it
from (Nakagami 1988) are presented; see also (Gheondea 1988). For completeness
here a proof based on the Weyl identity is included. As a preparation for the proof
two lemmas will be stated. The first lemma shows that unitary relations possess a
core which is connected to the Weyl identity. Note that the same subspace is also
a core for certain maximal isometric relations, see Corollary 6.3 below; cf. also
Example 5.10 below.

Lemma 5.4. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. Then the subspaceL :=

ker U + dom U ∩ K+
1 + dom U ∩ K−1 is a core forU , i.e.,clos (U ¹L) = U .

Proof. By definitionUr := U ¹L is an isometric relation such that

Ur(dom Ur ∩ K±1 ) = U(dom U ∩ K±1 ).

Hence, Proposition 5.1 implies thatUr(dom Ur ∩ K+
1 ) =

(
Ur(dom Ur ∩ K−1 )

)[⊥]2.
Furthermore, sincedom Ur = dom U , see (3.10), it follows from (3.4) that

ker Ur = ker U = (dom U)[⊥]1 = (dom Ur)
[⊥]1 .

Consequently,clos Ur is a closed isometric relation satisfying the conditions of
Theorem 5.3, i.e.,clos Ur is a unitary relation. SinceUr ⊆ U , this completes
the proof.

In Lemma 5.5 below certain unitary operators in a Kreı̆n space with a trivial kernel
are considered which are additionally nonnegative selfadjoint operators in an asso-
ciated Hilbert space. Theorem 5.6 below shows that this class of unitary operators
essentially explains the structure of unitary operators between Kreı̆n spaces. As
a preparation for Lemma 5.5, recall that for an everywhere defined contractionK

from the Hilbert space{H1, (·, ·)1} to the Hilbert space{H2, (·, ·)2} the following
equivalence holds:

ker (I −K∗K) = {0} if and only if ker (I −KK∗) = {0}. (5.2)

Lemma 5.5. Let j be a fundamental symmetry of{K, [·, ·]}, let K+[+]K− be the as-

sociated canonical decomposition of{K, [·, ·]} and letK be an everywhere defined

contractive operator from{K+, [·, ·]} to {K−,−[·, ·]} with ker (I − K∗K) = {0}.
ThenUK defined as

UK = clos

((
I K∗

K I

)(
(I −K∗K)−1/2 0

0 (I −KK∗)−1/2

))
(5.3)
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is a unitary operator in{K, [·, ·]} with ker UK = {0} and

UK(dom UK ∩ K+) = {f+ + Kf+ : f+ ∈ K+};
UK(dom UK ∩ K−) = {f− + K∗f− : f− ∈ K−}.

Moreover,UK is a nonnegative selfadjoint operator in the Hilbert space{K, [j·, ·]}.

Proof. In this proof the following notation is used

DK = (I −K∗K)1/2 and DK∗ = (I −KK∗)1/2,

cf. (Sz.-Nagy& Foiaş 1970: Ch. I, Section 3). Note that the assumptionker (I −
K∗K) = {0} implies thatD−1

K := (DK)−1 andD−1
K∗ := (DK∗)−1 are operators,

see (5.2).

Step 1:W.r.t. the decompositionK+ × K− of K, defineS andT as

S =

(
I K∗

K I

)
and T =

(
D−1

K 0

0 D−1
K∗

)
. (5.4)

ThenS is an everywhere defined closed operator and, hence, by Lemma 2.15

(ST )[∗] = T [∗]S[∗] =

(
D−1

K 0

0 D−1
K∗

)(
I −K∗

−K I

)
.

Consequently,V := ST satisfies

V [∗]V =

(
D−1

K 0

0 D−1
K∗

)(
I −K∗

−K I

)(
I K∗

K I

)(
D−1

K 0

0 D−1
K∗

)

=

(
D−1

K 0

0 D−1
K∗

)(
I −K∗K 0

0 I −KK∗

)(
D−1

K 0

0 D−1
K∗

)

= Idom V .

This shows thatV is an isometric operator in{K, [·, ·]}. Furthermore, the condition
ker (I −K∗K) = {0} implies thatV has dense domain, see (5.2) and (2.6). Con-
sequently, (3.3) implies thatker V = {0}. Moreover, evidently,dom V ∩ K+ =

dom D−1
K , dom V ∩ K− = dom D−1

K∗, dom DK = K+ anddom DK∗ = K−. Hence

V (dom V ∩ K+) = {f+ + Kf+ : f+ ∈ K+};
V (dom V ∩ K−) = {f− + K∗f− : f− ∈ K−}.

These equalities show thatV (dom V ∩ K+) andV (dom V ∩ K−) are a maximal
nonnegative and a maximal nonpositive subspace, respectively, and that

V (dom V ∩ K+) = (V (dom V ∩ K−))[⊥]2 ,
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see Proposition 2.19. Consequently,UK = clos (V ) is unitary by Theorem 5.3.
Finally, sinceV (dom V ∩ K+) ∩ V (dom V ∩ K−) = {0}, because by assumption
ker (I −K∗K) = {0}, it follows from (5.1) thatmul UK = {0}.
Step 2:Recall that

KD−1
K ⊆ D−1

K∗K and K∗D−1
K∗ ⊆ D−1

K K∗,

see (Sz.-Nagy& Foiaş 1970: Ch. I, Section 3). Applying the above inclusions toV

yields:

V =

(
D−1

K K∗D−1
K∗

KD−1
K D−1

K∗

)
⊆

(
D−1

K 0

0 D−1
K∗

)(
I K∗

K I

)
= jT [∗]S[∗]j = jU

[∗]
K j.

SincejU
[∗]
K j is a unitary operator in{K, [·, ·]}, see Lemma 3.10, andUK = clos (V )

is also a unitary operator in{K, [·, ·]}, the above inclusion implies thatUK = jU
[∗]
K j.

I.e.,UK is a selfadjoint operator in the Hilbert space{K, [j·, ·]}.
Step 3:The arguments in (Sz.-Nagy& Foiaş 1970: Ch. I, Section 3) can also be
used to show that

KD
−1/2
K ⊆ D

−1/2
K∗ K and K∗D−1/2

K∗ ⊆ D
−1/2
K K∗.

Applying these inclusions toV (= ST ) yields:

V =

(
I K∗

K I

)(
D−1

K 0

0 D−1
K∗

)

⊆
(

D
−1/2
K 0

0 D
−1/2
K∗

)(
I K∗

K I

)(
D
−1/2
K 0

0 D
−1/2
K∗

)

SinceK is a contraction,S (in (5.4)) is a nonnegative operator in{K, [j·, ·]}. Conse-
quently, the above calculation shows thatV is a nonnegative operator in{K, [j·, ·]}
and, hence, alsoUK = clos (V ) is a nonnegative operator in{K, [j·, ·]}.

Note that the conditionker (I − K∗K) = {0} in Lemma 5.5 can be dropped by
allowingUK to have a kernel and a multi-valued part. In that case the block repre-
sentation forUK needs to be interpreted in a specific manner.

Following is the announced representation for unitary operators w.r.t. uniformly
definite subspaces, see (Nakagami 1988) and (Gheondea 1988); see also (Azizov&

Iokhvidov 1989: Ch. 2, Theorem 5.10).

Theorem 5.6. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let K+
2 [+]K−2 be a canonical decompositions of{K2, [·, ·]2}. Then there exists a
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bounded unitary operatorUt from {K1, [·, ·]1} onto{K2, [·, ·]2} and an everywhere

defined contractionK from{K+
2 , [·, ·]2} to {K−2 ,−[·, ·]2}with ker (I−K∗K) = {0}

such that

U = UKUt,

whereUK is as in Lemma 5.5. Conversely, ifUt andK are as above, thenUKUt is

a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}.

Proof. SinceUK is a unitary operator in{K2, [·, ·]2} and Ut is a bounded uni-
tary operator from{K1, [·, ·]1} onto {K2, [·, ·]2}, UKUt is a unitary operator from
{K1, [·, ·]1} to {K2, [·, ·]2} by Lemma 3.10.

To prove the converse note that ifker U 6= {0}, thenUo := U(Uker U)−1, where
Uker U is as in Lemma 3.11, is a unitary operator without kernel. Hence, it suffices
to prove that for the unitary operatorUo with ker Uo = {0} there exists a represen-
tationUo = UKUt, whereUt is a standard unitary operator. Namely, in that case,
U has the representationU = UK(UtUker U), whereUtUker U is a bounded unitary
operator.

Hence, letU be a unitary operator withker U = {0} and letK+
1 [+]K−1 be a canon-

ical decomposition of{K1, [·, ·]1}. Then by Proposition 5.1 and 2.19 there exists a
(unique) contractive operatorK from {K+

2 , [·, ·]2} to {K−2 ,−[·, ·]2} such that

U(dom U ∩ K+
1 ) = {f+

2 + Kf+
2 : f+

2 ∈ K+
2 };

U(dom U ∩ K−1 ) = {f−2 + K∗f−2 : f−2 ∈ K−2 }.

Hereker (I−K∗K) = {0}, becausemul U = U(dom U∩K+
1 )∩U(dom U∩K−1 ) =

{0}, see (5.1). With thisK, let UK be the unitary operator in{K2, [·, ·]2} with
mul UK = {0} given by Lemma 5.5 and defineL to bedom U ∩K+

1 +dom U ∩K−1 .
Then ran (U ¹L) ⊆ ran UK and, hence,U−1

K U ¹L is an isometric operator, see
Lemma 3.10, which satisfies

(
U−1

K U ¹L

)
(dom U ∩ K+

1 ) = dom (I −K∗K)−1/2 × {0} ⊆ K+
2 ;(

U−1
K U ¹L

)
(dom U ∩ K−1 ) = {0} × dom (I −KK∗)−1/2 ⊆ K−2 .

Now observe thatdom U ∩ K+
1 anddom (I − K∗K)−1/2 are dense in the Hilbert

spaces{K+
1 , [·, ·]1} and{K+

2 , [·, ·]2}, respectively, and thatdom U∩K−1 anddom (I−
KK∗)−1/2 are dense in the Hilbert spaces{K−1 ,−[·, ·]1} and{K−2 ,−[·, ·]2}, respec-
tively, see Corollary 3.20. Hence, there exist standard unitary operatorsU+

t and
U−

t from {K+
1 , [·, ·]1} to {K+

2 , [·, ·]2} and from{K−1 ,−[·, ·]1} to {K−2 ,−[·, ·]2}, re-
spectively, such that with respect to the decompositionsK+

1 × K−1 andK+
2 × K−2 of

K1 andK2, respectively,Ut := clos (U−1
K U ¹L) = U+

t × U−
t , i.e., U ¹L⊆ UKUt.
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SinceUKUt is unitary by the proven part of the statement andU is by assumption
a unitary operator, the preceding inclusion implies thatU = UKUt.

If j2 is the fundamental symmetry of{K2, [·, ·]2} corresponding to the canonical de-
compositionK+

2 [+]K−2 in the statement of Theorem 5.6 andj1 is the fundamental
symmetry of{K1, [·, ·]1} corresponding to the canonical decompositionK+

1 [+]K−1
in the proof of Theorem 5.6, thenK in Theorem 5.6 is the operator such that
U(dom U ∩ K+

1 ) = {f+
2 + Kf+

2 : f+
2 ∈ K+

2 }. Furthermore, ifker U = {0},
then, with the above notation,Ut in Theorem 5.6 is a standard unitary operator
from {K1, [·, ·]1} to {K2, [·, ·]2} such thatUtj1 = j2Ut. Therefore, in that case,Ut is
also an everywhere defined unitary operator from (the Hilbert space){K1, [j1·, ·]1}
onto (the Hilbert space){K2, [j2·, ·]2}. Consequently, in light of Lemma 5.5, the
decompositionUKUt of U in Theorem 5.6 is in fact a polar decomposition ofU as
an operator from the Hilbert space{K1, [j1·, ·]1} to the Hilbert space{K2, [j2·, ·]2},
cf. (Calkin 1939a: Theorem 3.6). This observation will be used in Chapter 6 to
obtain another useful graph decomposition of unitary relations.

Remark 5.7. Theorem 5.6 shows that unitary relations can be classified by the
nature of the spectrum of an associated contractionK at1. In particular, the unitary
operatorU is a standard unitary operator if and only ifK is a uniform contraction,
see (Azizov& Iokhvidov 1989: Ch. 2, Theorem 5.10).

Theorem 5.6 can be interpreted as a realization result for maximal nonnegative and
nonpositive subspaces (or, equivalently, for maximal dissipative or accumulative
relations, see Proposition 2.20). Therefore observe first that ifL is a closed neutral
subspace of the Kreı̆n space{K, [·, ·]} with fundamental symmetryj, thenL is a
hyper-maximal neutral subspace of the Kreı̆n space{L + jL, [·, ·]} andL × L is a
unitary relation in{L + jL, [·, ·]}, see e.g. Corollary 4.4.

Theorem 5.8. Let M+ and M− be a maximal nonnegative and nonpositive sub-

space of{K, [·, ·]}, respectively, and letK+[+]K− be a canonical decomposition of

{K, [·, ·]}. Then there exists a unitary relationU in {K, [·, ·]} such that

M+ = U(dom U ∩ K+) or M− = U(dom U ∩ K−),

respectively. Moreover, IfU1 andU2 are two unitary relations in{K, [·, ·]} such that

U1(dom U1 ∩K+) = U2(dom U2 ∩K+) or U1(dom U1 ∩K−) = U2(dom U2 ∩K−),

thenclos (U−1
2 U1) is a unitary relation in{K, [·, ·]} with closed domain.

Proof. Let j be the fundamental symmetry associated with the canonical decom-
positionK+[+]K− and letM0 be defined asM+ ∩ (M+)[⊥]. ThenM0 is a closed



58 Acta Wasaensia

neutral subspace of{K, [·, ·]} and by means of this neutral subspace defineK0 =

M0 + jM0 andKr = K∩K
[⊥]
0 . Then{K0, [·, ·]} and{Kr, [·, ·]} are Krĕın spaces and

K+
0 [+]K−0 = (K+ ∩ K0)[+](K− ∩ K0) andK+

r [+]K−r = (K+ ∩ Kr)[+](K− ∩ Kr) are
canonical decompositions of these spaces.

Now letKr be the angular operator ofM+ ∩ Kr, i.e.,

M+ ∩ Kr = {f+
r + Krf

+
r : f+

r ∈ K+
r }.

SinceM+ ∩ (M+)[⊥] ∩ Kr = {0}, it follows thatker (I −K∗
r Kr) = {0}. Hence,

UKr is a unitary operator in{Kr, [·, ·]} such thatUKr(dom UKr ∩ K+
r ) = M+ ∩ Kr,

see Lemma 5.5. SinceU0 defined viagr U0 = M0 × M0 is a unitary relation in
{K0, [·, ·]}, Lemma 3.13 shows thatU defined viagr U = gr U0+gr UKr is a unitary
relation in{K, [·, ·]}, which satisfiesU(dom U∩K+) = M+. Similar arguments can
be used to show the existence of a unitary relationU with U(dom U ∩ K−) = M−.

Next let U1 and U2 be unitary relations such thatU1(dom U1 ∩ K+) = M+ =

U2(dom U2 ∩ K+) and w.l.o.g. assume thatker U1 = {0} = ker U2, see the above
arguments or Corollary 3.12. ThenU1(dom U1 ∩ K−) = U2(dom U2 ∩ K−), see
Proposition 5.1. HenceUa := U−1

2 U1 mapsdom U1∩K± ontodom U2∩K±. Since
clos (dom Ui ∩ K±) = K±, for i = 1, 2, see (3.11), it follows thatclos (Ua) is a
standard unitary operator in{K, [·, ·]}.

5.3 A quasi-block representation for maximal isometric
operators

Next the quasi-block representation for unitary operators from Theorem 5.6 is gen-
eralized to a quasi-block representation for maximal isometric operators. That
representation for maximal isometric operators implies that non-trivial properties
of maximal isometric operators can be obtained from properties of unitary oper-
ators. Note also that a similar representation holds for an isometric operatorV

whose domain contains a hyper-maximal semi-definite subspace, because in that
caseker V + dom V ∩ K+

1 + dom V ∩ K−1 is dense in its domain.

Theorem 5.9. LetV be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} with

ker V = (dom V )[⊥]1 and ran V = K2. Moreover, letji be a fundamental symme-

try of {Ki, [·, ·]i} and letK+
i [+]K−i be the associated canonical decomposition of

{Ki, [·, ·]i}, for i = 1, 2. ThenV is a maximal isometric operator if and only if

V = UKVt,

where
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(i) Vt is a closed isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} satisfying

ker V = ker Vt and(ker Vt)
[⊥]1 = dom Vt, j2Vt = Vtj1 and

P+
2 ran Vt = K+

2 or P−
2 ran Vt = K−2 ;

(ii) UK is the unitary operator in{K2, [·, ·]2} associated with an everywhere

defined contractionK from (the Hilbert space){K+
2 , [·, ·]2} to (the Hilbert

space){K−2 ,−[·, ·]2} with ker (I −K∗K) = {0} as in(5.3).

Proof. W.l.o.g. assume thatker V = {0} = ker Vt, see Section 3.4.

First the sufficiency of the conditions is proven, where w.l.o.g. it is assumed that
P−

2 ran Vt = K−2 . Note first that the assumptionj2Vt = Vtj1 together with the
closedness ofVt implies thatdom Vt = K1. Hence, in particular, the assumptions
imply that Vt(K

+
1 ) = P+

2 ran Vt andVt(K
−
1 ) = K−2 . Furthermore, sinceUK is a

unitary operator in{K2, [·, ·]2}, Proposition 3.16 and Corollary 3.15 imply that

P−
2 UK(dom UK ∩ K−2 ) = K−2 and P+

2 U−1
K (ran UK ∩ K+

2 ) = K+
2 ,

Combining these equalities withVt(K
−
1 ) = K−2 yields

dom UK ∩ K−2 ⊆ ran Vt and P+
2 (U−1

K (ran UK ∩ K+
2 ) ∩ ran Vt) = P+

2 ran Vt.

Consequently, sinceVt(K
+
1 ) = P+

2 ran Vt andVt(K
−
1 ) = K−2 , V = UKVt satisfies

P−
2 V (dom V ∩ K−1 ) = K−2 and P+

1 V −1(ran V ∩ K+
2 ) = K+

1 .

This implies by Proposition 3.16 and Corollary 3.15 thatV is maximal isometric.

Next the necessity of the conditions is proven; w.l.o.g. that is only done for the
case that(P−

1 × P+
2 )gr V = K−1 × K+

2 , see Corollary 3.15. If(P−
1 × P+

2 )gr V =

K−1 ×K+
2 , thenV (dom V ∩K+

1 ) is a maximal nonnegative subspace of{K2, [·, ·]2} by
Proposition 3.16. LetK be its angular operator w.r.t.K+

2 , i.e.,K is the everywhere
defined contraction from{K+

2 , [·, ·]2} to {K−2 ,−[·, ·]2} such that

V (dom V ∩ K+
1 ) = {f+ + Kf+ : f+ ∈ K+

2 }.

Moreover,ker (I−K∗K) = {0}, becauseV is a closed operator withmul V = {0},
i.e. V (dom V ∩K+

1 ) does not contain neutral vectors of{K2, [·, ·]2} (hereK∗ is the
adjoint of K as an operator from{K+

2 , [·, ·]2} to {K−2 ,−[·, ·]2}). Let UK be the
unitary operator associated withK as in (5.3). ThenU−1

K V ¹K+
1

is an isometric op-
erator from{K+

1 , [·, ·]1} to {K+
2 , [·, ·]2} which maps the dense subspacedom V ∩K+

1

of K+
1 , see Lemma 3.19, onto the dense subspacedom UK ∩ K+

2 of K+
2 , see Corol-

lary 3.20. I.e.,dim K+
1 = dim K+

2 andV +
1 := clos (U−1

K V ¹K+
1
) is an everywhere



60 Acta Wasaensia

defined unitary operator from the Hilbert space{K+
1 , [·, ·]1} onto the Hilbert space

{K+
2 , [·, ·]2}.

Similar arguments (applied toV −1, ran V ∩ K−2 andV −1(ran V ∩ K−2 )) show that
there exists an everywhere defined unitary operatorV −

1 from {K−1 ,−[·, ·]1} onto
{K−2 ,−[·, ·]2}. ThenV1 := V +

1 ×V −
1 is a standard unitary operator from{K1, [·, ·]1}

to {K2, [·, ·]2} satisfyingV1j1 = j2V1. Hence, by Lemma 3.10U := UKV1 is a
unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} which by definition ofV1 satisfies

Uf = V f, f ∈ dom U ∩ K+
1 = dom V ∩ K+

1 . (5.5)

Next let the definite inner products(·, ·)1 and(·, ·)2 on the closed subspacesK+
1 ×K−2

andK−1 ×K+
2 be as in (4.11) and letAV andAU be the Potapov-Ginzburg transforms

of V andU :

gr AV = {{P+
1 f × P−

2 f ′, P−
1 f × P+

2 f ′} : {f, f ′} ∈ gr V };
gr AU = {{P+

1 f × P−
2 f ′, P−

1 f × P+
2 f ′} : {f, f ′} ∈ gr U},

respectively, see Proposition 4.14. ThenAV andAU are a maximal isometric and
a unitary operator from the Hilbert space{K+

1 × K−2 , (·, ·)1} to the Hilbert space
{K−1 ×K+

2 , (·, ·)2}, respectively. Note that the assumption(P−
1 ×P+

2 )gr V = K−1 ×
K+

2 implies thatran AV = K−1 ×K+
2 . Note also thatA−1

U (K−1 )⊕A−1
U (K+

2 ) = K+
1 ×K−2 ,

becauseAU is a (Hilbert space) unitary operator, and thatA−1
U (K+

2 ) = A−1
V (K+

2 ) by
(5.5). SinceAV is an isometric operator, the above observations yield

A−1
V (K−1 ) ⊆ (A−1

V (K+
2 ))⊥1 = (A−1

U (K+
2 ))⊥1 = A−1

U (K−1 ).

This shows thatV −
2 := AUA−1

V ¹K−1
is an everywhere defined isometric operator

in {K−1 , [·, ·]1} and, hence,V2 := IK+
1
× V −

2 is an everywhere defined isometric
operator in{K1, [·, ·]1} which commutes withj1. By definition ofV2

(UV2)
−1f = V −1f, f ∈ ran V ∩ K−2 = ran (UV2) ∩ K−2 . (5.6)

Sincedom V = dom V ∩K+
1 +V −1(ran V ∩K−2 ) by Proposition 3.16, (5.5) and (5.6)

show thatUV2 = UKV1V2 andV coincide on the domain of the maximal isometric
operatorV . Hence, the asserted decomposition holds withVt = V1V2.

AlthoughUK in Theorem 5.9 is a nonnegative selfadjoint operator in (the Hilbert
space){K2, [j2·, ·]2} and Vt an everywhere defined isometric operator from (the
Hilbert space){K1, [j1·, ·]1} to (the Hilbert space){K2, [j2·, ·]2}, the decomposi-
tion V = UKVt is not, in general, a polar decomposition ofV , becausedom UK *
ran Vt. However, ifran Vt = K2, then the decomposition in Theorem 5.9 is a polar
decomposition. In fact, in that caseV is a unitary operator, see Section 5.2.
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Recall that for a unitary relationker U +dom U ∩K+
1 +dom U ∩K−1 is dense in the

domain ofU , see (3.10). In fact, Lemma 5.4 showed that the preceding subspace
is a core forU . I.e., a unitary relation is completely determined by its behavior on
the uniformly definite subspacesdom U ∩ K+

1 anddom U ∩ K−1 . For (maximal)
isometric relations this does not in general hold as the following example shows.

Example 5.10. Let U be a densely defined unbounded unitary operator in the
separable (infinite-dimensional) Kreı̆n space{K, [·, ·]}. Then dom U ∩ K+ and
dom U ∩ K− are dense subspaces ofK+ andK−, respectively, which are, more-
over, operator ranges. Hence, there exists an infinite-dimensional closed subspace
L of K+ such thatL ∩ dom U = {0}, see Proposition 2.17 (vi). Now letVt be the
everywhere defined isometric operator in{K, [·, ·]} which is the identity mapping
on K− and mapsK+ isometrically ontoL ( K+, thenV := UVt is by (the first
part of the proof of) Theorem 5.9 a maximal isometric operator and by construction
dom V ∩ K+ = {0} (anddom V = K).

From the fact thatdom V = K anddom V ∩K+ = {0} in Example 5.10, it follows
that the domain ofV can not contain a hyper-maximal semi-definite subspace. Be-
cause if it would contain a hyper-maximal semi-definite subspace, thendom V ∩K+

anddom V ∩ K− should be dense inK+ andK−, respectively, see Corollary 2.14.
Example 5.11 below shows that there exists a densely defined (non-maximal) closed
isometric operatorV with dense range such thatdom V ∩K+ = {0} = dom V ∩K−.
In particular, the domain of the isometric operator in Example 5.11 also does not
contain any hyper-maximal semi-definite subspace.

Example 5.11.Let K be a compact nonnegative selfadjoint operator in the separa-
ble (infinite-dimensional) Hilbert space{H, (·, ·)} with ran K 6= H = ran K. Then
by (Brasche& Neidhardt 1993: Lemma 2), there exists a closed restrictionT of
K such thatran T = H, thatdom T ∩ ran T = {0} and thatdim(dom T )⊥ = ∞.
Note that the operator rangedom T + ran T , see Proposition 2.17 (i), is not equal
to the whole space by Proposition 2.17 (iv).

Sincedom T + ran T is a nonclosed operator range, Proposition 2.17 (ii) and (v)
implies that there exists an everywhere defined closed operatorB with ker B = {0}
such thatran B ∩ (dom T + ran T ) = {0}. Now V defined as

V {f, T−1f + Bf ′} = {f ′, Kf ′ −B∗f}, f ∈ ran T, f ′ ∈ dom K,

is a closed isometric operator in{H2, < ·, · >}, cf. (Derkach et al. 2006: Example
6.6) and (Derkach et al. 2012: Proposition 7.55). Clearly,

dom V = gr T−1 + {0} ×B(dom K);

ran V = gr K + {0} × B∗(ran T ).
(5.7)
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The above formulas imply thatdom V = H2 = ran V , because by assumption
dom K = H = ran T , andB andB∗ are closed everywhere defined operators
with dense range. Recall thatH+[+]H−, whereH+ = {{f, if} : f ∈ H} and
H− = {{f,−if} : f ∈ H}, is a canonical decomposition of{H2, < ·, · >}, see
Example 2.1. Hence,dom T ∩ ran T = {0}, ran B ∩ (dom T + ran T ) = {0} and
(5.7) yielddom V ∩ H+ = {0} = dom V ∩ H−.

Using compositions of unitary and maximal isometric operators as in Theorem 5.9,
it can be shown that the domains of unitary relation do not differ essentially from the
domains of isometric relations. I.e., to distinguish unitary relations from isometric
relations their action also has to be considered.

Example 5.12.Let U be an unbounded unitary operator between{K1, [·, ·]1} and
{K2, [·, ·]2} and letK+

2 [+]K−2 be a canonical decomposition of{K2, [·, ·]2}. More-
over, letV be a closed everywhere defined isometric operator in{K2, [·, ·]2} which
mapsK+

2 ontoK+
2 andK−2 ontoD−

2 , whereD−
2 ( K−2 . ThenV U is an isometric

operator from{K1, [·, ·]1} to {K2, [·, ·]2} with dom V U = dom U . Moreover,V U

is not unitary, becauseP−
2 ran V U = D−

2 6= K−2 . In fact, arguments as in the proof
of Theorem 5.9 show thatV U is a maximal isometric operator.

Example 5.13.Let S be a densely defined closed symmetric operator in{H, (·, ·)}
which does not have equal defect numbers. ThenΥ1(S) is a densely defined iso-
metric operator in{H2, < ·, · >} with dense range which can not be extended
to a unitary operator. Next letB be an everywhere defined closed operator such
that ran B = dom S andker B = {0}. ThenΥ2(B

−1) is a unitary operator in
{H2, < ·, · >} with

dom (Υ2(B
−1)) = ran B ⊕2 H = dom S ⊕2 H = dom (Υ1(S)).

5.4 Weyl identity and properties of unitary relations

The Weyl identity approach, which was shown to characterize unitary relations in
Section 5.1, is now used to obtain two types of results on unitary relations: First it is
shown that this approach indicates how unitary relations can be split and, secondly,
it is shown how the approach can be used to determine the defect numbers of certain
neutral subspaces after mapping them by a unitary relation. As a first step towards
the splitting result, conditions (in terms of the Weyl identity) are presented for when
a part of a unitary relation is itself a unitary relation between certain Kreı̆n spaces.
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Proposition 5.14.LetU be a unitary relation from{K1, [·, ·]1} to{K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} with associated projections

P+
i andP−

i , for i = 1, 2. Moreover, letLd andLr be closed subspaces ofker U

andmul U , respectively, and assume that there exist subspacesM+ ⊆ dom U ∩K+
1

andM− ⊆ dom U ∩ K−1 such that

(i) clos (M+) ∩ dom U = M+ andclos (M−) ∩ dom U = M−;

(ii) P−
2 U(M+) ⊆ P−

2 U(M−) andP+
2 U(M−) ⊆ P+

2 U(M+).

ThenŨ defined via

gr Ũ = {{f + g, f ′} ∈ U : f ∈ clos (M+ + M−), g ∈ Ld, f ′ ∈ L⊥2
r }

is a unitary relation from the Krĕın space{K̃1, [·, ·]1} to the Krĕın space{K̃2, [·, ·]2},
whereK̃1 = clos (M++M−)+(Ld+ j1Ld) andK̃2 = (P+

2 U(M+)+P−
2 U(M−))∩

(Lr + j2Lr)
[⊥]2.

Proof. Note first that condition (i) implies thatP+
2 U(M+) and P−

2 U(M−) are
closed, see Proposition 3.9. Hence, the assumptions (i) and (ii) together with the as-
sumptions onLd andLr imply that{K̃1, [·, ·]1} and{K̃2, [·, ·]2} are Krĕın spaces and
that Ũ is closed, because its graph is the intersection of the two closed subspaces
gr (U) andK̃1 × K̃2. Moreover, by constructionker Ũ = Ld = (dom Ũ)[⊥]1 ∩ K̃1.

Next observe that the assumptions (i) and (ii) imply thatU(M+) and U(M−)

are a maximal nonnegative and maximal nonpositive subspace of the Kreı̆n space
{P+

2 U(M+) + P−
2 U(M−), [·, ·]2}, respectively. Therefore, sinceLr ⊆ mul U ⊆

U(M+) ∩ U(M−), Ũ(M+) = U(M+) ∩ K̃2 and Ũ(M−) = U(M−) ∩ K̃2 are a
maximal nonnegative and nonpositive subspace of the Kreı̆n space{K̃2, [·, ·]2}, re-
spectively. SinceU(M+) ⊆ (U(M−))[⊥]2, see Proposition 5.1, the maximality of
Ũ(M+) and Ũ(M−) implies thatŨ(M+) = Ũ(M−)[⊥]2 in {K̃2, [·, ·]2}. Hence,
Theorem 5.3 yields that̃U is a unitary relation.

The inverse to Proposition 5.14 also holds, i.e., ifŨ is a unitary relation, then (i)
and (ii) hold. Next Proposition 5.14 is used to obtain a result about the splitting of
unitary relations which complements Lemma 3.13.

Theorem 5.15. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

{K̃i, [·, ·]i}[+]{K̂i, [·, ·]i} be an orthogonal decomposition of{Ki, [·, ·]i} into two

Krĕın spaces, fori = 1, 2, and definẽU andÛ via

gr Ũ = gr U ∩ (K̃1 × K̃2) and gr Û = gr U ∩ (K̂1 × K̂2).

ThenŨ is unitary if and only ifÛ is unitary.
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Proof. W.l.o.g. assume thatker U = {0} = mul U and letK̃+
i [+]K̃−i andK̂+

i [+]K̂−i
be canonical decomposition of{K̃i, [·, ·]i} and{K̃i, [·, ·]i}, respectively, fori = 1, 2.
Denote the associated canonical decomposition of{Ki, [·, ·]i} by K+

i [+]K−i and let
P+

i andP−
i denote the associated projections, fori = 1, 2.

Clearly, to prove the equivalence it suffices to prove only one implication. Hence
assume that̃U is unitary. DefinêU+

r via

gr Û+
r = {{f, f ′} ∈ gr U : f ∈ dom U ∩ K+

1 andP+
2 f ′ ∈ K̂+

2 },

thenP+
2 ran Û+

r = K̂+
2 , see Proposition 5.1. If{f, f ′} ∈ gr Û+

r and{g, g′} ∈ gr Ũ

whereg ∈ dom Ũ ∩ K−1 , then[f, g]1 = 0 and[P+
2 f ′, P+

2 g′]2 = 0. Therefore

0 = [f, g]1 = [f ′, g′]2 = [P−
2 f ′, P−

2 g′]2.

SinceŨ is unitary,P−
2 Ũ(dom Ũ ∩ K−2 ) = K̃−2 and, hence, the previous equality

implies thatP−
2 f ′ ∈ (K̃−2 )[⊥]2 ∩ K−2 = K̂−2 . Consequently,ran Û+

r ⊆ K̂2.

Now if {g, g′} ∈ Ũ , whereg ∈ dom Ũ ∩ K+
1 , then, sinceran Û+

r ⊆ K̂2 = K̃
[⊥]2
2 ,

[f, g]1 = [f ′, g′]2 = 0, {f, f ′} ∈ gr Û+
r

This shows thatf ∈ (dom Ũ ∩ K+
1 )[⊥]1 = (K̃+

1 )[⊥]1 = K̂+
1 , see (3.11).

The above arguments show thatÛ+
r ⊆ Û and, hence,P+

2 Û(dom Û ∩ K+
1 ) = K̂+

2

andP−
2 Û(dom Û ∩ K+

1 ) ⊆ K̂−2 . By similar argumentsP−
2 Û(dom Û ∩ K−1 ) = K̂−2

andP+
2 Û(dom Û∩K−1 ) ⊆ K̂+

2 . ThereforeÛ is unitary by Proposition 5.14, because
the condition (i) therein clearly holds.

Next a very different application of the Weyl identity approach to unitary relations
is presented. Namely this approach is now used to characterize the defect numbers
of the pre-images of neutral subspaces under mapping by unitary relations; these
results are an extension of Calkin’s, cf. (Calkin 1939a: Theorem 4.8, Theorem 4.11
& Theorem 4.12). As a starting point, a simple observation on neutral subspaces
contained in the domain of a unitary operator with a trivial kernel is stated.

Lemma 5.16. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} with

ker U = {0}, letK+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i}, for i = 1, 2,

and let L ⊆ dom U be a neutral subspace of{K1, [·, ·]1}. Then there exists a

subspaceL+ ⊆ ran U∩K+
2 , an injective mappingL+ fromU−1(L+) todom U∩K−1 ,

and a subspaceL− ⊆ ran U ∩ K−2 , an injective mappingL− from U−1(L−) to

dom U ∩ K+
1 such that

{f+ + L+f+ : f+ ∈ U−1(L+)} = L = {f− + L−f− : f− ∈ U−1(L−)}. (5.8)
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In particular, L is closed ifclos (L+) ∩ ran U = L+ or if clos (L−) ∩ ran U = L−,

U(L) is closed ifclos (ran L+) ∩ dom U = ran L+ or if clos (ran L−) ∩ dom U =

ran L−. Moreover,

n+(L) = dim(K−1 ª1 P−
1 U−1(L−)) and n−(L) = dim(K+

1 ª1 P+
1 U−1(L+)).

Proof. As a direct consequence of the decompositions of unitary relations in (3.8),
the decompositions ofL in (5.8) hold. Recall that, sinceL is neutral,L is closed
if and only if eitherP+

1 L is closed orP−
1 L is closed. This observation together

with (5.8) implies thatL is closed if and only if eitherP+
1 U−1(L+) is closed or

P−
1 U−1(L−) is closed. Therefore the stated conditions for the closedness ofL now

follows from Proposition 3.9. Moreover, the stated conditions for the closedness
of U(L) can be proven by similar arguments and the assertion about the defect
numbers ofL follows straightforwardly from (5.8), becauseL+ andL− map into
K−1 andK+

1 , respectively.

Combining the decomposition of unitary relations in (3.8) with the concept of an-
gular operators, see Section 2.5, yields the following reformulation of Lemma 5.16
in terms of angular operators.

Proposition 5.17. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i}, for i = 1, 2, and letK+ and

K− be the angular operators ofU(dom U ∩ K+
1 ) andU(dom U ∩ K−1 ) w.r.t. K+

2

andK−2 , respectively. Moreover, letN ⊆ ran U be a neutral subspace of{K2, [·, ·]2}
with angular operatorK w.r.t. K+

2 . Then the defect numbers of the neutral subspace

U−1(N) of {K1, [·, ·]} are

n+(U−1(N)) = dim
(
K−1 ª1 P−

1 U−1(ran (K+ −K))
)
;

n−(U−1(N)) = dim
(
K+

1 ª1 P+
1 U−1(ran (K− −K−1))

)
.

Furthermore,U−1(N) is closed ifran (K+ − K) ∩ ran U = ran (K+ − K) or if

ran (K− −K−1) ∩ ran U = ran (K− −K−1).

Proof. W.l.o.g. assume thatker U = {0} = mul U , then to complete the proof
it now suffices to note that ifL = U−1(N), thenran (K+ − K) ⊆ ran U ∩ K−2
andran (K− −K−1) ⊆ ran U ∩ K+

2 correspond to the subspacesL− andL+ from
Lemma 5.16.

The assumptionN ⊆ ran U in Proposition 5.17 can be dropped ifran (K+−K) and
ran (K−−K−1) are replaced byran (K+−K)∩ran U andran (K−−K−1)∩ran U ,
respectively. In particular, Proposition 5.17 yields the following conditions for the
inverse image of a neutral subspace under a unitary relation to be maximal neutral.
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Corollary 5.18. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i}, for i = 1, 2, and letK+ and

K− be the angular operators ofU(dom U ∩ K+
1 ) andU(dom U ∩ K−1 ) w.r.t. K+

2

and K−2 , respectively. Moreover, letN be a neutral subspace of{K2, [·, ·]2} with

angular operatorK w.r.t. K+
2 . Then equivalent are:

(i) n+(U−1(N ∩ ran U)) = 0 andU−1(N ∩ ran U) is closed;

(ii) ran U ∩ K−2 ⊆ ran (K+ −K);

(iii) ran U = (N ∩ ran U) + U(dom U ∩ K+
1 ).

Similarly, equivalent are:

(i) n−(U−1(N ∩ ran U)) = 0 andU−1(N ∩ ran U) is closed;

(ii) ran U ∩ K+
2 ⊆ ran (K− −K−1);

(iii) ran U = (N ∩ ran U) + U(dom U ∩ K−1 ).

Proof. W.l.o.g. only the first set of equivalences will be proven. To prove the
equivalence of (i) and (ii) recall first thatP−

1 U−1(M−) = K−1 for M− ⊆ ran U∩K−2
if and only if M− = ran U ∩ K−2 , cf. Proposition 5.1. In light of that observation,
Proposition 5.17 together with the discussion following that statement show that (i)
holds if and only ifran U ∩ K−2 ⊆ ran (K+ −K) ∩ ran U ; this latter condition is,
clearly, equivalent to condition (ii). Finally, the equivalence of (ii) and (iii) follows
directly from the fact thatran U = ran U ∩ K−2 + U(dom U ∩ K+

1 ) by (3.8).

In fact, by means of direct arguments it can be shown that in the equivalences in
Corollary 5.18 the assumption thatU is unitary is too strong. For instance ifV is
an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} andN is a neutral subspace
of {K2, [·, ·]2}, thenn+(V −1(N ∩ ran V )) = 0 and V −1(N ∩ ran V ) is closed
if and only if P−

1 dom V = K−1 and ran V = (N ∩ ran V ) + V (dom V ∩ K+
1 ),

and thatn−(V −1(N ∩ ran V )) = 0 andV −1(N ∩ ran V ) is closed if and only if
P+

1 dom V = K+
1 andran V = (N ∩ ran V ) + V (dom V ∩ K−1 ).
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6 HYPER-MAXIMAL SEMI-DEFINITE SUBSPACES

As a preparation for Chapter 7, where block representation for certain classes of
isometric operators are considered, here hyper-maximal semi-definite subspaces
contained in the domains of isometric and unitary relations are investigated. More
specifically, in the first section consequences of the existence of a hyper-maximal
semi-definite subspace in the domain of an isometric relation are presented. There-
after, in the second section, a graph decomposition of unitary relations is presented.
That graph decomposition implies in particular that the domain or, equivalently, the
range of a unitary relation always contains a hyper-maximal semi-definite subspace.
In the third and final section of this chapter the graph decomposition approach to
unitary relations from the first section is combined with the Weyl identity approach
to unitary relations from Chapter 5 to obtain more insight into unitary relations.

6.1 Isometric relations and hyper-maximal semi-definite
subspaces

Here some basic properties that an isometric relation possesses as a consequence of
having a hyper-maximal semi-definite subspace in its domain are presented. Since
hyper-maximal semi-definite subspaces are closed, a first consequence is that the
kernels of those isometric relations are closed. Another connected consequence is
contained in the following statement.

Lemma 6.1. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} with

mul V = (ran V )[⊥]2 and assume that there exists a hyper-maximal semi-definite

subspaceL of {K1, [·, ·]1} such thatL ⊆ dom V . Thenker V = (dom V )[⊥]1.

Proof. Recall thatL[⊥]1 ⊆ L, becauseL is hyper-maximal semi-definite, see e.g.
Proposition 2.9. Hence, the assumptionL ⊆ dom V implies that

(dom V )[⊥]1 ⊆ L[⊥]1 ⊆ L ⊆ dom V.

Consequently, Lemma 3.5 implies thatker V = (dom V )[⊥]1.

Using the second von Neumann formula yields the following statement.
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Corollary 6.2. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

assume that there exists a hyper-maximal semi-definite subspaceL of {K1, [·, ·]1}
such thatL ⊆ dom V . Thenclos (dom V ∩ K±1 ) = dom V ∩ K±1 .

Proof. W.l.o.g. assume thatL is hyper-maximal neutral, then the statement follows
directly from Corollary 2.14 (applied toL = dom V andM = L).

In particular, ifV is an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} such that
ker V = (dom V )[⊥]1 and dom V contains a hyper-maximal semi-definite sub-
spaces, then combining the first von Neumann formula (2.4) with Corollary 6.2
yields

dom V = ker V ⊕1 clos (dom V ∩ K+
1 )⊕1 clos (dom V ∩ K−1 ), (6.1)

whereK+
1 [+]K−1 is a canonical decomposition of{K1, [·, ·]1}, cf. (3.10). The above

formula together with Lemma 3.8 yields

(
V (dom V ∩ K+

1 )
)[⊥]2 ∩ ran V = V (dom V ∩ K−1 );

(
V (dom V ∩ K−1 )

)[⊥]2 ∩ ran V = V (dom V ∩ K+
1 ).

(6.2)

Observe that by Proposition 3.9V (dom V ∩K+
1 ) andV (dom V ∩K−1 ) are closed if

V is closed in addition to the previous conditions.

In fact, just as for unitary relations, the isometric relations under considerations are
characterized by their behavior on the uniformly definite subspacesdom V ∩ K+

1

anddom V ∩ K−1 .

Lemma 6.3. Let V be a closed isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}
satisfyingker V = (dom V )[⊥]1, assume that there exists a hyper-maximal semi-

definite subspaceL of {K1, [·, ·]1} such thatL ⊆ dom U and letK+
1 [+]K−1 be a

canonical decomposition of{K1, [·, ·]1}. Thenker V + dom V ∩K+
1 + dom V ∩K−1

is a core forV .

Proof. W.l.o.g. assume thatker V = {0} = mul V and thatL is hyper-maximal
neutral. Moreover, letj1 be the fundamental symmetry corresponding to the canon-
ical decompositionK+

1 [+]K−1 of {K1, [·, ·]1}. Thendom V = L ⊕1 j1L ∩ dom V .
Moreover, sinceL is closed andV is a closed relation, it follows thatV restricted
to L is a bounded operator. Therefore the statement follows from the fact that
clos (j1L ∩ dom V ) = j1L and that(j1L ∩ dom V ) + j1(j1L ∩ dom V ) = dom V ∩
K+

1 + dom V ∩ K−1 .
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6.2 A graph decomposition of unitary relations

Here unitary relations are characterized by the fact that they have a special graph
decomposition, see Lemma 6.4 and Theorem 6.8 below. This decomposition is the
main result of this chapter and it will also play a major role in the next chapter.
The decomposition result is based on the fact that unitary relations between Kreı̆n
spaces are connected to nonnegative selfadjoint operators in Hilbert spaces, see
the discussion following Theorem 5.6. Note that Lemma 6.4 below is inspired by
Calkin (1939a: Theorem 3.5); the difference is that here the graph of a unitary
relation is decomposed whereas in (Calkin 1939a) only the domain of a unitary
relation was decomposed.

Lemma 6.4. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} associated to the fundamen-

tal symmetryji of {Ki, [·, ·]i}, for i = 1, 2. DefineUc via

gr Uc = {{f, f ′} ∈ gr U : [j1f, g, ]1 = [j2f
′, g′]2, ∀{g, g′} ∈ gr U}

Moreover, withK̃1 := K1 ∩ (ker U + j1ker U + dom Uc)
[⊥]1 and withK̃2 := K2 ∩

(mul U + j2mul U + ran Uc)
[⊥]2, defineUo via

gr Uo = gr U ∩ (K̃1 × K̃2).

ThenU has the graph decomposition

gr U = (ker U ×mul U) +̇ gr Uc +̇ gr Uo,

where

(i) Uc is a standard unitary operator from the Kreı̆n space{dom Uc, [·, ·]1} to the

Krĕın space{ran Uc, [·, ·]2}. Moreover,gr Uc = gr U+ +gr U− whereU+ and

U− are the Hilbert space unitary operators defined via

gr U+ = gr U ∩ (K+
1 × K+

2 ) and gr U− = gr U ∩ (K−1 × K−2 )

from{dom U+, [·, ·]1} onto{ran U+, [·, ·]2} and from{dom U−,−[·, ·]1} onto

{ran U−,−[·, ·]2}, respectively.

(ii) Uo is a unitary operator from the Kreı̆n space{K̃1, [·, ·]1} to the Krĕın space

{K̃2, [·, ·]2} with dense domain and dense range. Moreover, there exist hyper-

maximal neutral subspacesLd ⊆ dom Uo and Lr ⊆ ran Uo of {K̃1, [·, ·]1}
and{K̃2, [·, ·]2}, respectively, such that

Uo(Ld) = j2Lr ∩ ran Uo and Uo(j1Ld ∩ dom Uo) = Lr.
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In particular,

dom Uo = Ld ⊕1 (j1Ld ∩ dom Uo) and ran Uo = Lr ⊕2 (j2Lr ∩ ran Uo).

Proof. Note first that the stated graph decomposition ofU is a consequence of (i)
and the fact thatker U ×mul U is a unitary relation from the Kreı̆n space{ker U +

j1ker U, [·, ·]1} to the Krĕın space{mul U + j2mul U, [·, ·]2}, see e.g. Corollary 4.4.

(i), (ii): Define K1,r = K1 ∩ (ker U + j1ker U)[⊥]1 and K2,r = K2 ∩ (mul U +

j2mul U)[⊥]2. Then Lemma 3.13 implies thatUr defined via

gr Ur = gr U ∩ (K1,r × K2,r)

is a unitary operator with a trivial kernel from the Kreı̆n space{K1,r, [·, ·]1} to
the Krĕın space{K2,r, [·, ·]2}. By Theorem 5.6 (applied toU−1

r ), see also the dis-
cussion following that statement, there exists a standard unitary operatorUt from
{K1,r, [·, ·]1} to {K2,r, [·, ·]2}, satisfyingUtj1 = j2Ut, such thatUa := U−1

t Ur is a
unitary operator (without kernel) in{K1,r, [·, ·]1} which is additionally a nonnega-
tive selfadjoint operator in (the Hilbert space){K1,r, [j1·, ·]1}.
Now let{Et}t∈R and{Ft}t∈R be the spectral families of the nonnegative selfadjoint
operatorsUa andU−1

a in (the Hilbert space){K1,r, [j1·, ·]1}, respectively, thenFt =

I − E(1/t)− for t > 0. Moreover,Ld := ran E1−, Mr := ran F1− andNd :=

ker (Ua − I) = ran (E1 − E1−) are closed subspaces of{K1,r, [j1·, ·]1} such that

dom Ua = Ld ⊕1 Nd ⊕1 U−1
a (Mr) and ran Ua = Mr ⊕1 Nd ⊕1 Ua(Ld). (6.3)

Next note thatU−1
a = j1Uaj1, becauseUa is a selfadjoint operator in (the Hilbert

space){K1,r, [j1·, ·]1} and a unitary operator in{K1,r, [·, ·]1}. The preceding equality
together the before mentioned connection between the spectral measures ofUa and
U−1

a , implies that

I − E(1/t)− = j1Etj1, t > 0. (6.4)

In particular, (6.4) yieldsE1−E1− = j1(E1−E1−)j1. This implies thatNd = j1Nd

and, hence,{Nd, [·, ·]1} is a Krĕın space becauseNd is by definition closed. From
(6.4) it also follows thatj1ran (I − E1) = ran (E1−j1) = Ld. Sinceran (I − E1)∩
dom Ua = U−1

a (Mr), this implies thatU−1
a (Mr) = j1Ld ∩ dom Ua and also that

clos (j1Ld ∩ dom Ua) = j1Ld. Consequently, (6.3) implies that

L
[⊥]1
d = j1L

⊥
d = j1(Nd ⊕ clos (j1Ld ∩ dom Ua)) = Nd ⊕ Ld.

The above formula implies thatLd is a hyper-maximal neutral subspace of (the
Krĕın space){K̃1, [·, ·]1} := {dom Ua ª1 Nd, [·, ·]1}.
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Similar arguments as above yieldUa(Ld) = j1Mr ∩ ran Ua and thatMr is a
hyper-maximal neutral subspace in the Kreı̆n space{ran Ua ª1 Nd, [·, ·]1}. Hence,
Lr = Ut(Mr) = Ur(j1Lr ∩ dom Ur) is a hyper-maximal neutral subspace in
{K̃2, [·, ·]2} := {Ut(ran Ua ª1 Nd), [·, ·]2}. Therefore, ifUo and Uc are defined
via

gr Uo = gr Ur ∩ (K̃1 × K̃2) and gr Uc = gr Ur ∩ (Nd × Ut(Nd)),

thengr Uo + gr Uc = gr Ur. Consequently, Lemma 3.13 shows thatUo andUc are a
unitary operator with a trivial kernel and a standard unitary operator, respectively.
Moreover, the above arguments together withj2Ut = Utj1 show that (ii) holds with
Ld andLr as above. Finally, from the fact thatNd = j1Nd and j2Ut = Utj1, it
follows that the decomposition forUc as in (i) holds.

Since the unitary relationsker U ×mul U andUc are easily understood, Lemma 6.4
shows that, from a theoretical point of view, the most interesting unitary relations
are those with dense domain and range in a Kreı̆n space{K, [·, ·]} with k+ = k−.
In other words, to understand unitary relations it suffices for instance to consider
only the unitary operators with a trivial kernel from Lemma 5.5. Lemma 6.4 also
shows that ifU is a unitary relation such thatker U does not have equal defect
numbers, then there exist uniformly definite subspacesD1 andD2 of {K1, [·, ·]1}
and{K2, [·, ·]2} such thatU(D1) = D2 + mul U andŨ defined viagr Ũ = gr U ∩
(D

[⊥]1
1 ×D

[⊥]2
2 ) is a unitary relation from{K1∩D

[⊥]1
1 , [·, ·]1} to {K2∩D

[⊥]2
2 , [·, ·]2},

see Corollary 3.14 whose kernel (and multi-valued part) has equal defect numbers.

From the graph decomposition of a unitary relationU in Lemma 6.4 it follows, with
the notation as in that statement, that

n+(ker U) = dim(dom U−) + k̃−1 , n−(ker U) = dim(dom U+) + k̃+
1 ;

n+(mul U) = dim(ran U−) + k̃−2 , n−(mul U) = dim(ran U+) + k̃+
2 ,

(6.5)

wherẽk+
i andk̃−i are the dimensions of̃K+

i andK̃−i for any canonical decomposition
K̃+

i [+]K̃−i of {K̃i, [·, ·]i}, i = 1, 2. Sincedim(dom U±) = dim(ran U±), cf. Propo-
sition 4.5, and̃k±1 = k̃±2 by Lemma 6.4 (ii), (6.5) shows that the defect numbers of
the kernel and multi-valued part of a unitary operatorU are equal, cf. (Derkach et
al. 2006: Lemma 2.14 (iii)).

Corollary 6.5. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

n+(ker U) = n+(mul U) and n−(ker U) = n−(mul U).

Next letU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and letK+
i [+]K−i be

a canonical decomposition of{Ki, [·, ·]i} with associated fundamental symmetryji,
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for i = 1, 2. Then defined+
U(j1, j2) andd−U(j1, j2) as

d+
U(j1, j2) = dim{f ∈ K+

1 : ∃f ′ ∈ K+
2 s.t. {f, f ′} ∈ gr U};

d−U(j1, j2) = dim{f ∈ K−1 : ∃f ′ ∈ K−2 s.t. {f, f ′} ∈ gr U}. (6.6)

I.e., with the notation as in Lemma 6.4,d+
U(j1, j2) = dim(dom U+) andd−U(j1, j2) =

dim(dom U−). Sincek̃−1 = k̃+
1 , (6.5) implies that ifn−(ker U) > n+(ker U) or

n−(ker U) < n+(ker U), thend+
U(j1, j2) > d−U(j1, j2) or d+

U(j1, j2) < d−U(j1, j2) for
all j1 andj2, respectively. Ifn−(ker U) = n+(ker U), thend+

U(j1, j2) andd−U(j1, j2)

can be ordered in an arbitrary manner, and differently for different fundamental
symmetriesj1 andj2 as Example 6.6 below shows.

Example 6.6. Let U be a standard unitary operator from the separable (infinite-
dimensional) Krĕın space{K1, [·, ·]1} to the separable (infinite-dimensional) Kreı̆n
space{K2, [·, ·]2} such thatn+(ker U) = n−(ker U), i.e. k+

1 = k−1 = k+
2 = k−2 . If

j1 is a fundamental symmetry of{K1, [·, ·]1}, thenj2 := U j1U
−1 is a fundamental

symmetry of{K2, [·, ·]2}, see Lemma 4.12. WithK+
i [+]K−i the canonical decompo-

sition of {Ki, [·, ·]i} associated withji, for i = 1, 2, as a consequence of the above
constructionU(K±1 ) = K±2 . Consequently,d+

U(j1, j2) = k+
1 = k−1 = d−U(j2, j2).

Next let K be a uniform contraction from the Hilbert space{K+
2 , [·, ·]2} to the

Hilbert space{K−2 , [·, ·]2}with ann-dimensional kernel,n ∈ N, such that(ran K)⊥

is infinite-dimensional. By means ofK defineD+ andD− as

D+ = {f+ + Kf+ : f+ ∈ K+
2 } and D− = {f− + K∗f− : f− ∈ K−2 }.

ThenD+ andD− are a maximal uniformly positive and maximal uniformly neg-
ative subspace of{K2, [·, ·]2} which are orthogonal. I.e.,D+[+]D− is a canonical
decomposition of{K2, [·, ·]2}. If jd is the corresponding fundamental symmetry,
then by constructiond+

U(j1, jd) = dim(ker K) = n andd−U(j1, jd) = dim(ker K∗) =

dim(ran K)⊥ = ∞ 6= d+
U(j1, jd).

If there existj1 and j2 such thatd+
U(j1, j2) = d−U(j1, j2), d+

U(j1, j2) > d−U(j1, j2) or
d+

U(j1, j2) < d−U(j1, j2), then Lemma 6.4 implies that there exist hyper-maximal
semi-definite subspaces in the domain and range ofU which are neutral, nonnega-
tive or nonpositive, respectively; cf. (Calkin 1939a: Theorem 4.3& Theorem 4.4).
Importantly, those subspaces can be chosen to have more properties.

Proposition 6.7. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

ji be a fundamental symmetry of{Ki, [·, ·]i}, for i = 1, 2. Then there exist hyper-

maximal semi-definite subspacesL ⊆ dom U andM ⊆ ran U of {K1, [·, ·]1} and

{K2, [·, ·]2}, respectively, such that

dom U = L[⊥]1 ⊕1 (L ∩ j1L)⊕1 (j1L
[⊥]1 ∩ dom U);

ran U = M[⊥]2 ⊕2 (M ∩ j2M)⊕2 (j2M
[⊥]2 ∩ ran U),
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where

U(L[⊥]1) = j2M
[⊥]2 ∩ ran U + mul U ;

U(L ∩ j1L) = M ∩ j2M + mul U ;

U(j1L
[⊥]1 ∩ dom U) = M[⊥]2 + mul U.

HereL andM can be taken to be hyper-maximal neutral, nonnegative or nonposi-

tive subspaces of{K1, [·, ·]1} and{K2, [·, ·]2} if d+
U(j1, j2) = d−U(j1, j2), d+

U(j1, j2) >

d−U(j1, j2) or d+
U(j1, j2) < d−U(j1, j2), respectively.

Proof. Using the notation of Lemma 6.4, recall first that the domain of the stan-
dard unitary operatorUc is a Krĕın space. Hence, there exists a hyper-maximal
semi-definite subspaceLc in {dom Uc, [·, ·]1}, which can be taken to be neutral,
nonnegative or nonpositive ifd+

U(j1, j2) = d−U(j1, j2), d+
U(j1, j2) > d−U(j1, j2) or

d+
U(j1, j2) < d−U(j1, j2), respectively, see the discussion following (6.6). SinceUc

is a standard unitary operator,Uc(Lc) is a hyper-maximal semi-definite subspace in
{ran Uc, [·, ·]2}, see Proposition 4.5. Hence, using the fact thatUcj1 = j2Uc,

dom Uc = L[⊥]1
c ⊕1 (Lc ∩ j1Lc)⊕1 j1L

[⊥]1
c ;

ran Uc = Uc(j1L
[⊥]1
c )⊕2 Uc(Lc ∩ j1Lc)⊕2 Uc(L

[⊥]1
c ),

(6.7)

cf. Proposition 2.9 (iv). (Note that the orthogonal complement ofLc = L
[⊥]1
c ⊕1

(Lc ∩ j1Lc) in the above equations is taken in{dom Uc, [·, ·]1}.) With the above
observation, the asserted decomposition of the domain and range ofU follows from
(6.7) together with Lemma 6.4 (ii). Specifically, withLd andLr as in Lemma 6.4,
L andM can be taken to beker U + Lc + Ld andU(j1Lc) + Lr, respectively.

The hyper-maximal semi-definite subspaceL in Proposition 6.7 is shown to exist
as an extension of the subspaceLd as in Lemma 6.4. Not all hyper-maximal semi-
definite subspaces contained in the domain of a unbounded unitary relation can
be obtained in that manner. In view of Proposition 6.9 below, this follows for
instance from the fact that every unitary operator has a hyper-maximal semi-definite
subspace in its domain which it maps onto a hyper-maximal semi-definite subspace,
see Corollary 7.25 below.

Combining Proposition 6.7 with Lemma 4.7 yields the following necessary and suf-
ficient conditions for an isometric operator to be unitary are presented. In particular,
they show that if an isometric relation has a graph decomposition as in Lemma 6.4,
then it must be a unitary relation.

Theorem 6.8.LetU be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

U is a unitary relation if and only if there exists a hyper-maximal semi-definite
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subspaceL ⊆ dom U of {K1, [·, ·]1} and a fundamental symmetryj1 of {K1, [·, ·]1}
such thatU(j1L∩dom U) is a hyper-maximal semi-definite subspace of{K2, [·, ·]2}.

Proof. The existence of a subspaceL with the asserted conditions follows from
Proposition 6.7. The sufficiency of the conditions in the case thatL is hyper-
maximal neutral is the contents of Lemma 4.7 and the general case follows by
arguments similar to those in Lemma 4.7.

Finally, some special properties of the subspaceLd in Lemma 6.4 are listed.

Proposition 6.9. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

Ld be the closed neutral subspace as in Lemma 6.4 for fixed fundamental symme-

tries j1 andj2 of {K1, [·, ·]1} and{K2, [·, ·]2}, respectively. Then

(i) U has closed domain if and only ifU maps some (any hence every) closed

neutral subspaceL of {K1, [·, ·]1} which extendsLd onto a closed neutral

subspace of{K2, [·, ·]2};

(ii) L := ker U + Ld is such thatker U ⊆ L ⊆ L[⊥]1 ⊆ dom U ;

(iii) if L is a neutral subspace of{K1, [·, ·]1} such thatker U ⊆ L andLd ⊆ L or

j1Ld ∩ dom U ⊆ L, thenn+(L) = n+(U(L)) andn−(L) = n−(U(L)).

Proof. In this proof the notation as in Lemma 6.4 is used.

(i): By Lemma 6.4 a closed neutral extension ofLd can be written asker U⊕1Ld⊕1

N1, whereN1 ⊆ dom Uc is closed. It is mapped ontomul U ⊕2 (j2Lr ∩ dom U)⊕2

N2, whereN2 ⊆ ran Uc is closed becauseUc is a standard unitary operator (in the
appropriate space). Consequently,U(L) is closed if and only ifj2Lr ∩ dom U is
closed, which by Lemma 6.4 is the case if and only ifran Uo is closed. Sinceran Uo

andran U are simultaneously closed, this proves (i), see Proposition 4.2.

(ii): Since Ld is hyper-maximal neutral in{K̃1, [·, ·]1}, Lemma 6.4 implies that
(Ld)

[⊥]1 = Ld + dom Uc + ker U ⊆ dom U .

(iii): Only the case thatLd ⊆ L is considered, the other case follows by similar
arguments. IfLd ⊆ L, then note that the defect numbers ofker U + Ld andU(Ld)

coincide (sinceclos (j2Lr ∩ ran U) is hyper-maximal neutral in{K̃2, [·, ·]2}). Now
the desired conclusion is obtained by combining the preceding observation with
with Proposition 4.5 and Lemma 3.13.
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6.3 Hyper-maximal semi-definite subspaces and the Weyl
identity

The graph decomposition characterization of unitary operators, as expressed by
Proposition 6.7, is combined with the Weyl identity approach to unitary relations
from Chapter 5 in order to obtain conditions for the closure of an isometric relation
to be unitary. Therefore recall that ifL is a hyper-maximal semi-definite subspace
of {K, [·, ·]}, then, for any fundamental symmetryj of {K, [·, ·]}, K can be decom-
posed asK = L[⊥] ⊕ (L ∩ jL) ⊕ jL[⊥], see Proposition 2.9 (iv). In this connection
PL[⊥] andPjL[⊥] denote the orthogonal projections inK w.r.t. [j·, ·] onto L[⊥] and
jL[⊥], respectively.

As a starting point, some properties of the subspaceM from Proposition 6.7 are
listed; the implications of these properties are investigated in this section.

Lemma 6.10. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
i [+]K−i be a canonical decomposition of{Ki, [·, ·]i} associated to fundamen-

tal symmetryji of {Ki, [·, ·]i}, for i = 1, 2. Then there exists a subspaceM of

{K2, [·, ·]2} such that

(i) M ⊆ ran U is a hyper-maximal semi-definite subspace of{K2, [·, ·]2};

(ii) U−1(M ∩ j2M) ⊆ ker U + K+
1 or U−1(M ∩ j2M) ⊆ ker U + K−1 ;

(iii) P+
1 U−1(M) = P+

1 ker U + dom U ∩ K+
1 and P−

1 U−1(M) = P−
1 ker U +

dom U ∩ K−1 ;

(iv) N := (U−1(j2M ∩ ran U)) ∩ (ker U + dom U ∩ K+
1 + dom U ∩ K−1 ) is such

that

P+
1 N = P+

1 ker U + dom U ∩ K+
1 and P−

1 N = P−
1 ker U + dom U ∩ K−1 .

Proof. W.l.o.g. assume thatM as in Proposition 6.7 is hyper-maximal neutral.
Then, clearly,M satisfies (i) and (ii). Next note thatL := U−1(j2M ∩ ran U)

and the closure ofU−1(M) = ker U + j1L ∩ dom U are hyper-maximal neutral
subspaces of{K1, [·, ·]1}, see Proposition 6.7. The fact thatL is hyper-maximal
neutral yields

j1(j1L ∩ dom U) + j1L ∩ dom U = dom U ∩ K+
1 + dom U ∩ K−1 .

Hence, the fact that (iii) and (iv) hold, follows from the preceding observations.
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Corollary 6.11 below shows that the properties (i) and (iii) ofM in Lemma 6.10
can be alternatively expressed by two equalities.

Corollary 6.11. LetV be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}, and letM ⊆ ran V be a

subspace of{K2, [·, ·]2}. Then

P+
1 V −1(M) = P+

1 ker V + dom V ∩ K+
1 ;

P−
1 V −1(M) = P−

1 ker V + dom V ∩ K−1
(6.8)

if and only if

M + V (dom V ∩ K+
1 ) = V (dom V ∩ K+

1 ) + V (dom V ∩ K−1 );

M + V (dom V ∩ K−1 ) = V (dom V ∩ K+
1 ) + V (dom V ∩ K−1 ).

(6.9)

Proof. If (6.8) holds, then for everyf+ ∈ dom V ∩ K+
1 andf− ∈ dom V ∩ K−1

there exists ag− ∈ dom V ∩ K−1 such thatf+ + g− ∈ V −1(M). I.e. f+ + f− =

(f+ + g−) + (f− − g−), wheref+ + g− ∈ V −1(M) andf− − g− ∈ dom V ∩ K−1 .
This shows thatV (dom V ∩ K+

1 ) + V (dom V ∩ K−1 ) ⊆ M + V (dom V ∩ K−1 ). On
the other hand, iff ∈ V −1(M), then by the assumptions there exists anfo ∈ ker V ,
anf+ ∈ dom V ∩K+

1 and anf− ∈ dom V ∩K−1 such thatf = fo +f+ +f−. From
this it follows thatM + V (dom V ∩ K−1 ) ⊆ V (dom V ∩ K+

1 ) + V (dom V ∩ K−1 ).
By similar arguments the second equality in (6.9) can be proven.

To prove the converse implication letf− ∈ dom V ∩ K−1 , then by the first equality
in (6.9) there exists anf+ ∈ dom V ∩ K+

1 and anf ′ ∈ M such thatV −1f ′ + f+ =

f− + ker V . Sincef− ∈ dom V ∩ K−1 was arbitrary, this implies that the first
equality in (6.8) holds. Similar arguments show that the second equality in (6.8)
holds.

In particular, Corollary 6.11 shows that ifM is a hyper-maximal semi-definite sub-
space such that (6.9) holds, thenclos (V −1(M)) is a hyper-maximal semi-definite
subspace if and only ifK±1 = clos (P±

1 ker V +dom V ∩K±1 ), cf. (3.11). In geomet-
rical terminology the observation contained in Corollary 6.11 can be formulated as
follows.

Proposition 6.12. For every maximal nonnegative or nonpositive subspaceM of

{K, [·, ·]} there exists a hyper-maximal semi-definite subspaceL of {K, [·, ·]} such

that

L + M = M + M[⊥] = L + M[⊥].
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Proof. W.l.o.g. assume thatM is nonnegative and letK+[+]K− be a canonical
decomposition of{K, [·, ·]}. Then by Theorem 5.8 there exists a unitary relation
U in {K, [·, ·]} such thatU(dom U ∩ K+) = M andU(dom U ∩ K−) = M[⊥].
Consequently, the statement follows from Lemma 6.10 and Corollary 6.11.

Continuing the investigation of the properties ofM listed in Lemma 6.10, an alter-
native characterization of the properties (ii) and (iv) is given.

Lemma 6.13. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1} and letj2 be a fundamental

symmetry of{K2, [·, ·]2}. Moreover, letM be a hyper-maximal semi-definite sub-

space of{K2, [·, ·]2} such thatV −1(M∩ j2M) ⊆ ker V + K+
1 or V −1(M∩ j2M) ⊆

ker V +K−1 and letN := V −1(j2M∩ ran V )∩ (dom V ∩K+
1 +dom V ∩K−1 ). Then

P+
1 N = dom V ∩ K+

1 ⇐⇒ PM[⊥]2V (dom V ∩ K+
1 ) ⊆ PM[⊥]2V (dom V ∩ K−1 );

P−
1 N = dom V ∩ K−1 ⇐⇒ PM[⊥]2V (dom V ∩ K−1 ) ⊆ PM[⊥]2V (dom V ∩ K+

1 ).

Proof. As a consequence of the assumption thatV −1(M ∩ j2M) ⊆ ker V + K+
1 or

V −1(M ∩ j2M) ⊆ ker V + K−1 , assume w.l.o.g. thatM is a hyper-maximal neutral
subspace. Since both equivalences are of a similar nature, only the first equivalence
will be proven. Hence assume thatP+

1 N = dom V ∩K+
1 and letf+

1 ∈ dom V ∩K+
1 .

Then by the assumption there exists{f, f ′} ∈ gr V such thatf ∈ N, P+
1 f = f+

1

andf ′ ∈ j2M ∩ ran V . ThenPMf ′ = 0 and, hence, one has shown that

PMV (dom V ∩ K+
1 ) ⊆ PMV (dom V ∩ K−1 ).

Conversely, if the above inclusion holds, then for everyf+ ∈ dom V ∩ K+
1 , there

exists anf− ∈ dom V ∩ K−1 such thatV (f+ + f−) ∈ j2M ∩ ran V . Hence,
f+ + f− ∈ N from whichP+

1 N = dom V ∩ K+
1 follows, becausef+ was taken

arbitrarily.

Lemma 6.13 implies that if

PM[⊥]2V (dom V ∩ K+
1 ) = PM[⊥]2V (dom V ∩ K−1 ), (6.10)

thenV −1(j2M∩ran V ) is an essentially hyper-maximal semi-definite ifP±
1 ker V +

clos (dom V ∩ K±1 ) = K±1 , cf. (Derkach et al. 2006: Corollary 4.12). Proposi-
tion 6.15 below gives conditions for the hyper-maximal semi-definiteness ofL :=

U−1(j2M
[⊥]2 ∩ ran U) for a unitary relationU given that (6.10) holds, see (Derkach

et al. 2006: Proposition 4.15& Corollary 4.17). Therefore recall first the following
result, see (Derkach et al. 2006: Lemma 4.10).
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Lemma 6.14. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and as-

sume that there exists a hyper-maximal neutral subspaceM in {K2, [·, ·]2}. Then,

with UM := PMU considered as a mapping from{K1, [·, ·]1} to {K2, [·, ·]2}, the

following statements hold:

(i) if ran UM is closed, thenker UM is closed;

(ii) if UM is closed, thenran UM is closed if and only ifker UM is closed.

Proof. Observe thatP [∗]
M = PjM and hence by Lemma 2.15

ran U
[∗]
M = ran (PMU)[∗] = ran (U [∗]P [∗]

M ) = ran (U−1PjM) = ker UM.

The above equality together with the fact that for a closed relationH between
Krĕın spacesran H is closed if and only ifran H [∗] is closed, see e.g. (Sorjonen
1978/1979), yields the statements.

Proposition 6.15. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 is a canonical decomposition of{K1, [·, ·]1} and let j2 be a fixed fun-

damental symmetry of{K2, [·, ·]2}. Moreover assume that there exists a hyper-

maximal neutral subspaceM in {K2, [·, ·]2}. Then equivalent are

(i) PMU(dom U ∩ K+
1 ) = PMU(dom U ∩ K−1 ) andran (PMU) is closed;

(ii) PMU(dom U ∩ K+
1 ) or PMU(dom U ∩ K−1 ) is closed.

In particular, if either of the above conditions holds, thenU−1(j2M ∩ ran U) is a

hyper-maximal neutral subspace of{K1, [·, ·]1}.

Proof. (i) ⇒ (ii): By Lemma 6.14, the discussion preceding Lemma 6.14 and
(3.11), the conditions in (i) imply thatL := U−1(j2M ∩ ran U) is hyper-maximal
neutral. Therefore

L + dom U ∩ K+
1 = dom U = L + dom U ∩ K−1 .

From this it follows that

PMU(dom U ∩ K+
1 ) = ran (PMU) = PMU(dom U ∩ K−1 ).

This together with the assumption thatran (PMU) is closed implies that (ii) holds.

(ii) ⇒ (i): To prove this implication w.l.o.g. assume thatmul U = {0}. Since
U(dom U ∩ K+

1 ) andU(dom U ∩ K−1 ) are a maximal nonnegative and nonpositive
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subspace of{K2, [·, ·]}, see Proposition 5.1, the quasi-angular operatorA andA∗

of U(dom U ∩ K+
1 ) andU(dom U ∩ K−1 ) w.r.t. to M are a maximal dissipative

and a maximal accumulative relation, respectively, see Proposition 2.20. Moreover,
dom A = (mul A∗)⊥2 = M anddom A∗ = (mul A)⊥2 = M, becauseA andA∗

are operators as a consequence of the assumption thatmul U = {0} and, hence,
U(dom U ∩ K+

1 ) andU(dom U ∩ K−1 ) do not contain any neutral vectors. Recall
thatA andA∗ are defined as

gr A = {{PMf, iPMjf} : f ∈ U(dom U ∩ K+
1 )};

gr A∗ = {{PMf, iPMjf} : f ∈ U(dom U ∩ K−1 )}. (6.11)

Hence, if the assumption in (ii) holds, thendom A and dom A∗ closed. Since
dom A = M = dom A∗, this implies that if (ii) holds, thendom A = M = dom A∗

which implies that (i) holds, see (6.11).

The conclusion thatL := U−1(j2M ∩ ran U) is hyper-maximal neutral in Proposi-
tion 6.15 is stronger than the equalityPMU(dom U ∩ K+

1 ) = PMU(dom U ∩ K−1 ).
To see this letK+

1,a[+]K−1,a and K+
1,b[+]K−1,b be two canonical decompositions of

{K1, [·, ·]1}, then the assumption thatL is hyper-maximal neutral implies that

L + dom U ∩ K+
1,a = dom U = L + dom U ∩ K−1,b.

As a consequence of the definition ofL, the above expression implies that

PMU(dom U ∩ K+
1,a) = PMU(dom U ∩ K−1,b).

Next it is shown that if the hyper-maximal semi-definite subspaceM occurring in
Lemma 6.13 is contained inU(K+

1 ∩dom U)∩U(K−1 ∩dom U), cf. Corollary 6.11,
thenU−1(j2M

[⊥]2 ∩ ran U) is hyper-maximal semi-definite. In light of Lemma 4.7
this yields a necessary and sufficient condition for isometric relations to be unitary.

Lemma 6.16. Let V be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1} and let j2 be a fundamen-

tal symmetry of{K2, [·, ·]2}. Moreover, assume thatM is a hyper-maximal semi-

definite subspace of{K2, [·, ·]2} such that

(i) M ⊆ V (dom V ∩ K+
1 ) + V (dom V ∩ K−1 );

(ii) V −1(M ∩ j2M) ⊆ ker V + K+
1 or V −1(M ∩ j2M) ⊆ ker V + K−1 ;

(iii) PM[⊥]2V (dom V ∩ K+
1 ) = PM[⊥]2V (dom V ∩ K−1 );
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ThenV −1(j2M ∩ ran V ) is a hyper-maximal semi-definite subspace of{K1, [·, ·]1}
if and only ifP+

1 dom V = K+
1 andP−

1 dom V = K−1 .

Proof. The first assumption onM implies thatP±
1 V −1(M) ⊆ P±

1 ker V +dom V ∩
K±1 , and from the second and third assumption onM it follows by Lemma 6.13 that
P±

1 ker V + dom V ∩ K±1 ⊆ P±
1 V −1(j2M ∩ ran V ). Consequently,P±

1 V −1(M) ⊆
P±

1 V −1(j2M ∩ ran V ). Next note that the fact thatM ⊆ ran V is hyper-maximal
semi-definite implies thatran V = M + j2M ∩ ran V , i.e. dom V = V −1(M) +

V −1(j2M ∩ ran V ). Combining the above observations yields

P±
1 dom V = P±

1 V −1(M) + P±
1 V −1(j2M ∩ ran V ) = P±

1 V −1(j2M ∩ ran V ).

From the above equality it follows thatV −1(j2M∩ran V ) is a hyper-maximal semi-
definite subspace if and only ifP+

1 dom V = K+
1 andP−

1 dom V = K−1 .

Theorem 6.17.Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1} and letj2 be a fundamental

symmetry of{K2, [·, ·]2}. ThenU is a unitary relation if and only if

(i) there exists a hyper-maximal semi-definite subspaceM of {K2, [·, ·]2} such

that

(a) M ⊆ U(dom U ∩ K+
1 ) + U(dom U ∩ K−1 );

(b) U−1(M ∩ j2M) ⊆ ker U + K+
1 or U−1(M ∩ j2M) ⊆ ker U + K−1 ;

(c) PM[⊥]2U(dom U ∩ K+
1 ) = PM[⊥]2U(dom U ∩ K−1 );

(ii) P+
1 dom U = K+

1 andP−
1 dom U = K−1 .

Proof. The necessity of the conditions follows from Lemma 6.10, Lemma 6.13 and
(3.7). The converse part follows directly from Theorem 6.8 after observing that
Lemma 6.16 yields that the assumptions imply thatU−1(j2M ∩ ran U) is a hyper-
maximal semi-definite subspace of{K2, [·, ·]2}.

In view of Proposition 6.18 below, the conditions in Theorem 6.17 (i) imply that
U(dom U ∩ K+

1 ) andU(dom U ∩ K−1 ) are maximal nonnegative and nonpositive,
respectively. Hence, Theorem 5.3 shows that condition (ii) in Theorem 6.17 can be
replaced by the conditions thatU is closed and thatker U = (dom U)[⊥]1.

Finally note that Lemma 6.10 combined with Lemma 6.13 implies that for a unitary
relationU there exists a hyper-maximal semi-definite subspaceM such that

PM[⊥]2U(dom U ∩ K+
1 ) = PM[⊥]2U(dom U ∩ K−1 );

Pj2M[⊥]2U(dom U ∩ K+
1 ) = Pj2M[⊥]2U(dom U ∩ K−1 ).

(6.12)
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This observation yields half of the next geometrical statement, cf. Proposition 2.5.

Proposition 6.18. Let M+ and M− be a nonnegative and nonpositive subspace

of {K, [·, ·]}, respectively, such thatM+ ⊆ M
[⊥]
− andM− ⊆ M

[⊥]
+ and let j be a

fundamental symmetry of{K, [·, ·]}. ThenM+ andM− are a maximal nonnegative

and a maximal nonpositive subspace of{K, [·, ·]}, respectively, if and only if there

exists a hyper-maximal semi-definite subspaceL of {K, [·, ·]} such that

PLM+ = L and PLM− = L[⊥] or PLM+ = L[⊥] and PLM− = L,

if L is nonnegative or nonpositive, respectively.

Proof. The necessity is clear by the discussion preceding the statement combined
with Lemma 6.10 (ii) and Theorem 5.8. To prove the converse assume w.l.o.g. that
L is nonnegative. IfM+ is not maximal nonnegative, thenM+ can be nonnega-
tively extended by an elementh ∈ K. In fact, as consequence of the assumption
PLM+ = L one can assume thath ∈ L⊥ = jL[⊥]. Consequently, there exists an
f ∈ L[⊥] such thath = jf . On the other hand, by the assumptionPLM+ = L, there
exists ag ∈ L[⊥] such thatf + jg ∈ M+. Hence, for anyc ∈ R

0 ≤ [(f + jg) + cjf, (f + jg) + cjf ] = 2c[jf, f ] + [jg, f ] + [f, jg].

Sincec is arbitrary, this implies thatf = 0, i.e.,M+ is maximal nonnegative. The
maximal nonpositivity ofM− can be proven using similar arguments.

If L in Proposition 6.18 is neutral, then Proposition 6.18 can be interpreted as say-
ing that a nonnegative (nonpositive) subspace of{K, [·, ·]} is maximal nonnegative
(nonpositive) if and only if it can be represented by an everywhere defined bounded
operator in{L, [j·, ·]}, cf. Section 2.5. Note also that there exists a subspaceL hav-
ing the properties as in Proposition 6.18 which simultaneously has the properties of
the subspaceL in Proposition 6.12.
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7 BLOCK REPRESENTATIONS

In this chapter block representations will be given for certain classes of isomet-
ric operators; in particular, for unitary operators. Moreover, some consequences
of those block representations are stated. As a preparation therefore the composi-
tion of archetypical unitary operators is studied in the first section. Note that those
investigations yield simple examples of the peculiar mapping behavior of unitary
relations. In the second section block representation for a special type of isometric
operators, which are the abstract equivalent of the so-called quasi-boundary triplets,
see Section A.2, are presented together with some consequences of their represen-
tation. In the third section it is shown that every unitary operator can be expressed
as the composition of an archetypical unitary operator with a bounded unitary op-
erator. This implies that the unboundedness of unitary operators can be understood
by studying only unitary operators which have a diagonal block representation. As
an application of these block representation approach to unitary operators, the main
results from (Calkin 1939a) are proved in the fourth section with simple arguments.
As another application of the obtained block representations for isometric and uni-
tary operators, conditions for when their composition is (extendable to) a unitary
operator are presented in the fifth and final section.

7.1 Compositions of archetypical unitary operators

Let j be a fundamental symmetry of{K, [·, ·]} and assume that there exists a hyper-
maximal neutral subspaceM in {K, [·, ·]}. If K1 andK2 are selfadjoint relations in
(the Hilbert space){M, [j·, ·]}, then

Υ1(K1)Υ1(K2) = Υ1(K1 + K2),

see (Derkach et al. 2009: Example 2.11). This composition is (extendable to) a
unitary relation if and only ifK1 + K2 is (extendable to) a selfadjoint relation,
see Proposition 4.8. Example 7.1 below provides an example of two selfadjoint
operatorsK1 andK2 such that their sum cannot be extended to a selfadjoint relation,
i.e.,Υ1(K1 + K2) can not be extended to a unitary relation.

Example 7.1. In the Hilbert spaceL2(R+) consider the differential expressions
`1f = −f ′′ − 2if ′ − f and`2f = f ′′ + f . Both expressions can be interpreted
as canonical differential systems which are definite onR+, see e.g. (Behrndt et al.
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2011b). With

J =

(
0 −1

1 0

)
, ∆(t) =

(
1 0

0 0

)
, H1(t) =

(
2 i

−i 1

)
, H2(t) =

(
−1 0

0 −1

)
,

these systems are

JF ′(t)−Hi(t)F (t) = λ∆(t)F (t), t ∈ R+ a.e., λ ∈ C,

whereF = (f1, f2)
T andi = 1, 2. With L2

∆(R+) the Hilbert space (of equivalence
classes) associated with∆, the minimal relations generated by the above canoni-
cal systems are symmetric operators inL2

∆(R+) with defect numbers(1, 1), which
follows e.g. from (Lesch& Malamud 2003: Proposition 5.25) together with the
definiteness of the systems. In particular, for both systems0 is a regular endpoint
and∞ is an endpoint in the limit-point case. Therefore, properly understood,K1

andK2 defined via

gr Ki = {{F, G} ∈ L2
∆(R+)× L2

∆(R+) : `if1 = g1, f1(0) = 0}, i = 1, 2,

whereF = (f1, f2)
T andG = (g1, g2)

T , are selfadjoint operators inL2
∆(R+), see

(Behrndt et al. 2011b: Section 4.1 and 5.3). Moreover,dom K2 ⊆ dom K1 and,
hence, the sum ofK1 andK2 is the symmetric operatorS:

gr S = {{F, G} ∈ L2
∆(R+)× L2

∆(R+) : F ∈ dom K2, `Sf1 = g1, f1(0) = 0},

where`Sf = −2if ′, F = (f1, f2)
T andG = (g1, g2)

T . Hence, the closure ofS is
a well-known symmetric operator with defect numbersn+(S) = 0 andn−(S) = 1

corresponding tòS.

The selfadjoint operators from Example 7.1 can also be used to show that there exist
unitary operators which map hyper-maximal neutral subspaces onto (non-closed)
neutral subspaces which can not be extended to hyper-maximal neutral subspaces.

Example 7.2. Let K1 andK2 be the selfadjoint operators inL2
∆(R+) as in Exam-

ple 7.1 and letj be the fundamental symmetry in(L2
∆(R+))2 as in Example 2.1,

i.e., j{f, f ′} = i{−f ′, f}. ThenM := L2
∆(R+) × 0 is a hyper-maximal neutral

subspace of the Kreı̆n space{(L2
∆(R+))2, (j·, ·)}, andK1 andK2 can be interpreted

as selfadjoint operators (in the Hilbert space){M, (·, ·)}. Now Υ1(K1) is a uni-
tary operator in{(L2

∆(R+))2, (j·, ·)} andL := gr K2 is a hyper-maximal neutral
subspace of{(L2

∆(R+))2, (j·, ·)} such thatL ⊆ dom Υ1(K1) = dom K1 ⊕ jM, be-
causedom K2 ⊆ dom K1. Moreover,Υ1(K1)L = gr (K1 + K2) is a (non-closed)
neutral subspace which can not be extended to a hyper-maximal neutral subspace,
becauseK1+K2 is a symmetric operator which can not be extended to a selfadjoint
operator, see Example 7.1 and Proposition 2.20.
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Example 7.1 can also be used to show that there exist isometric operators which
cannot be extended to unitary relations such that the closure of their composition
with a unitary relation is (extendable to) a unitary relation. Another example of
this phenomenon is obtained by considering the composition ofΥ1(K) andΥ1(S),
whereK is a selfadjoint operator in the separable Hilbert space{M, [j·, ·]} and
S is a symmetric operator with unequal defect numbers in{M, [j·, ·]} such that
dom S∩dom K = {0}, cf. Proposition 2.17 (v). Then, clearly,Υ1(K)Υ1(S) = IjM

can be extended to a unitary operator.

Different from the composition ofΥ1(K1) and Υ1(K2), the composition of the
archetypical unitary relationsΥ2(B1) and Υ2(B2), whereB1 andB2 are closed
operators (or relations), can always be extended to a unitary relation:

Υ2(B1)Υ2(B2) =

(
B1B2 0

0 jB−∗
1 B−∗

2 j

)
⊆ Υ2(clos (B1B2)).

Here it is used thatB−∗
1 B−∗

2 ⊆ (B1B2)
−∗, see Lemma 2.15.

Next compositions of the typeΥ1(S)Υ2(B) are considered. The following two
statements give some conditions for when this composition is unitary.

Proposition 7.3. Let j be a fundamental symmetry of{K, [·, ·]} and assume that

there exists a hyper-maximal neutral subspaceM in {K, [·, ·]}. Moreover, letB be

an operator in (the Hilbert space){M, [j·, ·]} with dom B = M = ran clos (B)

and ker clos (B) = {0}, and letS be a symmetric relation in{M, [j·, ·]}. Then

Υ1(S)Υ2(clos B) is (extendable to) a unitary relation in{K, [·, ·]} if and only ifS

is (extendable to) a selfadjoint relation in{M, [j·, ·]}.
In particular,Υ1(S)Υ2(clos B) is a unitary operator if and only ifS is a selfadjoint

operator in{M, [j·, ·]} with dom S ∩mul clos (B) = {0}.

Proof. Since the final equivalence evidently holds if the first equivalence holds, it
suffices to prove only the first equivalence. Therefore note that ifT is a symmetric
extension ofS (as in the statement), thenΥ1(T )Υ2(clos B) is an isometric exten-
sion ofΥ1(S)Υ2(clos B). Hence, to prove the first equivalence it suffices to show
thatΥ1(S)Υ2(clos B) is unitary if and only ifS is selfadjoint.

If S is selfadjoint, then the fact thatΥ1(S)Υ2(clos B) is unitary follows from
Lemma 4.7 as in Proposition 4.8. To prove the converse assume thatS is a maximal
symmetric relation which is not selfadjoint, and thatΥ1(S)Υ2(clos B) is unitary.
Then there exists{f, f ′} ∈ gr S∗ such thatIm [f, f ′] 6= 0 and by the assump-
tions onB there exists ah ∈ dom clos (B) such that{h, f} ∈ gr clos (B). Now
a direct calculation shows that[h, g] = [f + jif ′, g′] for all {g, g′} ∈ gr U , i.e,
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{h, f + jif ′} ∈ gr U by Proposition 3.1. On the other hand,[h, h] = 0, because
h ∈ M, and [f + jif ′, f + jif ′] = i([jf ′, f ] − [f, jf ′]) 6= 0, by the assumption
on {f, f ′}. This shows that{h, f + jif ′} cannot be contained in the graph of an
isometric relation. This contradiction completes the proof.

Corollary 7.4. Let j be a fundamental symmetry of{K, [·, ·]} and assume that there

exists a hyper-maximal neutral subspaceM in {K, [·, ·]}. LetB be a closed opera-

tor in (the Hilbert space){M, [j·, ·]} with dom B = M = ran B andker B = {0},
and letS be a symmetric operator in{M, [j·, ·]}. ThenΥ1(S)Υ2(B

−1) is (extend-

able to) a unitary operator in{K, [·, ·]} if and only ifB−∗SB−1 is (extendable to) a

selfadjoint operator in{M, [j·, ·]}.

Proof. Note that

Υ1(S)Υ2(B
−1) =

(
B−1 0

jiSB−1 jB∗j

)
=

(
B−1 0

0 jB∗j

) (
I 0

jiB−∗SB−1 I

)

= Υ2(B
−1)Υ1(B

−∗SB−1) =
(
Υ1(−B−∗SB−1)Υ2(B)

)−1
.

Here the second equality holds, because the assumptions onB imply thatran B∗ =

M. Since an isometric relation is unitary if and only if its inverse is unitary, the
above equality together with Proposition 7.3 shows that the statement holds.

Example 7.5 below shows thatS in Corollary 7.4 need not be a selfadjoint opera-
tor nor even a symmetric operator with equal defect numbers forB−∗SB−1 to be
selfadjoint and, hence,Υ1(S)Υ2(B

−1) to be unitary.

Example 7.5.Let j be a fundamental symmetry of{K, [·, ·]} and assume that there
exists a hyper-maximal neutral subspaceM in {K, [·, ·]}. Moreover, letS be a
closed symmetric operator in the Hilbert space{M, [j·, ·]} with dom S = M and
defect numbersn±(S) = n±, wheren± ≤ ℵ0, and letB be a closed operator in
{M, [j·, ·]} with dom B = dom S, ker B = {0} and ran B = M, see Proposi-
tion 2.17 (ii). ThenK := B−∗SB−1 is a symmetric operator withdom K = M,
i.e. K is a selfadjoint operator in{M, [j·, ·]}.

Remark 7.6. Note that ifS andB are as in Example 7.5, then the unitary operator
Υ1(S)Υ2(B

−1) maps the hyper-maximal neutral subspaceM×{0} onto the closed
neutral subspace{f + jiSf : f ∈ dom S} with defect numbersn+ andn−. Hence,
unitary relations may map hyper-maximal neutral subspaces onto closed neutral
subspaces with nonzero and arbitrary defect numbers (≤ ℵ0), cf. Proposition 7.25
and Chapter 8.
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Using archetypical unitary operator it is also easily shown that there exist unitary
operators having the same domain which are really different, i.e. they do not differ
by a composition with a standard unitary operator on the range side.

Example 7.7. Let j be a fundamental symmetry of{K, [·, ·]}, assume thatM is
a hyper-maximal neutral subspace of{K, [·, ·]} and, moreover, letB be an arbi-
trary closed operator in the Hilbert space{M, [j·, ·]} which satisfiesdom B =

M = ran B and ker B = {0}. Then U := Υ2(B) is a unitary operator in
{K, [·, ·]} with dom U = dom B ⊕ jM. Let KX be the polar decomposition
of B in {M, [j·, ·]}, whereK is a nonnegative selfadjoint operator in{M, [j·, ·]}
(with ran K = ran B = M) and X is a unitary operator in{M, [j·, ·]}. Then
Ua := Υ1(K)Υ2(X) is a unitary operator in{K, [·, ·]} which has the same domain
asU . Furthermore,

U−1
a U = (Υ2(X))−1(Υ1(K))−1Υ2(K)Υ2(X) = Υ2(X

−1)Υ1(−K)Υ2(K)Υ2(X),

is an unbounded unitary operator in{K, [·, ·]}, becauseΥ2(X) andΥ2(X
−1) are

standard unitary operator in{K, [·, ·]} andΥ1(−K)Υ2(K) is an (unbounded) uni-
tary operator in{K, [·, ·]} by Proposition 7.4.

7.2 Block representations for isometric operators

If for an isometric operatorV from {K1, [·, ·]1} to {K2, [·, ·]2} there exists a hyper-
maximal semi-definite subspaceL ⊆ dom V of {K1, [·, ·]1}, then by means ofL and
a fundamental symmetryj1 of {K1, [·, ·]1}, the domain ofV can be decomposed as

dom V = L[⊥]1 ⊕1 (L ∩ j1L)⊕1 j1L
[⊥]1 ∩ dom V, (7.1)

see Proposition 2.9. If an isometric operator has a domain decomposition as in (7.1),
then block representations (with respect to those coordinates) for it can be given.
Since the main interest is in isometric operators which are closely connected to
unitary operators, in addition to the assumption that the domain isometric operator
can be decomposed as in (7.1), it will in this section also be assumed thatV (L[⊥]1) is
a neutral subspace with equal defect numbers. In other words, withj2 a fundamental
symmetry for{K2, [·, ·]2}, isometric operatorsV from {K1, [·, ·]1} to {K2, [·, ·]2}
are studied for which there exists a hyper-maximal semi-definite subspaceM of
{K2, [·, ·]2} such thatM∩ j2M ⊆ ran V andV −1(j2M∩ ran V ) is a hyper-maximal
semi-definite subspace of{K1, [·, ·]1}. With respect to certain coordinates, the block
representations of such isometric operators take a specific form: they can be written
as the composition of two archetypical isometric operators and a bounded unitary
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operator. Note that the isometric operators studied here are the abstract analogue
of so-called quasi-boundary triplets, see Definition A.11 below, and that for unitary
operators the preceding conditions are always satisfied, see Proposition 6.7.

To obtain a block representation for isometric relations having the above mentioned
property the following slightly technical lemma is used.

Lemma 7.8. Let V be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} with

ran V = K2 and assume that there exists a hyper-maximal neutral subspaceL in

{K1, [·, ·]1} with L ⊆ dom V . Then there exists a bounded unitary operatorUt from

{K1, [·, ·]1} onto{K2, [·, ·]2} with dom V ⊆ dom Ut such thatV U−1
t is an isometric

operator in{K2, [·, ·]2} with dom (V U−1
t ) = K2 = ran (V U−1

t ).

In particular, if M is a hyper-maximal neutral subspace of{K2, [·, ·]2} and j1 and

j2 are fundamental symmetries of{K1, [·, ·]1} and{K2, [·, ·]2}, respectively, thenUt

can be taken such thatUt(L) = M andUt(j1L ∩ dom Ut) = j2M.

Proof. It is a direct consequence of the assumptions thatker V = (dom V )[⊥]1, see
Lemma 6.1. Hence,V U−1

1 , whereU1 := Uker V is as in Lemma 3.11, is an isometric
operator from{K3, [·, ·]1} to {K2, [·, ·]2} which satisfiesdom (V U−1

1 ) = K3 and
ran (V U−1

1 ) = K2.

SinceL is a hyper-maximal neutral subspace andU1 is a bounded unitary opera-
tor, U1(L) is a hyper-maximal neutral subspace of{K3, [·, ·]1}, see Proposition 4.5.
In particular,k+

3 = k−3 , see e.g. (Azizov& Iokhvidov 1989: Ch. 1, Remark
4.16). SinceV U−1

1 mapsU1(L) injectively onto a neutral subspace of{K2, [·, ·]2},
k±3 ≤ k±2 . Moreover, the fact thatV U−1

1 is an injective operator together with
dom (V U−1

1 ) = K3 andran (V U−1
1 ) = K2 yields thatk+

3 + k−3 = k+
2 + k−2 . The

preceding arguments together show thatk±3 = k±2 . Therefore there exists a standard
unitary operatorU2 from {K3, [·, ·]1} to {K2, [·, ·]2} and the first statement holds
with Ut := U2U1.

SinceU2U1 is a bounded unitary operator,U2U1(L) andU2U1(j1L ∩ dom U1) are
hyper-maximal neutral subspaces of{K2, [·, ·]2} and there exists a fundamental
symmetryj′2 of {K2, [·, ·]2} such thatU2U1(j1L ∩ dom V ) = j′2U2U1(L). There-
fore, by Lemma 4.13, there exists a standard unitary operatorU3 in {K2, [·, ·]2} such
thatU3(U2U1(L)) = M andU3(U2U1(j1L ∩ dom U1)) = U3(j

′
2U2U1(L)) = j2M.

Hence, the final statement holds withUt := U3U2U1.

Following is a representation for the isometric operatorsV for which V −1(j2M ∩
ran V ) is a hyper-maximal neutral subspace. It is shown that such operators have,
up to a bounded unitary transformation, a triangular representation which can be
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expressed in terms of archetypical isometric operators. Note that the isometric
operators considered in Theorem 7.9 below are a coordinate free version of quasi-
boundary triplets, see Definition A.11 below. To better see this connection, note
thatV −1(j2M∩ ran V ) = ker (PMV ), wherePM is the orthogonal projection onto
M w.r.t. [j2·, ·]2.

Theorem 7.9. LetV be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} with

ran V = K2, let j2 be a fundamental symmetry of{K2, [·, ·]2} and, moreover, assume

that there exists a hyper-maximal neutral subspaceM in {K2, [·, ·]} such thatL :=

ker (PMV ) is a hyper-maximal neutral subspace of{K1, [·, ·]1}. Then there exists

an operatorB in the Hilbert space{M, [j2·, ·]2} with dom B = M = ran clos (B)

and ker clos (B) = {0}, a symmetric operatorS in {M, [j2·, ·]2} with dom S =

ran B anddom S∗ ∩mul clos (B) = {0}, and a bounded unitary operatorUt from

{K1, [·, ·]1} onto {K2, [·, ·]2} with dom V ⊆ dom Ut, mappingL onto j2M, such

that

V U−1
t =

(
B 0

j2iSB j2B
−∗j2

)
= Υ1(S)Υ2(B). (7.2)

Furthermore,mul clos (B) = {0} if and only ifclos (V (L)) = j2M.

Proof. Note first that if (7.2) holds, thenj2V (L) = dom B∗. This together with
dom B∗ = (mul clos (B))⊥, see (2.6), shows that the final assertion holds. Next
note that Lemma 7.8 implies the existence of a bounded unitary operatorUt as
in the statement. ThenW := V U−1

t is an isometric operator in{K2, [·, ·]2} with
dom W = K2 = ran W , j2M ⊆ dom W andW (j2M) = V (L) ⊆ j2M.

Step 1:Sincej2M ⊆ dom W andW (j2M) ⊆ j2M, W has w.r.t. the decomposition
M⊕ j2M of K2 the following block representation:

W =

(
B 0

j2iC j2Dj2

)
,

whereB, C andD are operators in (the Hilbert space){M, [j2·, ·]2} which satisfy
dom D = M, ker D = {0} anddom B = dom C. Direct calculations shows that
the fact thatW is isometric implies thatD ⊆ B−∗ and thatC = SB for a symmetric
operatorS with dom S = ran B, cf. Proposition 2.20.

Step 2:Next observe thatdom B = M andran B = M, becausedom W = K2 =

ran W . Sincedom D = M, see Step 1, andmul B−∗ = (ran B)⊥ = {0}, equality
must hold in the inclusionD ⊆ B−∗ by (2.7):D = B−∗. Consequently,ran B∗ =

dom D = M and combining this withran B = M yields ran clos (B) = M.
Moreover,ran B∗ = M also yieldsker clos (B) = {0}, see (2.6).
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Step 3:The arguments from step 1 and step 2 show that the asserted representation
for W = V U−1

t holds. Thereforeran V = {f + j2iSf : f ∈ dom S} + j2dom B∗.
Sinceran V = K2, it now follows that

{0} = (ran V )[⊥]2 = {f + j2iSf : f ∈ dom S}[⊥]2 ∩ (j2dom B∗)[⊥]2

= {f + j2iS
∗f : f ∈ dom S∗} ∩ (mul clos (B)⊕ jM),

i.e. dom S∗ ∩mul clos (B) = {0}. This completes the proof.

Remark 7.10. (i): Let j1 be any fundamental symmetry of{K1, [·, ·]1}. Then note
thatUt in Theorem 7.9 could have been chosen such that, in addition to the stated
properties,Ut(j1L ∩ dom Ut) = M, see Lemma 7.8. With that choice ofUt, (7.2)
yields

V (j1L ∩ dom V ) = V U−1
t (M ∩ dom V U−1

t ) = {f + j2iSf : f ∈ dom S}.
In view of Proposition 7.3 and 2.20, this shows that the isometric operator in The-
orem 7.9 is unitary if and only ifS is a selfadjoint operator or, equivalently, if and
only if V (j1L ∩ dom V ) is a hyper-maximal neutral subspace of{K2, [·, ·]2}.
(ii): Using Corollary 3.14, Theorem 7.9 can be extended to the case thatM is a
hyper-maximal semi-definite subspace of{K2, [·, ·]2} such thatM ∩ j2M ⊆ ran V

andL := ker (PM[⊥]2V ) = V −1(j2M ∩ ran V ) is a hyper-maximal semi-definite
subspace of{K1, [·, ·]1}. Namely in that case there existS and B as in Theo-
rem 7.9 (withM there replaced byM[⊥]2) and a bounded unitary operatorUt from
{K1, [·, ·]1} to {K2, [·, ·]2} with dom V ⊆ dom Ut, mappingL onto j2M, such that
w.r.t. the decompositionM[⊥]2 ⊕ j2M

[⊥]2 ⊕ (j2M ∩M) of K

V U−1
t =




B 0 0

j2iSB j2B
−∗j2 0

0 0 IM∩j2M


 = Υ1(S)Υ2(B)⊕ IM∩j2M.

Next two consequences of Theorem 7.9 are given: The first shows that isometric
operators as in Theorem 7.9 are closely connected to unitary relations and the sec-
ond shows how the representation in Theorem 7.9 simplifies if it is assumed thatV

mapsL := ker (PM[⊥]2V ) onto the hyper-maximal semi-definite subspacej2M.

Corollary 7.11. Let V be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2}
with ran V = K2, let j2 be a fundamental symmetry of{K2, [·, ·]2} and assume that

M is a hyper-maximal semi-definite subspace of{K2, [·, ·]} such thatM ∩ j2M ⊆
ran V and thatL := ker (PM[⊥]2V ) is a hyper-maximal semi-definite subspace

of {K1, [·, ·]1}. Then there exists a symmetric operatorT in the Hilbert space

{M[⊥]2 , [j2·, ·]2} with dom T = M[⊥]2 such that the closure of(Υ1(T )⊕ IM∩j2M)V

is a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}.
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Proof. W.l.o.g. assume thatL andM are hyper-maximal neutral subspaces, see
Remark 7.10 (ii), thenV U−1

t = Υ1(S)Υ2(B) by Theorem 7.9 (withS, B andUt

as in that statement). Next note that(Υ1(S))−1 = Υ1(−S) and thatdom S = M,
becausedom S = ran B andran clos (B) = M, see Theorem 7.9. Furthermore,

clos (Υ1(−S)V U−1
t ) = clos (Υ1(−S)Υ1(S)Υ2(B)) = clos (Υ2(B))

= Υ2(clos (B)).

SinceΥ2(clos (B)) is a unitary relation, see Proposition 4.9, andUt is a bounded
unitary operator, the statement holds withT = −S by Lemma 3.10.

Corollary 7.12. Let V be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2}
with ran V = K2 and letL ⊆ dom V be a hyper-maximal semi-definite subspace

of {K1, [·, ·]1} such thatM := j2V (L) is a hyper-maximal semi-definite subspace

of {K2, [·, ·]2}. Then for every fundamental symmetryj2 of {K2, [·, ·]2} there exists

a symmetric operatorS in the Hilbert space{M[⊥]2 , [j2·, ·]2} with dom S = M[⊥]2

and a bounded unitary operatorUt from{K1, [·, ·]1} onto{K2, [·, ·]2}withdom V ⊆
dom Ut, mappingL ontoj2M, such thatV U−1

t = Υ1(S)⊕ IM∩jM.

Proof. As a consequence of Remark 7.10 (ii) assume w.l.o.g. thatL andM are
hyper-maximal neutral subspaces. Then the conditions of Theorem 7.9 are satis-
fied, i.e. V U−1

t = Υ1(S)Υ2(B). Moreover, the assumption thatV (L) (⊆ j2M)
is hyper-maximal neutral implies thatran B−∗ = j2V (L) = M. This, together
with the other properties ofB, see Theorem 7.9, implies thatclos (B) is an oper-
ator with a trivial kernel satisfyingdom clos (B) = M = ran clos (B). Conse-
quently,Υ2(clos (B)) = clos (Υ2(B)) is a standard unitary operator and, hence,
Υ2(clos (B))Ut is a bounded unitary operator from{K1, [·, ·]1} onto {K2, [·, ·]2}.
This observation together with (7.2) shows that the statement holds withS as in
Theorem 7.9.

If V is as in Theorem 7.9 or, more generally, ifV = Υ1(S)Υ2(B)Ut for a symmet-
ric operatorS, an operatorB and a bounded unitary operatorUt, thenker (PjMV )

is also a neutral subspace of{K1, [·, ·]1}, ker V = ker (PMV ) ∩ ker (PjMV ) and,
moreover,

ker (PjM(V U−1
t )) = {f + jiB∗(−S)Bf : f ∈ dom (B∗SB)} (7.3)

Consequently,ker (PjM(V U−1
t )), and hence alsoker (PjMV ), is a hyper-maximal

neutral subspace if and only ifB∗SB is a selfadjoint relation in{M, [j2·, ·]2}, cf.
Example 7.5. Moreover,ker (PjMV ) = ker V if and only if dom (B∗SB) = {0}.
Next an example of a unitary operatorU with ker (PjMU) = ker U is presented, cf.
(Derkach et al. 2006: Example 6.6).
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Example 7.13.Let j be a fundamental symmetry of{K, [·, ·]} and assume that there
exists a hyper-maximal neutral subspaceM of {K, [·, ·]} such that{M, [j·, ·]} is a
separable Hilbert space. Moreover, letK be a selfadjoint operator in{M, [j·, ·]}
with ran K 6= M and ran K = M. Then there exists a closed operatorC in
{M, [j·, ·]} such thatran C = M, ran C ∩ ran K = {0}, dom C = M and
ker C = {0}, see Proposition 2.17 (ii) and (v). ThenB = C−∗ is a closed op-
erator withdom B = M = ran B, ker B = {0} anddom B∗ ∩ ran K = {0}. Now
dom (B∗KB) = {0} and, hence,U := Υ1(K)Υ2(B) is a unitary operator with
ker (PjMU) = ker U , see Proposition 7.3 and (7.3).

Furthermore, ifV is as above, then

ker (PMV )+ker (PjMV ) = dom V if and only if ran (SB) ⊆ dom B∗. (7.4)

Example 7.14 (i) below shows that for two hyper-maximal neutral subspacesL0

andL1 there always exists a unitary operatorU such thatL0 = ker (PMU), L1 =

ker (PjMU) andker (PMU) + ker (PjMU) = dom U . Also an isometric operator
with the same properties is given which can not be extended to a unitary operator,
see Example 7.14 (ii) below. Recall that ifL0 andL1 are extension of a closed neu-
tral subspaceL and their sum coincides with the orthogonal complementL[⊥], then
L0 andL1 are traditionally called transversal extensions ofL. For such cases it is
well known that there exists a bounded unitary operator such thatL0 = ker (PMU)

andL1 = ker (PjMU), see (Derkach& Malamud 1995: Proposition 1.3).

Example 7.14.Let j be a fundamental symmetry of{K, [·, ·]} and assume that there
exists an infinite-dimensional hyper-maximal neutral subspaceM in {K, [·, ·]}.
(i) Let L be an arbitrary hyper-maximal neutral subspace of{K, [·, ·]}. Then, by
Proposition 2.20, there exists a selfadjoint relationK in {M, [j·, ·]} such thatL =

{f + ijf ′ : {f, f ′} ∈ gr K}. Now a direct calculation shows that the unitary
relation U := jΥ1(K

−1)j is such thatM = ker (PjMU), L = ker (PMU) and
ker (PMU) + ker (PjMU) = dom U .

(ii) Let S be a symmetric operator in the Hilbert space{M, [j·, ·]} with unequal
defect numbers anddom S = M = ran S, and letB be a closed operator with
dom B = M = ran B andker B = {0} such thatdom B∗ = ran S, see Proposi-
tion 2.17 (ii). ThenK := B∗SB is a selfadjoint operator in{M, [j·, ·]}, because
by the assumptionsran K = M. Now V := U1(S)Υ2(B) is an isometric operator
in {K, [·, ·]} which cannot be extended to a unitary operator, see Proposition 7.3,
while L0 := ker (PMV ) = jM andL1 := ker (PjMV ) = {f + jiB∗(−S)Bf :

f ∈ dom (B∗SB)} = {f − jiKf : f ∈ dom K} are hyper-maximal neutral
subspaces of{K, [·, ·]}. Finally, note thatdom V = L0 + L1 by (7.4), because
ran (SB) = dom B∗ by construction.
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7.3 Block representations for unitary operators

Continuing the investigations from the preceding section, here block representa-
tions for unitary operators are presented. For instance, it is shown that each uni-
tary operator can be written (w.r.t. certain coordinates) as the composition of an
archetypical unitary operator of the typeΥ2(B) and a bounded unitary operator.
This shows that the unbounded part of a unitary operator can always be represented
by a block diagonal unitary operator. To obtain the indicated represented the fol-
lowing lemma is needed; note that Theorem 7.23 below extends this lemma.

Lemma 7.15. Let U be a unitary relation from{K1, [·, ·]1} to {K1, [·, ·]1}, let j1 be

a fundamental symmetry of{K1, [·, ·]1} and letL ⊆ dom U be a hyper-maximal

semi-definite subspace of{K1, [·, ·]1} such thatU(L[⊥]1) is a neutral subspace of

{K2, [·, ·]2} with equal defect numbers in the Kreı̆n space{U(L ∩ j1L))[⊥]2 , [·, ·]2}.
ThenU(j1L ∩ dom U) is a hyper-maximal semi-definite subspace of{K2, [·, ·]2}.

Proof. SinceU is unitary, assume w.l.o.g. thatmul U = {0} or, equivalently, that
ran U = K2. Then the statement follows directly from Remark 7.10 (i).

Theorem 7.16.LetU be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} and let

ji be a fundamental symmetry of{Ki, [·, ·]i}, for i = 1, 2. Then there exists a hyper-

maximal semi-definite subspaceM ⊆ ran U of {K2, [·, ·]2}, a closed operatorB in

the Hilbert space{M[⊥]2 , [j2·, ·]2}with dom B = M[⊥]2 = ran B andker B = {0},
and a bounded unitary operatorUt from{K1, [·, ·]1} onto{K2, [·, ·]2}withdom U ⊆
dom Ut such that

UU−1
t = Υ2(B)⊕ IM∩j2M.

In particular, if L is a hyper-maximal semi-definite subspace of{K1, [·, ·]1} such

thatL ⊆ dom U and thatU(L[⊥]1) is a neutral subspace with equal defect numbers

in the Krĕın space{(U(L ∩ j1L))[⊥]2 , [·, ·]2}, then the subspaceM can be taken to

beU(j1L ∩ dom U).

Proof. The existence of a subspaceL as in the statement follows directly from
Proposition 6.7 and by Lemma 7.15M := U(j1L ∩ dom U) is a hyper-maximal
semi-definite subspace. To complete the proof it suffices to show that with thisM

the indicated decomposition ofU holds. W.l.o.g. this will only be done in case that
L, and hence alsoM, are hyper-maximal neutral subspaces, see Remark 7.10 (ii).

Now by Lemma 7.8 there exists a standard unitary operatorUh from {K1, [·, ·]1} to
{K2, [·, ·]2} with dom U ⊆ dom Uh mappingL ontoj2M andj1L∩dom Ut ontoM.
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Therefore the unitary operatorUU−1
h without kernel has w.r.t. the decomposition

M⊕ j2M of K2, the block representation

UU−1
h =

(
B iCj2

0 j2Dj2

)
,

whereB is a closed operator satisfyingdom B = clos (Uh(j1L ∩ dom U)) = M,
ran B = U(j1L∩dom U) = M, ker B = {0} = mul B, andC andD are operators
satisfyingdom C = dom D = Uh(L ∩ dom U) = Uh(L) = j2M. Now the argu-
ments as in Theorem 7.9 show thatD = B−∗ and thatC = SB−∗ for a symmetric
operatorS in {M, [j2·, ·]}. Hence,UU−1

h can be written as

UU−1
h =

(
B iSB−∗j2
0 j2B

−∗j2

)
=

(
B 0

0 j2B
−∗j2

)(
I iB−1SB−∗j2
0 I

)
.

Here the second equality holds becauseran B = M. Next observe thatK :=

B−1SB−∗ is a symmetric operator, becausemul (UU−1
h ) = {0}, with dom K =

M, becausedom (SB−∗) = dom C = M andran B = M. This shows thatK is
a everywhere defined selfadjoint operator and, hence,Υ1(K) is a standard unitary
operator. Therefore the statement holds withUt = j2Υ1(K)j2Uh.

The diagonal block representation forU in Theorem 7.16 holds only for special
coordinates, it can be generalized to the case of arbitrary coordinates by means of
standard unitary operators.

Corollary 7.17. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} with

strongly equal defect numbers (see Chapter 8 below) and letj2 be a fundamental

symmetry for{K2, [·, ·]2}. Then for every hyper-maximal neutral subspaceN of

{K2, [·, ·]2} there exists a closed operatorBN in {N, [j2·, ·]2} with dom BN = N =

ran BN andker BN = {0} and a standard unitary operatorUc in {K2, [·, ·]2} such

that

UcUU−1
t U−1

c = Υ2(BN).

Proof. SinceU has strongly equal defect numbers, there exists a hyper-maximal
neutral subspaceM of {K2, [·, ·]2}, a closed operatorB in {M, [j2·, ·]2} satisfying
dom B = M = ran B andker B = {0}, and a bounded unitary operatorUt from
{K1, [·, ·]1} onto {K2, [·, ·]2} with dom U ⊆ dom Ut such thatUU−1

t = Υ2(B),
see Corollary 8.18 below. Therefore the statement follows by takingUc to be the
standard unitary operator in{K2, [·, ·]2} which mapsM ontoN andj2M onto j2N,
see Lemma 4.13.
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Next an example is given of how a unitary operator with a block representation can
be rewritten such that the unbounded part is in diagonal form. Note that the uni-
tary operator under consideration is connected with so-called generalized boundary
triplets, see (Derkach& Malamud 1995: Definition 6.1), see also Theorem 7.19
below.

Example 7.18.Let {H2, < ·, · >} be the Krĕın space with fundamental symmetry
j associated to the Hilbert space{H, (·, ·)} as in Example 2.1. In{H2, < ·, · >},
consider the operatorU whose block decomposition w.r.t.H× H is given by

U =

(
B 0

KB B−∗

)
,

whereB is an unbounded closed operator in{H, (·, ·)} with dom B = H = ran B

andker B = {0}, andK is a selfadjoint operator in{H, (·, ·)} with dom K = H.
SinceΥ1(K) is a standard unitary operator andΥ2(B) is a unitary operator, it
follows thatU = Υ1(K)Υ2(B) is a unitary operator.

To obtain a block representation ofU where the unbounded part is in diagonal
form, note first that{0} × H ⊆ dom U is a hyper-maximal neutral subspace
of {H2, < ·, · >} which is mapped onto the essentially hyper-maximal neutral
subspace{0} × dom B∗. Therefore Theorem 7.16 implies thatU has a diago-
nal block representation with respect to hyper-maximal neutral subspaceM :=

{{Bf, KBf} : f ∈ dom (KB)} = gr K of {H2, < ·, · >}. Hence, to obtain a
diagonal block representation with respect to the hyper-maximal neutral subspace
H×{0} of {H2, < ·, · >}, a standard unitary operator in{H2, < ·, · >} needs to be
found which mapsH×{0} ontoM, see Corollary 7.17. A direct calculation shows
thatUM defined as :

UM =

(
C −KC

KC C

)
, C = (I + KK)−1/2,

where the block representation is w.r.t. the decompositionH×H of H2, is a standard
unitary operator in{H2, < ·, · >} with the desired properties. Now

(UM)−1 U =

(
C CK

−CK C

)(
B 0

KB B−∗

)

=

(
C(I + KK)B CKB−∗

0 CB−∗

)

=

(
C−1B C−1BB−1CCKB−∗

0 (C−1B)−∗

)

=

(
C−1B 0

0 (C−1B)−∗

)(
I B−1CCKB−∗

0 I

)
.
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Clearly,B−1CCKB−∗ = B−1CKCB−∗ is an everywhere defined symmetric op-
erator in the Hilbert space{H, (·, ·)}, i.e. it is a bounded selfadjoint operator. There-
fore the following decomposition ofU has been obtained:

U =

(
C −KC

KC C

)(
C−1B 0

0 (C−1B)−∗

)(
I B−1CKCB−∗

0 I

)
.

The unboundedness ofU is now completely expressed by the unitary diagonal block
operator, the other two operators in the righthand side of the above equality are
standard unitary operators.

Next some further necessary and sufficient conditions for an isometric relation to
be unitary are stated; note that the following result extends (Derkach et al. 2006:
Lemma 5.5)1. Theorem 7.19 below shows that up to a standard unitary transforma-
tion each unitary boundary triplet whose domain contains a selfadjoint relation is a
generalized boundary triplet, see also Section A.2.

Theorem 7.19.LetU be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let j2 be a fundamental symmetry of{K2, [·, ·]2}. ThenU is unitary if and only if

there exists a hyper-maximal semi-definite subspaceM of {K2, [·, ·]2} such that

(i) M = PMran U andM ∩ j2M ⊆ ran U ;

(ii) ker (PM[⊥]2U) is a hyper-maximal semi-definite subspace of{K1, [·, ·]1}.

In particular, if (i)-(ii) hold, then there exists a closed operatorB in (the Hilbert

space){M[⊥]2 , [j2·, ·]2} with dom B = M[⊥]2 = ran B andker B = {0}, a selfad-

joint operatorK in {M[⊥]2 , [j2·, ·]2} with dom K = M[⊥]2 and a bounded unitary

operator Ut from {K1, [·, ·]2} onto {K2, [·, ·]2} with dom U ⊆ dom Ut, mapping

ker (PMU) ontoj2M, such that

UU−1
t = Υ1(K)Υ2(B)⊕ IM∩j2M. (7.5)

Proof. If U is unitary, thenM as in Theorem 6.8 satisfies (i)-(ii). In fact, in that
caseM ⊆ ran U . To prove the sufficiency of the conditions, it suffices to prove
that U has the indicated block decomposition if the stated conditions hold, see
Proposition 7.3. SinceM∩ j2M ⊆ ran U , this is w.l.o.g. only done in case thatM,
and hence alsoL := ker (PM[⊥]2U), is a hyper-maximal neutral subspace.

1Note that in (Derkach et al. 2006: Lemma 5.5)A0 should be selfadjoint.
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Step 1: Recall that by assumptionU(L) ⊆ j2M. Next it is shown that the as-
sumptions (i) and (ii) imply thatclos (U(L)) = j2M. Therefore note first that the
assumption thatL is hyper-maximal neutral implies that

L + dom U ∩ K+
1 = dom U = L + dom U ∩ K−1 . (7.6)

Now letfo ∈ j2Mªclos (U(L)), then by the assumption (i) together with (7.6) there
exists anf ∈ dom U ∩ K+

1 such thatPMUf = j2fo. Consequently,[Uf, Ug]2 = 0

for everyg ∈ L and, hence,[f, g]1 = 0 for everyg ∈ L. Sincef ∈ dom U ∩ K+
1

andL is hyper-maximal neutral, the preceding equality can only hold iff = 0.
Consequently,clos (U(L)) = j2M. Now let f ′ ∈ (ran U)⊥2, thenclos (U(L)) =

j2M implies thatf ′ ∈ M. Then (i) implies thatf ′ = 0, i.e. ran U = K2.

Step 2: Since it has been shown thatran U = K2, Theorem 7.9 implies that
there exists an operatorB in {M, [j2·, ·]2} with dom B = M = ran clos (B) and
ker clos (B) = {0}, a symmetric operatorK in {M, [j2·, ·]2} with dom K = ran B

and a standard unitary operatorU3 in {K2, [·, ·]2} with dom Ui ⊆ dom U3, mapping
ker (PMUi) ontoj2M, such that

UaU
−1
3 = Υ1(K)Υ2(B) =

(
B 0

j2iKB j2B
−∗j2

)
. (7.7)

Now the assumption (i) implies thatM = ran B and, hence,dom K = M, i.e. K is
a bounded selfadjoint operator andran B = M together withker (clos (B)) = {0}
implies thatB is closed, see (2.8). This shows that (7.5) holds.

The two conditions in Theorem 7.19 are independent of each other, i.e. there exist
unitary operators for which either only (i) holds or only (ii) holds. First an example
of a unitary operator is given which satisfies condition (i), but not condition (ii).

Example 7.20.Let{H2, < ·, · >} be the Krĕın space associated to the Hilbert space
{H, (·, ·)} as in Example 2.1. LetS be a closed symmetric operator in{H, (·, ·)}
with defect numbersn+(S) = 1 andn−(S) = 0 such thatdom S = H = ran S.
Moreover, letB be a closed operator in{H, (·, ·)}with dom B = H, ran B = ran S

andker B = {0}, see Proposition 2.17 (ii), thenK := B−1SB−∗ is a selfadjoint
operator in{H, (·, ·)} with ran K = H. Now U defined as

U =

(
KB−∗ −B

B−∗ 0

)
,

where the block representation is w.r.t. the decompositionH×H of H2, is a unitary
operator in{K, < ·, · >}, see e.g. Lemma 4.7. Clearly,PH×{0}U ⊇ ran K = H,
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while on the other hand

ker (PH×{0}U) = {{f, f ′} ∈ dom U : KB−∗f + Bf ′ = 0}
= {{f, f ′} ∈ dom U : f ′ = −B−1KB−∗f} = gr (−S).

SinceS is by assumption not selfadjoint in{H, (·, ·)}, the above calculation shows
thatker (PH×{0}U) is not hyper-maximal neutral, see Proposition 2.20.

Instead of giving a concrete example of a unitary operator which satisfies condition
(ii) in Theorem 7.19 but not condition (i), here a block representation characteriza-
tion for unitary operators satisfying condition (ii) is given. In particular, this shows
that such unitary operators are closely connected to those which do satisfy condi-
tion (i) and (ii) in Theorem 7.19. In that connection recall that the condition (ii) is
a very strong one, i.e. isometric operators which satisfy it are quite close to being
unitary, see Section 7.2.

Corollary 7.21. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}, let

j2 be a fundamental symmetry of{K2, [·, ·]2} and letM be a hyper-maximal semi-

definite subspace of{K2, [·, ·]} such thatM ∩ j2M ⊆ ran U . Then equivalent are:

(i) ker (PM[⊥]2U) is a hyper-maximal semi-definite subspace of{K1, [·, ·]1};

(ii) there exists an operatorB in the Hilbert space{M[⊥]2 , [j2·, ·]2} satisfying

dom B = M[⊥]2 = ran clos (B) and ker clos (B) = {0}, a selfadjoint op-

erator K in {M[⊥]2 , [j2·, ·]2} with dom K = ran B and a bounded unitary

operatorUt from {K1, [·, ·]2} onto{K2, [·, ·]2} with dom U ⊆ dom Ut, map-

pingker (PMU) ontoj2M, such that

UU−1
t = Υ1(K)Υ2(B)⊕ IM∩j2M.

Proof. As a consequence of the assumption thatM∩ j2M ⊆ ran U assume w.l.o.g.
thatM is a hyper-maximal neutral subspace. If (i) holds, then (ii) follows from The-
orem 7.9 and Remark 7.10 (i). Conversely, if (ii) holds, thenker (PM[⊥]2UU−1

t ) =

j2ran B∗ = j2M, i.e., ker (PM[⊥]2UU−1
t ) is a hyper-maximal neutral subspace of

{K2, [·, ·]2}. Consequently,ker (PM[⊥]2U) = U−1
t (ker (PM[⊥]2UU−1

t )) is a hyper-
maximal neutral subspace of{K1, [·, ·]1}.

Corollary 7.22 below contains conditions for the unitary operator in (7.5) to be a
bounded unitary operator, which differ from the usual condition that the range of
the unitary operator is onto, see also Section 4.1.
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Corollary 7.22. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}, let

j2 be a fundamental symmetry of{K2, [·, ·]2} and letM be a hyper-maximal semi-

definite subspace of{K2, [·, ·]2} such that Theorem 7.19 (i) and (ii) hold. ThenU is

a bounded unitary operator if and only if

j2M = Pj2Mran U and ker (PMU) + ker (PjMU) = dom U.

Proof. By assumptionU has the representation in (7.5). In fact, sinceK is a
bounded selfadjoint operator,Υ1(K) is a standard unitary operator therein. More-
over, sinceB is closed andran B = M[⊥]2 = dom B in (7.5), U is a bounded
unitary operator, i.e.ran U = K2, if and only if dom B∗ = M[⊥]2. It is clear
(see e.g. (7.7)) thatdom B∗ = M[⊥]2 if and only if ran (KB) ⊆ dom B∗ and
Pj2Mran U = j2M. In view of (7.4), this observation proves the equivalence.

Finally, necessary and sufficient conditions for the isometric operators under con-
sideration in Section 7.2 to be (extendable to) unitary relations are given. Note that
Theorem 7.23 below is a (partial) inverse to Lemma 7.15.

Theorem 7.23.Let U be an isometric relation from{K1, [·, ·]1} to {K2, [·, ·]2} and

let ji be a fundamental symmetry of{Ki, [·, ·]i}, for i = 1, 2. Moreover, assume

that there exists a hyper-maximal semi-definite subspaceM of {K2, [·, ·]} such that

M ∩ j2M ⊆ ran U and thatL := ker (PM[⊥]2U) is a hyper-maximal semi-definite

subspace of{K1, [·, ·]1}. ThenU is (extendable to) a unitary relation if and only

if U(j1L ∩ dom U) is (extendable to) a hyper-maximal semi-definite subspace of

{K2, [·, ·]2}.

Proof. SinceM ∩ j2M ⊆ ran U , assume w.l.o.g. thatM andL are hyper-maximal
neutral subspaces. It can also be assumed thatU is closed, because ifU is not
closed, thenclos (U) clearly satisfies the same conditions. Moreover,U can also
w.l.o.g. be assumed to be an operator with a trivial kernel, see Lemma 3.11. Then
arguments as in Step 1 of Theorem 7.9 show that w.r.t. to the decomposition
L⊕1 j1L of K1 and the decompositionM⊕2 j2M of K2 U has the following block
representation:

U =

(
0 Cj1

j2B j2iSCj1

)
,

whereB andC are operators from{L, [j1·, ·]1} to {M, [j2·, ·]2} with dom B = L,
ker B = {0} = ker C andC ⊆ B−∗, andS is a symmetric operator in{M, [j2·, ·]2}
with dom S = ran C. Moreover, sinceU is by assumption closed,B needs to
be closed. Now assume thatU(j1L ∩ dom U) is (extendable to) a hyper-maximal
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neutral subspace, then the above representation shows thatS is (extendable to) a
selfadjoint relationK in {M, [j2·, ·]2}. UsingK, Ua defined via

gr Ua = {{f + j1g,B−∗g + j2(Bf + iKB−∗g)} : f ∈ M andg ∈ dom (KB−∗)}
is a unitary extension ofU , becauseL ⊆ dom Ua is a hyper-maximal neutral sub-
space of{K1, [·, ·]1} andUa(j1L ∩ dom Ua) = {f + j2iKf : f ∈ dom K} is a
hyper-maximal neutral subspace of{K2, [·, ·]2}, see Lemma 4.7. Note that here
it was used thatran B−∗ = M. Hence, ifU(j1L ∩ dom U) is (extendable to) a
hyper-maximal neutral subspace, thenU is (extendable to) a unitary relation. The
converse implication is a direct consequence of Lemma 7.15.

7.4 Block representations and Calkin

Here the block diagonal representation of unitary operators from Theorem 7.16 is
used to furnish simple proofs for a number of statements from (Calkin 1939a).
Starting with the following two statements which are the abstract analogues of
(Calkin 1939a: Lemma 4.3& Theorem 4.13) and of (Calkin 1939a: Lemma 4.4
& Theorem 4.15); they show how unitary relations can change the defect numbers
of closed neutral subspaces.

Proposition 7.24.LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} which

does not have a closed domain. Then there exists a maximal neutral subspace

L ⊆ dom U in {K1, [·, ·]1} such that

(i) clos (U(L)) is a maximal neutral subspace of{K2, [·, ·]2};
(ii) for every0 ≤ m ≤ ℵ0 there exists a closed neutral subspaceLm withker U ⊆

Lm ⊆ L such thatclos (U(Lm)) = clos (U(L)) andn±(Lm) = n±(L) + m.

Proof. To prove the statement w.l.o.g. assume thatker U = {0} = mul U and let
j2 be a fundamental symmetry of{K2, [·, ·]2}. Then by Theorem 7.16, there exists
a hyper-maximal semi-definite subspaceM of {K2, [·, ·]2}, a closed operatorB in
{M[⊥]2 , [j2·, ·]} with dom B = M[⊥]2 = ran B andker B = {0}, and a standard
unitary operatorUt from {K1, [·, ·]1} onto{K2, [·, ·]2} with dom U ⊆ dom Ut such
that UU−1

t = Υ2(B) ⊕ IM∩j2M. Since standard unitary operators do not change
the defect numbers of neutral subspace, see Proposition 4.5, it suffice to proof the
statement for the unitary operatorUa := Υ2(B)⊕ IM∩j2M in {K2, [·, ·]2}.
From the properties ofB, it follows thatL := j2M ⊆ dom Ua is a maximal neutral
subspace of{K2, [·, ·]2} and thatclos (Ua(L)) = clos (j2dom B∗) = j2M is also a
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maximal neutral subspace of{K2, [·, ·]2}. SinceB is an unbounded operator (be-
causeU by assumption does by not have closed domain), Corollary 2.18 implies
that there exists for every0 ≤ m ≤ ℵ0 anm-dimensional closed subspaceNm of
(the Hilbert space){M, [j2·, ·]2} such thatM = clos (B−∗(Mª2 Nm)). This shows
that, withL as above, the statement holds forLm := j2(Mª2 Nm).

Proposition 7.25.LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} which

does not have a closed domain and letj1 be a fundamental symmetry of{K1, [·, ·]1}.
Then for everym ≤ ℵ0 there exists a hyper-maximal semi-definite subspaceL ⊆
dom U of {K1, [·, ·]1} such thatU(L[⊥]2) is a closed neutral subspace of the Kreı̆n

space{K2 ∩ (U(L ∩ j1L))[⊥]2 , [·, ·]2} with defect numbersn±(U(L[⊥]2)) = m.

Proof. W.l.o.g. assume thatmul U = {0}. ThenU = (Υ2(B) ⊕ IM∩j2M)Ut,
whereM, B andUt are as in Theorem 7.16 andj2 is a fundamental symmetry of
{K2, [·, ·]2}. From the assumption thatU does not have closed domain it follows
that Υ2(B) is an unbounded unitary operator. Hence, by Proposition 4.10 there
exists for everym ≤ ℵ0 a hyper-maximal neutral subspaceMm ⊆ dom (Υ2(B))

such thatΥ2(B)(Mm) is a closed neutral subspace in{K2 ∩ (M ∩ j2M)[⊥]2 , [·, ·]2}
with defect numbersn±(Υ2(B)(Mm)) = m. Consequently, the statement holds
for L := U−1

t (Mm ⊕2 (M ∩ j2M)), becauseUt is a bounded unitary operators, see
Proposition 4.5.

Proposition 7.25 implies in particular that the domain of a unitary relation always
contains a hyper-maximal semi-definite subspace which is mapped onto a hyper-
maximal semi-definite subspace. Combining this observation with Corollary 7.12
and Proposition 4.8 yields another representation for unitary relations.

Corollary 7.26. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

j2 be a fundamental symmetry of{K2, [·, ·]2}. Then there exists a hyper-maximal

semi-definite subspaceM of {K2, [·, ·]2}, a selfadjoint relationK in the Hilbert

space{M[⊥]2 , [j2·, ·]2} and a bounded unitary operatorUt from {K1, [·, ·]1} onto

{K2, [·, ·]2} with dom U ⊆ dom Ut such that

UU−1
t = Υ1(K)⊕ IM∩j2M.

Now it is shown that for every unitary relation in a separable Kreı̆n space which
does not have closed domain there exists another unitary relation, also necessarily
having a non-closed domain, having the same kernel such that the intersection of
their domains is their kernel. This statement can be found from (Calkin 1939a: 416)
where no proof for the assertion is given. In order to give a proof for that statement,
the following lemma will be used.
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Lemma 7.27. Let j be a fundamental symmetry of{K, [·, ·]} and letK+[+]K− be

the associated canonical decomposition of{K, [·, ·]}. Moreover, letM be a hyper-

maximal neutral subspace of{K, [·, ·]} and letD be a dense subspace ofK+ (K−)

which is an operator range. Then there exists a unitary operatorU in {K, [·, ·]}
satisfying

dom U = jM + D and dom U ∩ K+ = D (dom U ∩ K− = D).

Proof. Only the caseD ⊆ K+ is considered. First note that the assumption thatD is
an operator range and thatclos D = K+ implies that there exists a bounded operator
B in the Hilbert space{M, [j·, ·]} with dom B = M = ran B andker B = {0}
such thatD = {Bf + jBf : f ∈ M}, cf. Proposition 2.17 (ii). ThenU = Υ2(B

−1)

is a unitary operator withdom U = ran B ⊕ jM, see Section 4.2. Moreover,

dom U ∩ K+ = dom U ∩ {f + jf : f ∈ M} = {f + jf : f ∈ ran B} = D.

Clearly, from the above calculation it also follows thatdom U = jM + D.

Theorem 7.28.Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} which

does not have a closed domain such that{ran U/mul U, [·, ·]2} is a separable Krĕın

space. Then there exists a unitary relationUa from{K1, [·, ·]1} to {K2, [·, ·]2}, which

does not have a closed domain, with

ker Ua = ker U and dom U ∩ dom Ua = ker U.

Proof. In the proof letj2 be a fundamental symmetry of{K2, [·, ·]2}, let K+
2 [+]K−2

be the corresponding canonical decomposition of{K2, [·, ·]2} and w.l.o.g. assume
that U is an operator, see Corollary 3.12. Then by Theorem 7.16 there exists
a hyper-maximal semi-definite subspaceM of {K2, [·, ·]2}, an unbounded closed
operatorB in the, by assumption, separable Hilbert space{M[⊥]2 , [j2·, ·]2} with
dom B = M[⊥]2 = ran B andker B = {0}, and a bounded unitary operatorUt

from {K1, [·, ·]1} to {K2, [·, ·]2} with dom U ⊆ dom Ut such that

UU−1
t = Υ2(B)⊕2 IM∩j2M.

By Proposition 2.17 (ii) and (iv) there exists a bounded selfadjoint operatorK in
{M[⊥]2 , [j2·, ·]2}with ran K = M[⊥]2, dom B∩ran K = {0} anddom B+ran K 6=
M[⊥]2. ThenL := {f+j2iK

−1f : f ∈ ran K} is a hyper-maximal neutral subspace
in {K2 ª2 (M ∩ j2M), [·, ·]2} with L ∩Υ2(B) = {0}.
Sinceran K +dom B is a nonclosed operator range, see Proposition 2.17 (i), using
Proposition 2.17 (ii) and (v) once more yields the existence of a closed bounded
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(selfadjoint) operatorD in {M[⊥]2 , [j2·, ·]2} with ran D = M[⊥]2 andker D = {0},
such thatran D ∩ (ran K + dom B) = {0} andran D + ran K + dom B 6= M[⊥]2.
Then the subspaceD := {f + j2f : f ∈ ran D} is a uniformly definite subspace
of {K2 ª2 (M ∩ j2M), [·, ·]2} such thatclos (D) = K+

2 ª2 (M ∩ j2M). Hence, by
Lemma 7.27 there exists a unitary operatorU2 in {K2 ª2 (M ∩ j2M), [·, ·]2} with
dom U2 = L+D. Moreover, since by construction(L+D)∩dom (Υ2(B)) = {0},
dom U2 ∩ dom (Υ2(B)) = {0}.
If M is a (hyper-maximal) neutral subspace, then the statement holds withUa =

U2Ut. Next assume thatM is not neutral, but, w.l.o.g., assume thatM is nonnega-
tive, i.e. M ∩ j2M ⊆ K+

2 . Since{K2, [·, ·]2} is a separable space,M ∩ j2M has at
most the dimensionℵ0. Recall that

dom (Υ2(B)) = dom B ⊕2 jM[⊥]2 ;

dom U2 = {Df + j2Df : f ∈ M[⊥]2}+ {Kf + j2if : f ∈ M[⊥]2}.
Since alsodom B + dom D + ran K is a nonclosed operator range, see Proposi-
tion 2.17 (i), there exists by Proposition 2.17 (vi) an infinite-dimensional closed
subspaceDe such thatDe ∩ (dom B + dom D + ran K) = {0}. Hence,D+

e =

{f + jf : f ∈ De} is an infinite-dimensional closed subspace ofK+
2 such that

D+
e ∩ dom U2 = {0} and (D+

e + dom U2) ∩Υ2(B) = {0}.

Now let Ui be the standard unitary operator in{K2, [·, ·]2} which is the identity
mapping onK2 ª2 (D+

e ⊕2 M ∩ j2M), mapsM ∩ j2M onto D+
e andD+

e onto
M ∩ j2M. ThenUm := (U2 ⊕ IM∩j2M)Ui is a unitary operator in{K2, [·, ·]2}
such thatdom Um ∩ dom (UU−1

t ) = {0}. Consequently,Ua := UmUt satisfies the
conditions.

Combining Theorem 7.28 with Proposition 6.7 yields the following statement, see
(Calkin 1939a: Theorem 4.6).

Corollary 7.29. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} which

does not have a closed domain such that{ran U/mul U, [·, ·]2} is a separable Krĕın

space. Then there exists a hyper-maximal semi-definite subspaceL of {K1, [·, ·]1}
such thatL ∩ dom U = ker U .

7.5 Compositions of unitary operators

As a further application of the block representations for isometric operators pre-
sented in Section 7.2 and 7.3, here conditions for when the composition of a unitary
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operator with an isometric operator is (extendable to) a unitary operator are given.
Two distinct cases are considered: The composition of unitary operators with iso-
metric operators with a trivial kernel and, secondly, the composition of unitary
operators with bounded unitary operators with a non-trivial kernel.

Proposition 7.30. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2},
let j2 a fundamental symmetry of{K2, [·, ·]2}, let M be a hyper-maximal neu-

tral subspace of{K2, [·, ·]2} such thatker (PMU) is a hyper-maximal neutral sub-

space of{K1, [·, ·]1} and letV be a closed isometric operator in{K2, [·, ·]2} with

ker V = {0}. Moreover, letB, K andUt be as in Corollary 7.21 (ii) such that

UU−1
t = Υ1(K)Υ2(B). (7.8)

ThenV U can be extended to a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}
with ker (PMV U) = ker (PMU) if and only if there exists a closed relationD

in the Hilbert space{M, [j2·, ·]2} such thatD−∗B−∗ is a closed operator satis-

fying dom (D−∗B−∗) = M and ker (D−∗B−∗) = {0} , and a symmetric opera-

tor S in {M, [j2·, ·]2} which has a selfadjoint extensionKS satisfyingdom KS ∩
ker (D−∗B−∗)∗ = {0}, such thatV is an extension of

Υ1(S)Υ2(D)Υ1(−K).

In particular, clos (V U) is a unitary operator if and only ifV is an isometric ex-

tension ofΥ1(S)Υ2(D)Υ1(−K) as above and, additionally,clos (S) is selfadjoint

andclos (DIdom KB)) = (D−∗B−∗)−∗.

Proof. If V U can be extended to a unitary operator andker (PMV U) = ker (PMU),
thenV UU−1

t , whereUt is as in (7.8), is an isometric operator in{K2, [·, ·]2} such
that ker (PMV UU−1

t ) = j2M. Hence, as in step 1 of the proof of Theorem 7.9,
there exist operatorsB1 andC in {M, [j2·, ·]2} with B1 ⊆ C−∗, dom C = M,
ker C = {0} = mul C and a symmetric operatorT in {M, [j2·, ·]2} with dom T =

ran B1 such that

V UU−1
t =

(
B1 0

j2iTB1 j2Cj2

)
= Υ1(T )

(
B1 0

0 j2Cj2

)
. (7.9)

SinceV U , and hence alsoV UU−1
t , is extendable to a unitary operator, it follows

thatmul clos C = {0}. This observation together withdom C = M yields thatC
is a closed operator. Moreover, sinceV U is extendable to a unitary operator,T is
extendable to a selfadjoint operatorKS such thatdom KS ∩ (ran C)⊥ = {0}, see
Remark 7.9 (i) and step 3 of the proof of Theorem 7.9.
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Combining (7.8) and (7.9) yields

V ¹ran U= Υ1(T )

(
B1B

−1 0

0 j2CB∗j2

)
Υ1(−K). (7.10)

SinceV is by assumption closed, the closure of the righthand side of (7.10) is
contained inV . Hence, the assumption thatV is an operator with a trivial kernel
implies that the operatorE := CB∗ satisfiesker clos (E) = {0} = mul clos (E).
Hence,D := E−∗ is a relation which satisfies the stated conditions, because

D−∗B−∗ = clos (E)B−∗ = C + {0} ×mul clos (E) = C.

Hence, by takingS to be the restriction ofT to ran (B1B
−1) the necessity of the

conditions is clear.

Conversely, letD andS be as in the statement, then with∆ := dom K ⊕ j2M

Υ1(S)Υ2(D)Υ1(−K)U = Υ1(S)Υ2(D)I∆Υ2(B)Ut.

Now observe that

Υ2(D)I∆Υ2(B) =

(
DIdom KB 0

0 j2D
−∗B−∗j2

)
⊆ Υ2((D

−∗B−∗)−∗).

By the assumptionsE := (D−∗B−∗)−∗ is a (closed) relation in{M, [j2·, ·]2} sat-
isfying dom E = M = ran E and ker E = {0}. Hence, ifKS is a selfad-
joint extension ofS such thatdom KS ∩ mul E = {0}, then the above calcula-
tions show thatΥ1(S)Υ2(D)Υ1(−K)UU−1

t can be extended to the unitary oper-
ator Υ1(KS)Υ2(E), see Proposition 7.3, i.e.,V U can be extended to the unitary
operatorΥ1(KS)Υ2(E)Ut, see Lemma 3.10.

The final equivalence is clear by the above observations.

Note that the isometric operatorΥ1(S)Υ2(D)Υ1(−K) in Proposition 7.30 need
not be extendable to a unitary operator. Consider for instance the case thatD = I,
and thatS and−K are the selfadjoint operatorsK1 andK2 from Example 7.1.
However, in the case thatU andV U in Proposition 7.30 are the abstract equivalent
of generalized boundary triplets, thenV must be a unitary operator.

Corollary 7.31. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}, let j2
be a fundamental symmetry of{K2, [·, ·]2} and letM be a hyper-maximal neutral

subspace of{K2, [·, ·]2} such thatker (PMU) is a hyper-maximal neutral subspace

of {K1, [·, ·]1} and thatPMran U = M. Moreover, letV be a closed isometric

operator in{K2, [·, ·]2}with ker V = {0} such thatker (PMV U) = ker (PMU) and

PMran (V U) = M. ThenV U is a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}
andV is a unitary relation in{K2, [·, ·]2}.
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Proof. The assumptions onV U imply by Theorem 7.19 thatV U is a unitary op-
erator. Moreover, Theorem 7.19 implies thatK andclos (S) in Proposition 7.30
are bounded selfadjoint operators in the Hilbert space{M, [j2·, ·]} and, therefore,
Υ1(S) andΥ1(−K) are standard unitary operators in{K2, [·, ·]2}. From this it fol-
lows thatclos (Υ1(S)Υ2(D)Υ1(−K)) = Υ1(S)Υ2(clos (D))Υ1(−K) is a unitary
relation in{K2, [·, ·]2}. SinceΥ1(S)Υ2(D)Υ1(−K) ⊆ V andV is by assumption
closed, this implies thatV itself is a unitary operator in{K2, [·, ·]2}.

In Proposition 7.30 the composition of a unitary operator with a closed isometric
operator with a trivial kernel was considered. Next the composition of a unitary
operator with a bounded unitary operator with a non-trivial kernel is considered.

Proposition 7.32. LetU be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let j2 be a fundamental symmetry of{K2, [·, ·]2}. LetM be a hyper-maximal neutral

subspace of{K2, [·, ·]2} such thatL := ker (PMU) is a hyper-maximal neutral sub-

space of{K1, [·, ·]1} and letUb be a bounded unitary operator from{K2, [·, ·]2} onto

{K3, [·, ·]3} such thatj2M ⊆ dom Ub or, equivalently,ker Ub ⊆ j2M. ThenUbU is

an isometric operator from{K1, [·, ·]1} to {K3, [·, ·]3} which can be extended to a

unitary relation. In particular,UbU is a unitary operator if and only if there exists a

fundamental symmetryj1 of{K1, [·, ·]1} such thatU(j1L∩dom U)∩dom Ub+ker Ub

is a hyper-maximal neutral subspace of{K2, [·, ·]2}.

Proof. Note first that ifj2M ⊆ dom Ub, thenker Ub = (dom Ub)
[⊥]2 ⊆ (j2M)[⊥]2 =

j2M and, conversely, ifker Ub ⊆ j2M, then j2M = (j2M)[⊥]2 ⊆ (ker Ub)
[⊥]2 =

dom Ub = dom Ub, where in the last step the boundedness ofUb is used.

SinceU(L) ⊆ j2M (⊆ dom Ub) is a neutral subspace with equal defect numbers
andUb is a bounded unitary operator,Ub(U(L)) is a neutral subspace with equal
defect numbers. Hence, by Theorem 7.23,UbU is (extendable to) a unitary relation
if and only if UbU((j1L∩ dom U)) is (extendable to) a hyper-maximal neutral sub-
space of{K3, [·, ·]3}. SinceUb is a bounded unitary operator, this last condition is
equivalent toU(j1L ∩ dom U) ∩ dom Ub (+ker Ub) being (extendable to) a hyper-
maximal neutral subspace of{K2, [·, ·]2}. But that follows immediately from the
fact thatU(j1L ∩ dom U) ∩ dom Ub is a restriction ofU(j1L ∩ dom U) which is a
hyper-maximal neutral subspace of{K2, [·, ·]2} by Lemma 7.15, becauseU is uni-
tary andL := ker (PMU) is a hyper-maximal neutral subspace of{K1, [·, ·]1}.

Not every composition of a unitary operator with a unitary operator with closed
domain can be extended to a unitary operator as the following example shows.
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Example 7.33.By Example 7.2 there exists a unitary operatorU in {K, [·, ·]}which
maps a neutral subspaceL with unequal defect numbers onto a hyper-maximal
neutral subspace. Now letUb be the unitary operator from{K, [·, ·]} to {0} whose
graph isU(L) × {0}. ThenUbU is an isometric operator from{K, [·, ·]} to {0}
whose graph is given byL × {0}. Clearly,UbU cannot be extended to a unitary
operator, becauseL can not be extended to a hyper-maximal neutral subspace.

Finally, Proposition 7.32 is applied to the abstract equivalent of generalized bound-
ary triplets. The following result will be used in Section A.4 to obtain results on the
boundary relations for intermediate extensions.

Corollary 7.34. Let U be a unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2}, let

j2 be a fundamental symmetry of{K2, [·, ·]2} and letM be a hyper-maximal neu-

tral subspace of{K2, [·, ·]2} such thatPMran U = M and thatker (PMU) is a

hyper-maximal neutral subspace of{K1, [·, ·]1}. Moreover, letUb be a bounded

unitary operator from{K2, [·, ·]2} onto {K3, [·, ·]3} such thatj2M ⊆ dom Ub or,

equivalently,ker Ub ⊆ j2M. ThenUbU is a unitary operator from{K1, [·, ·]1} to

{K3, [·, ·]3} and N := Ub(M ∩ dom Ub) is a hyper-maximal neutral subspace of

{K3, [·, ·]3} such that,

PN(ran (UbU)) = N and ker (PN(UbU)) = ker (PMU),

wherePN the orthogonal projection ontoN w.r.t. [j3·, ·]3, j3 := Ubj2U
−1
b .

Proof. Theorem 7.19 shows that to prove the statement it suffices to shows that the
last two equalities hold. Note therefore first that since by assumptionker Ub ⊆ j2M,
Mr := M ∩ dom Ub is a closed subspace such that

dom Ub = Mr ⊕2 j2M = Mr ⊕2 j2Mr ⊕2 ker Ub.

SinceK2 ª2 dom Ub = j2ker Ub, the above formula shows thatMr + ker Ub ⊆
dom Ub is a hyper-maximal neutral subspace of{K2, [·, ·]2} and, hence,N :=

Ub(Mr) is a hyper-maximal neutral subspace of{K3, [·, ·]3}.
Next note that the assumptionPMran U = M together withj2M ⊆ dom Ub implies
that PMr(ran U ∩ dom Ub) = Mr. Since j3N = Ub(j2M) by definition of j3,
the preceding observations imply thatPN(ran (UbU)) = N. Moreover,j3N =

Ub(j2M) together with the assumptionj2M ⊆ dom Ub yields

ker (PMU) = U−1(j2M∩ ran U) = (UbU)−1(j3N∩ ran (UbU)) = ker (PN(UbU)).

This completes the proof.
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8 A CLASSIFICATION OF UNITARY RELATIONS

Extending upon the work of Calkin (1939a: Ch. 3, Section 4), here a classifi-
cation of unitary relations into three types is presented and characterized. This
classification is introduced and analyzed in order to describe what kind of closed
neutral subspaces the domain of a unitary relation can contain. In particular, this
approach is used to characterize when the domain of a unitary relation contains a
hyper-maximal neutral subspace. More specifically, in the first section a classifica-
tion of unitary relations is introduced and investigated, and the concept of strongly
equal defect numbers is introduced. In the second and third section unitary rela-
tions of type I (type Ia and type Ib) and II, respectively, are studied. In particular,
these classes of unitary relations are characterized by the closed neutral subspaces
contained in their domain and by their diagonal block representation.

8.1 Basic properties of the classification

The discussion in Section 6.2 shows that even if the kernel of a unitary relation
has equal defect numbers, then it is not a priori clear whether there exist hyper-
maximal neutral extensions of the kernel which are contained in the domain of
the unitary relation. As is shown in this chapter, that need not be the case, see e.g.
Example 8.11 below. Therefore it makes sense to introduce the following definition.

Definition 8.1. LetU be an isometric relation from{K1, [·, ·]1} to{K2, [·, ·]2}. Then
ker U is said to havestrongly equal defect numbersif there exists a hyper-maximal
neutral subspaceL in {K1, [·, ·]1} such thatL ⊆ dom U .

Clearly, if the kernel of an isometric relation has strongly equal defect numbers,
then it also has equal defect numbers. To describe whether the kernel of a unitary
relationU has strongly equal defect numbers, in (Calkin 1939a) it was shown that
the dimensions of closed subspaces contained indom U∩K+

1 anddom U∩K−1 need
to be considered. Therefore, following Calkin, unitary relations are subdivided into
different types according to whetherdom U ∩ K+

1 anddom U ∩ K−1 contain finite-
dimensional of infinite-dimensional closed subspaces, cf. (Calkin 1939a: Defini-
tion 3.5). Note that here the definition is stated only for unitary relations, but that
most statements that follow only make use of the structure of the domain of the
unitary relation and therefore also hold for certain isometric relations.

Definition 8.2. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let
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K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. ThenU is said to be of

type II if dom U ∩ K+
1 anddom U ∩ K−1 both contain infinite-dimensional closed

subspaces and oftype I otherwise. A unitary relationU of type I is said to be of
type Iaif dom U ∩K+

1 anddom U ∩K−1 contain both only finite-dimensional closed
subspaces and oftype Ibotherwise.

The well-definedness of Definition 8.2, i.e. the independence of the type of a uni-
tary relation from the canonical decomposition, is not a priori clear. To prove this
Proposition 8.3 below suffices; it characterizes the introduced types of unitary re-
lations by means of closed neutral subspaces contained in their domain. Note first
however that ifU is a unitary relation with closed domain, thenU is of type Ia if
and only if both defect numbers are finite, of type Ib if and only if precisely one
of the defect numbers is finite and of type II if and only if both defect numbers are
infinite. Moreover, in that caseker U has strongly equal defect numbers if and only
if ker U has equal defect numbers.

Note also that if Definition 8.2 is well defined, then Proposition 3.9 implies directly
that a unitary relationU is of type Ia, Ib or II if and only ifU−1 is of type Ia, Ib
or II, respectively. The same proposition also shows that ifUt is a bounded unitary
operator from{K3, [·, ·]3} to {K1, [·, ·]1} such thatdom U ⊆ ran Ut, thenU is of
type Ia, Ib or II if and only ifUUt is of type Ia, Ib or II, respectively.

Proposition 8.3. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

(i) U is of type II if and only if there exists a closed neutral subspaceL ⊆ dom U

of {K1, [·, ·]1} with n+(L) = ∞ andn−(L) = ∞ such thatL[⊥]1 ⊆ dom U ;

(ii) U is of type Ib if and only ifU is not of type II and there exists a closed neutral

subspaceL ⊆ dom U of {K1, [·, ·]1} with n+(L) = ∞ andn−(L) < ∞ or

n+(L) < ∞ andn−(L) = ∞ such thatL[⊥]1 ⊆ dom U ;

(iii) U is of type Ia if and only if every neutral subspaceL of {K1, [·, ·]1} with

L[⊥]1 ⊆ dom U has finite defect numbers.

Proof. Since the characterizations can be proven by similar arguments, only the
equivalence in (i) is proven. First the sufficiency of the condition in (i) is proven,
which at the same time proves the well-definedness of Definition 8.2. Hence, let
L ⊆ dom U be a closed neutral subspace of{K1, [·, ·]1} with n+(L) = ∞ =

n−(L) such thatL[⊥]1 ⊆ dom U and letK+
1 [+]K−1 be a canonical decomposition

of {K1, [·, ·]1}. ThenL[⊥]1 ∩ K+
1 andL[⊥]1 ∩ K−1 are infinite-dimensional closed

subspaces contained indom U ∩ K+
1 anddom U ∩ K−1 , respectively, i.e.,U is of

type II.
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Conversely, assume thatU is of type II and letK+
1 [+]K−1 be a canonical decomposi-

tion of{K1, [·, ·]1}, with associated fundamental symmetryj1, such thatdom U∩K+
1

anddom U ∩K−1 both contain infinite-dimensional closed subspaces. Moreover, let
M ⊆ dom U be a hyper-maximal semi-definite subspace of{K1, [·, ·]1}, see Propo-
sition 6.7, and w.l.o.g. assume thatM is a hyper-maximal nonnegative subspace,
i.e. M ∩ j1M ⊆ K+

1 . ThenM[⊥]1 ⊆ M ⊆ dom U is a hyper-maximal neutral
subspace of{K1 ª1 (M ∩ j1M), [·, ·]1}. Let K be the angular operator ofM[⊥]1

w.r.t. K−1 :

M[⊥]1 = {f− + Kf− : f− ∈ P−
1 M[⊥]1 = K−1 }.

Now let D−
1 ⊆ dom U ∩ K−1 be an infinite-dimensional closed subspace, which

exists by the assumption thatU is of type II. Then, sinceK is a unitary operator
from the Hilbert space{K−1 ,−[·, ·]1} to the Hilbert space{K+

1 ª1(M∩j1M), [·, ·]1},
K(D−

1 ) is an infinite-dimensional closed subspace ofdom U ∩(K+
1 ª1 (M∩ j1M)).

Consequently,L := {f− + Kf− : f− ∈ K−1 ª1 D−
1 } is a closed neutral subspace

which satisfies the requirements, because by construction

L[⊥]1 = L + (M ∩ j1M) + D−
1 + K(D−

1 ) ⊆ dom U.

This completes the proof.

If dom U ∩K+
1 anddom U ∩K−1 contain both one vector, then the proof of Proposi-

tion 8.3 shows that there exists a closed neutral subspaceL ⊆ dom U of {K1, [·, ·]1}
with n+(L) ≥ 1 andn−(L) ≥ 1 such thatL[⊥]1 ⊆ dom U . This shows that the
number of maximal neutral subspaces contained in the domain of a unitary rela-
tion whose kernel has nonzero defect numbers is uncountable, see (Calkin 1939a:
Theorem 4.3& 4.4).

If the defect numbers of the kernel of a unitary relationU are different, then the
dimension of maximal closed subspaces contained indom U ∩K+

1 anddom U ∩K−1
are different.

Lemma 8.4. LetU be unitary relation between{K1, [·, ·]1} and{K2, [·, ·]2} and let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}with associated fundamental

symmetryj1. If n+(ker U) > n−(ker U) or n+(ker U) < n−(ker U), then there

exists a closed subspaceD−
1 ⊆ dom U∩K−1 or closed subspaceD+

1 ⊆ dom U∩K+
1

such thatdim(D−
1 ) = n+(ker U) or dim(D+

1 ) = n−(ker U), respectively.

Proof. W.l.o.g. assume thatker U = {0}, and thatdom U is not closed, because
otherwise there is nothing to prove by the definition of defect numbers. Recall that,
sinceU is a unitary relation, there exists a hyper-maximal semi-definite subspace
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M = M[⊥]1⊕1(M∩j1M) of {K1, [·, ·]1} such thatM ⊆ dom U , see Proposition 6.7.
If M is nonnegative, thenM ∩ j1M ⊆ dom U ∩ K+

1 ,

dim(K+
1 ) = dim(M[⊥]1) + dim(M ∩ j1M) and dim(K−1 ) = dim(M[⊥]1).

Similarly, if M is nonpositive, thenM ∩ j1M ⊆ dom U ∩ K−1 ,

dim(K+
1 ) = dim(M[⊥]1) and dim(K−1 ) = dim(M[⊥]1) + dim(M ∩ j1M).

These observations imply that ifn+(ker U) 6= n−(ker U), thendim(M ∩ j1M) >

dim(M[⊥]1) (note that here it is used thatdim(K+
1 ) = ∞ = dim(K−1 ), because

dom U is not closed). SinceM ∩ j1M is a closed subspace, the statement follows
from the above discussion.

The difference between unitary relations of type I and II can be characterized by
looking at the closed neutral subspaces contained in their domain. In particular,
Lemma 8.5 and Theorem 8.6 below give such type of sufficient conditions for a
unitary operator to be of type II; note that these results are an extension of (Calkin
1939a: Lemma 4.1& part of Theorem 4.4).

Lemma 8.5. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} and let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1}. Moreover, letL ⊆ dom U

be a closed neutral subspace of{K1, [·, ·]1}. Then

(i) if dom U∩K−1 contains an infinite-dimensional closed subspace andn+(L) <

∞, thendom U ∩ K+
1 contains an infinite-dimensional closed subspace;

(ii) if dom U∩K+
1 contains an infinite-dimensional closed subspace andn−(L) <

∞, thendom U ∩ K−1 contains an infinite-dimensional closed subspace.

Proof. Clearly, it suffices to prove only one of the two assertions. Hence, as-
sume thatL ⊆ dom U is a closed neutral subspace withn+(L) < ∞ and that
D−

1 ⊆ dom U ∩ K−1 is an infinite-dimensional closed subspace. Together the two
assumptions imply thatD−

1 ∩ P−
1 L is an infinite-dimensional closed subspace con-

tained indom U ∩ K−1 . Now letK be the angular operator forL w.r.t. K−1 :

L = {f− + Kf− : f− ∈ P−
1 L}.

Since,K is a closed isometric operator from the Hilbert space{K−1 ,−[·, ·]1} to the
Hilbert space{K+

1 , [·, ·]1}, K mapsD−
1 ∩ P−

1 L ⊆ dom U ∩ K−1 onto an infinite-
dimensional closed subspace ofdom U ∩ K+

1 (becauseL ⊆ dom U ).
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Theorem 8.6. LetU be a unitary relation between{K1, [·, ·]1} and{K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1} with associated projections

P+
1 andP−

1 , and assume that there exist closed neutral subspacesL1 ⊆ dom U and

L2 ⊆ dom U of {K1, [·, ·]1} satisfying either of the following conditions:

(a) n+(L1) < ∞, dim
(
P+

1 L1 ª1 I+
)

< ∞, whereI+ = P+
1 L1 ∩ P+

1 L2, and

n+(L1) + dim
(
P+

1 L1 ª1 I+
)

< n+(L2) + dim
(
P+

1 L2 ª1 I+
)
;

(b) n−(L1) < ∞, dim
(
P−

1 L1 ª1 I−
)

< ∞, whereI− = P−
1 L1 ∩ P−

1 L2, and

n−(L1) + dim
(
P−

1 L1 ª1 I−
)

< n−(L2) + dim
(
P−

1 L2 ª1 I−
)
.

Thendom U ∩K+
1 anddom U ∩K−1 contain infinite-dimensional closed subspaces.

Proof. To prove the statement it suffices to consider only the case thatL1 andL2

satisfy (a). Hence, let the assumptions in (a) hold and denote the (closed) angular
operators ofL1 andL2 w.r.t. K+

1 by K1 andK2:

L1 = {f+ + K1f
+ : f+ ∈ P+L1} and L2 = {f+ + K2f

+ : f+ ∈ P+L2}.

ThenX := K2K
−1
1 is a closed isometric operator in the Hilbert space{K−1 ,−[·, ·]1}

which, because of the assumptions in (a), satisfies

dim(dom X)⊥1 < dim(ran X)⊥1 and dim(dom X)⊥1 < ∞.

This implies that there exists a finite-dimensional (closed) isometric extensionY

of X such thatdom Y = K−1 andran Y 6= K−1 . If ran (I − Y ) does not contain
an infinite-dimensional closed subspace, thenI − Y is a compact operator, see
e.g. (Calkin 1939a: Lemma 3.1). Thereforeran Y 6= K−1 implies by the Fredholm
alternative thatker Y 6= {0}. SinceY is an isometric operator in a Hilbert space,
this is impossible. Consequently,ran (I − Y ) and, hence, alsoran (I −X) contain
an infinite-dimensional closed subspace.

Next note that the assumptionsL1 ⊆ dom U andL2 ⊆ dom U together imply that
ran (K1 −K2) ⊆ dom U ∩ K−1 and therefore

ran (I −X) = ran (I −K2K
−1
1 ) = ran ((K1 −K2)K

−1
1 ) ⊆ dom U ∩ K−1 .

Consequently, the above arguments show thatdom U ∩ K−1 contains an infinite-
dimensional closed subspaces. In view of Lemma 8.5, this completes the proof.
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8.2 Unitary relations of type I

Now unitary relation of type Ia and Ib are considered. In particular, two characte-
rizations for them are given: First by means of the defect numbers of neutral sub-
spaces contained in their domain and, secondly, by specifying their block decom-
position. In order to prove the first mentioned characterization, it is shown that, as
a consequence of Theorem 8.6, closed neutral subspaces contained in the domain
(or range) of a unitary relation of type I have specific defect numbers.

Proposition 8.7. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} of type

I and letL1 ⊆ dom U andL2 ⊆ dom U be closed neutral subspaces of{K1, [·, ·]1}
satisfying either of the following conditions:

(a) n+(L1) = n+(L2) < ∞ andn−(L2) < ∞;

(b) n−(L1) = n−(L2) < ∞ andn+(L2) < ∞.

Thenn+(L1) = n+(L2) andn−(L1) = n−(L2).

Proof. W.l.o.g. only case (a) is considered. LetI+ := P+
1 L1 ∩ P+

1 L2, then the as-
sumptionn−(L2) < ∞ implies thatP+

1 L1 ª1 I+ is a finite-dimensional subspace.
SinceU is of type I, Theorem 8.6 implies thatn+(L2) + dim(P+

1 L2 ª1 I+) ≤
n+(L1) + dim(P+

1 L1 ª1 I+) < ∞. In particular,dim(P+
1 L2 ª1 I+) < ∞. Us-

ing Theorem 8.6 once more (withL1 = L2 andL2 = L1) yields thatn+(L1) +

dim(P+
1 L1 ª1 I+) ≤ n+(L2) + dim(P+

1 L2 ª1 I+), i.e.

n+(L1) + dim(P+
1 L1 ª1 I+) = n+(L2) + dim(P+

1 L2 ª1 I+).

The above equality together with the assumption thatn+(L1) = n+(L2) < ∞
yields thatdim(P+

1 L1 ª1 I+) = dim(P+
1 L2 ª1 I+). Clearly,

P+
1 L1 = (P+

1 L1 ª1 I+)⊕1 I+ and P+
1 L2 = (P+

1 L2 ª1 I+)⊕1 I+. (8.1)

Sincen−(L2) < ∞ anddim(P+
1 L2 ª1 I+) = dim(P+

1 L1 ª1 I+) < ∞, (8.1)
implies thatdim(K+

1 ª1 I+) < ∞. This observation together with (8.1) and the
proven fact thatdim(P+

1 L2 ª1 I+) = dim(P+
1 L1 ª1 I+) < ∞ yieldsn−(L1) =

n−(L2).

In particular, Proposition 8.7 implies that in a separable Hilbert space each maximal
neutral subspace contained in the domain of a unitary relation of type I has the same
defect numbers, see (Calkin 1939a: Theorem 4.4). Next further properties of the
closed neutral subspaces contained in the domain of unitary relations of type I are
stated.
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Proposition 8.8. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, let

K+
1 [+]K−1 be a canonical decomposition of{K1, [·, ·]1} and, moreover, letNU :=

min{dim(dom U ∩ K+
1 ), dim(dom U ∩ K−1 )}. If U is of type Ia, then there exists a

d ∈ N such that either of the following two alternatives holds:

(a1) for everyn ∈ N, n ≤ NU , there exists a closed neutral subspaceL ⊆ dom U

with n+(L) = n and n−(L) = n + d and, conversely, ifL ⊆ dom U is a

closed neutral subspace andn+(L) < ∞ or n−(L) < ∞, thenn−(L) =

n+(L) + d;

(a2) for everyn ∈ N, n ≤ NU , there exists a closed neutral subspaceL ⊆ dom U

with n+(L) = n + d and n−(L) = n and, conversely, ifL ⊆ dom U is a

closed neutral subspace andn+(L) < ∞ or n−(L) < ∞, thenn+(L) =

n−(L) + d.

If U is of type Ib, then either of the following two alternatives holds:

(b1) for everyn ∈ N, n ≤ NU , there exists a closed neutral subspaceL ⊆ dom U

with n+(L) = n andn−(L) = ∞ and, conversely, ifL ⊆ dom U is a closed

neutral subspace, thenn−(L) = ∞;

(b2) for everyn ∈ N, n ≤ NU , there exists a closed neutral subspaceL ⊆ dom U

with n+(L) = ∞ andn−(L) = n and, conversely, ifL ⊆ dom U is a closed

neutral subspace, thenn+(L) = ∞.

Proof. Let M ⊆ dom U be a hyper-maximal semi-definite subspace of{K1, [·, ·]1},
see Proposition 6.7, and w.l.o.g. assume thatM is a nonnegative subspace, i.e.
M = M[⊥]1 + M ∩ K+

1 . Next letK be the angular operator ofM[⊥]1 w.r.t. K−1 :

M[⊥]1 = {f− + Kf− : f− ∈ P−
1 M = K−1 }.

SinceK maps closed subspaces ofdom U ∩K−1 onto closed subspaces ofdom U ∩
K+

1 , becauseM[⊥]1 ⊆ M ⊆ dom U , the closed subspaceM∩K+
1 of dom U ∩K+

1 is
finite-dimensional ifU is of type Ia and infinite-dimensional ifU is of type Ib, see
Definition 8.2. Denote the dimension ofM ∩ K+

1 by d.

Clearly, there exists ann-dimensional (closed) subspaceD−
n of dom U ∩K−1 , where

n is as in the statement. NowL defined as

L = {f− + Kf− : f ∈ K−1 ª1 D−
n }

can be easily seen to satisfy the first condition in (a1) and (b1), becausen+(L) =

dim D−
n andn−(L) = dim(K(D−

n )) + dim(M ∩ K+
1 ) = dim D−

n + d. The second
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assertion in (a1) follows from the first assertion together with Proposition 8.7. For
the second assertion in (b1) note that by the first assertion thereindom U ∩ K−1
can only contain finite-dimensional closed subspaces, see Lemma 8.5. SinceU is
of type Ib, that implies thatdom U ∩ K+

1 must contain infinite-dimensional closed
subspace. Hence, Lemma 8.6 implies thatn−(L) = ∞ for any closed neutral
subspace which is contained in the domain ofU ; otherwiseU would be of type II.

Similar arguments show that (a2) and (b2) hold ifM is a nonpositive subspace.

In fact, from Lemma 8.15 below it follows that Proposition 8.8 yields a character-
ization of unitary relations of type Ia, but not of type Ib. Note also that Proposi-
tion 8.8 implies that ifU is a unitary relation of type I, thenU is of type Ia if and
only if there exists a closed neutral subspace in the domain ofU with finite defect
numbers. As a further consequence of Proposition 8.8, a characterization of unitary
relations of type I with strongly equal defect numbers is obtained.

Corollary 8.9. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} of type I.

Then equivalent are:

(i) U has strongly equal defect numbers;

(ii) there exists a closed neutral subspaceL ⊆ dom U of {K1, [·, ·]1} with finite

and equal defect numbers;

(iii) if L ⊆ dom U is a closed neutral subspace of{K1, [·, ·]1} with n+(L) < ∞
or n−(L) < ∞, thenn+(L) = n−(L).

Proof. The equivalences are all a direct consequence of Proposition 8.8, because all
the conditions imply thatU is of type Ia and thatd in Proposition 8.8 is zero.

Using Proposition 8.8, a block decomposition characterization of unitary operators
of type I can be obtained. That characterization shows that such unitary operators
are closely connected to compact operators, cf. (Calkin 1939a: Theorem 3.13).

Theorem 8.10.LetU be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let j2 be a fundamental symmetry of{K2, [·, ·]2}. ThenU is a unitary operator of

type Ia or Ib if and only if there exists a hyper-maximal semi-definite subspaceM

of {K2, [·, ·]2} with dim(M∩ j2M) < ∞, if U is of type Ia, ordim(M∩ j2M) = ∞,

if U is of type Ib, a closed operatorB in (the Hilbert space){M[⊥]2 , [j2·, ·]2} with

dom B = M[⊥]2 = ran B andker B = {0} such thatB−1 is a compact operator,
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and a bounded unitary operator from{K1, [·, ·]1} to {K2, [·, ·]2} with dom U ⊆
dom Ut such that

UU−1
t = Υ2(B)⊕ IM∩j2M.

In particular, U has strongly equal defect numbers if and only ifM ∩ j2M = {0}.

Proof. Clearly,U has the stated representation for a hyper-maximal semi-definite
subspaceM if and only if U is unitary, see Theorem 7.16. Therefore the first
statement is proven by observing that ifM is hyper-maximal nonnegative, then

dom (UU−1
t ) ∩ K+

2 = {f + j2f + g : f ∈ dom B andg ∈ M ∩ j2M};
dom (UU−1

t ) ∩ K−2 = {f − j2f : f ∈ dom B},
and ifM is hyper-maximal nonpositive, then

dom (UU−1
t ) ∩ K+

2 = {f + j2f : f ∈ dom B};
dom (UU−1

t ) ∩ K−2 = {f − j2f + g : f ∈ dom B andg ∈ M ∩ j2M}.

HereK+
2 [+]K−2 is the canonical decomposition of{K2, [·, ·]2} corresponding toj2.

The above equalities show thatU is of type I if and only ifdom B contains only
finite dimensional closed subspaces, i.e. if and only ifB−1 is a compact operator,
see e.g. (Calkin 1939a: Lemma 3.1). Moreover, the same equalities show thatU

is of type Ia or Ib if and only ifdim(M ∩ j2M) < ∞ or dim(M ∩ j2M) = ∞,
respectively. This proves the first part of the statement.

The necessity of the condition in the last equivalence in the statement is clear by
definition, because ifM ∩ j2M = {0}, thenU−1

t (j2M) is a hyper-maximal neutral
subspace of{K1, [·, ·]1} which is contained in the domain ofU . Conversely, assume
that U has strongly equal defect numbers andM ∩ j2M 6= {0}. Then by the
proven decompositionU−1

t (M[⊥]2) ⊆ dom U is a maximal neutral subspace of
{K1, [·, ·]1} which is not hyper-maximal neutral. Hence, Corollary 8.9 implies that
U does not have strongly equal defect numbers, which is in contradiction with the
assumption.

Note that ifU is a unitary operator of type I andM1 andM2 are two subspaces
such that the decomposition in Theorem 8.10 holds with respect to them, then
Proposition 8.7 implies thatdim(M1 ∩ j2M1) = dim(M2 ∩ j2M2). Furthermore,
if U is an unbounded unitary operator of type Ia, then Theorem 8.10 shows that
n+(ker U) = n−(ker U). If U is an unbounded operator of type Ib, thenker U need
not have equal defect numbers as the following example illustrates.

Example 8.11.Let B be an everywhere defined compact operator in the separable
(infinite-dimensional) Hilbert space{H, (·, ·)} with ker B = {0} andran B = H.
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Moreover, letU2 be a unitary operator in the Hilbert space{H, (·, ·)} and define
[·, ·] onK := H2 ×H by

[{f, f ′, f ′′}, {g, g′, g′′}] = i [(f, g′)− (f ′, g)] + (f ′′, g′′),

wheref, f ′, g, g′ ∈ H andf ′′, g′′ ∈ H. Then{K, [·, ·]} is a Krĕın space, cf. Exam-
ple 2.1. W.r.t. the decompositionH× H×H of K defineU as

U =




B−1 0 0

0 B∗ 0

0 0 U2


 .

ThenU is a unitary operator in{K, [·, ·]} with ker U = {0} and

n+(ker U) = dim(H) and n−(ker U) = dim(H) + dim(H). (8.2)

Now Theorem 8.10 implies thatU is a unitary operator of type Ib if and only ifH is
infinite-dimensional. Combining this with (8.2) shows thatU is a unitary operator
of type Ib withn+(ker U) = n−(ker U) if ∞ = dim(H) ≤ dim(H) and thatU is a
unitary operator of type Ib withn+(ker U) < n−(ker U) if dim(H) > dim(H).

Remark 8.12. Example 8.11 shows, in light of Lemma 3.11, that for every neutral
subspaceL in a Krĕın space{K1, [·, ·]1}with defect numbersn+(L) = ℵ0 = n−(L)

there exists an (unbounded) unitary operatorU (of type I) from {K1, [·, ·]1} to
{K2, [·, ·]2} such thatL = ker U and that there does not exist a hyper-maximal
neutral extension ofL which is contained in the domain ofU , cf. Corollary 7.29.

8.3 Unitary relations of type II

In this section two classes of unitary relations of type II are studied: Those with
strongly equal defect numbers and those without strongly equal defect numbers.
As in the preceding section, two characterization of these classes of unitary rela-
tions are given: First by means of the defect numbers of closed neutral subspaces
contained in their domain and, secondly, by specifying their block representation.

Proposition 8.13 below gives a characterization of unitary relations of type II with
strongly equal defect numbers among other things in terms of the closed neutral
subspaces contained in their domain.

Proposition 8.13. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} of

type II, let j1 be a fundamental symmetry of{K1, [·, ·]1} and letK+
1 [+]K−1 be the

associated canonical decomposition of{K1, [·, ·]1}. Then equivalent are:
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(i) U has strongly equal defect numbers;

(ii) for everyn± ∈ N there exists a closed neutral subspaceL ⊆ dom U such

thatn+(L) = n+ andn−(L) = n−;

(iii) there exists a closed neutral subspaceL ⊆ dom U of {K1, [·, ·]1} with finite

defect numbers;

(iv) there exist closed neutral subspacesL1 ⊆ dom U and L2 ⊆ dom U of

{K1, [·, ·]1} with n+(L1) < ∞ andn−(L2) < ∞;

(v) for every closed subspaceD+
1 ⊆ dom U ∩ K+

1 and every closed subspace

D−
1 ⊆ dom U ∩K−1 there exists a closed subspaceD+

1,a ⊆ dom U ∩K+
1 and a

closed subspaceD−
1,a ⊆ dom U ∩ K−1 such thatdim(D+

1 ) = dim(D−
1,a) and

dim(D−
1 ) = dim(D+

1,a);

(vi) for every hyper-maximal semi-definite subspaceM ⊆ dom U there exists a

closed subspaceD+
1 ⊆ dom U ∩ K+

1 and a closed subspaceD−
1 ⊆ dom U ∩

K−1 such thatdim(M ∩ j1M) ≤ dim D+
1 anddim(M ∩ j1M) ≤ dim D−

1 .

Proof. (i) ⇒ (ii): If U has strongly equal defect numbers, then there exists a hyper-
maximal neutral subspaceM ⊆ dom U of {K1, [·, ·]1}. Let K be the angular op-
erator ofM w.r.t. K+

1 : M = {f+ + Kf+ : f+ ∈ K+
1 }. ThenK is a unitary op-

erator from (the Hilbert space){K+
1 , [·, ·]1} onto (the Hilbert space){K−1 ,−[·, ·]1}.

SinceU is of type II, there exists an infinite-dimensional closed subspaceD+
1 ⊆

dom U ∩K+
1 and, hence,D−

1 := K(D+
1 ) ⊆ dom U ∩ K−1 is an infinite-dimensional

closed subspace of the same dimension asD+
1 . For everyn± ∈ N there exists a

closed isometric operatorV from (the Hilbert space){D+
1 , [·, ·]1} to (the Hilbert

space){D−
1 ,−[·, ·]1} such thatdim(dom V )⊥ = n− and dim(ran V )⊥ = n+.

Hence,L defined as

L = {f+ + Kf+ : f+ ∈ K+
1 ª1 D+

1 }+ {f+ + V f+ : f+ ∈ dom V }

is a closed neutral subspace contained indom U with n±(L) = n±.

(ii) ⇒ (iii) ⇒ (iv): These implications evidently hold.

(iv) ⇒ (v): Let D+
1 be a closed subspace ofdom U ∩ K+

1 and w.l.o.g. assume that
D+

1 is infinite-dimensional, because otherwise by the definition of type II there is
nothing to prove. Moreover, letL2 be a closed neutral subspace as in (iv) and let
K be its angular operator w.r.t.K+

1 : L2 = {f+ + Kf+ : f+ : P+
1 L2}. Since

n−(L2) = n− < ∞, D+
1 ∩ dom K is a subspace with the same dimension asD+

1

which is mapped onto a subspaceD−
1,a of K−1 of the same dimension, becauseK is a
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closed isometric operator between Hilbert spaces. Moreover,D−
1,a ⊆ dom U ∩ K−1 ,

becauseL2 ⊆ dom U . Since a similar reasoning can be used for subspacesD−
1 as

in (v), this shows that (v) holds.

(v) ⇒ (vi): This is evident from the fact that eitherM ∩ j1M ⊆ dom U ∩ K+
1 or

M ∩ j1M ⊆ dom U ∩ K−1 .

(vi) ⇒ (i): Let M ⊆ dom U be hyper-maximal semi-definite, see Proposition 6.7. If
M is hyper-maximal neutral, then there is nothing to prove. Hence, w.l.o.g., assume
thatM is hyper-maximal nonnegative, thenD+

1 := M ∩ j1M ⊆ dom U ∩ K+
1 is

a closed positive definite subspace of{K1, [·, ·]1} andM[⊥]1 is a hyper-maximal
neutral subspace of{K1 ª1 D+

1 , [·, ·]1}. Let K be the angular operator ofM[⊥]1

w.r.t. K+
1 ªD+

1 :

M[⊥]1 = {f+ + Kf+ : f+ ∈ P+
1 M[⊥]1}.

ThenK is a Hilbert space unitary operator from{K+
1 ª1D

+
1 , [·, ·]1} to{K−1 ,−[·, ·]1}.

Now by assumption there exists a closed subspaceD−
1,a ⊆ dom U ∩ K−1 such that

dim(D−
1,a) = dim(D+

1 ), if dim(D+
1 ) = ∞, or D−

1,a is infinite-dimensional, ifD+
1 is

finite-dimensional (note that here the fact thatU is of type II is used). SinceK is
a Hilbert space unitary operator,D+

1,a := K−1(D−
1,a) ⊆ dom U ∩ (K+

1 ªD+
1 ) is an

infinite-dimensional closed subspace with the same dimension asD−
1,a. Hence, by

construction,D+
1 +D+

1,a ⊆ dom U∩K+
1 is a closed subspace of the same dimension

asD−
1,a ⊆ dom U ∩ K−1 . Now let Ur be any Hilbert space unitary operator from

{D+
1 + D+

1,a, [·, ·]1} onto{D−
1,a,−[·, ·]1}. ThenL defined as

L = {f+ + Kf : f+ ∈ K+
1 ª1 (D+

1 + D+
1,a)}+ {f+ + Urf

+ : f+ ∈ D+
1 + D+

1,a}

is by construction a hyper-maximal neutral subspace such thatL ⊆ dom U .

The sixth characterization in Proposition 8.13 implies that in the separable case the
concepts of strongly equal defect numbers and equal defect numbers coincide for
unitary relations of type II. Recall that for unitary relations of type I this is not true,
see e.g. Example 8.11.

Corollary 8.14. LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} of type

II and assume thatn+(ker U) = ℵ0 = n−(ker U). ThenU has strongly equal defect

numbers.

Proof. Recall thatdom U∩K+
1 anddom U∩K−1 contain infinite-dimensional closed

subspaces, becauseU is of type II. Hence, the statement is a direct consequence
of the characterization (vi) in Proposition 8.13 together with the assumption that
n+(ker U) = n−(ker U) = ℵ0.
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The following statement shows that unitary relations of type II which do not have
strongly equal defect numbers have the same kind of closed neutral subspaces in
their domain as those of type Ib.

Lemma 8.15.LetU be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2} of type II

which does not have strongly equal defect numbers. Then either of the following

two alternatives holds:

(a) every hyper-maximal semi-definite subspace contained in the domain ofU is

nonnegative, for everyn+ ∈ N there exists a closed neutral subspaceL ⊆
dom U such thatn+(L) = n+ and n−(L) = ∞, and if L ⊆ dom U is a

closed neutral subspace, thenn−(L) = ∞;

(b) every hyper-maximal semi-definite subspace contained in the domain ofU is

nonpositive, for everyn− ∈ N there exists a closed neutral subspaceL ⊆
dom U such thatn−(L) = n− and n+(L) = ∞, and if L ⊆ dom U is a

closed neutral subspace, thenn+(L) = ∞.

Proof. Let j1 be a fundamental symmetry of{K1, [·, ·]1}, let K+
1 [+]K−1 be the as-

sociated canonical decomposition of{K1, [·, ·]1} and recall that the domain ofU
contains a hyper-maximal semi-definite subspaceM, see Proposition 6.7. Assume
thatM is hyper-maximal nonnegative, i.e.M ∩ j1M ⊆ dom U ∩ K+

1 . ThenM[⊥]1

is a hyper-maximal neutral subspace of{K1 ª1 (M ∩ j1M), [·, ·]1} and

gr Ua = gr U ∩ ((M ∩ j1M)[⊥]1 × (U(M ∩ j1M))[⊥]2)

is a unitary relation from the Kreı̆n space{K1 ∩ (M ∩ j1M)[⊥]1 , [·, ·]1} to the Krĕın
space{K2 ∩ (U(M ∩ j1M))[⊥]2 , [·, ·]2}, see Corollary 3.14, with strongly equal
defect numbers. Hence, Proposition 8.13 implies that for everyn+, n− ∈ N there
exists a closed neutral subspaceL ⊆ dom Ua of {K1 ª1 (M ∩ j1M), [·, ·]1} such
thatn+(L) = n+ andn−(L) = n−. NowL considered as a subspace of{K1, [·, ·]1}
has the defect numbersn+(L) = n+ andn−(L) = n− + dim(M ∩ j1M) = ∞.
Note that heredim(M∩ j1M) = ∞, becauseU does not have strongly equal defect
numbers, cf. Proposition 8.13. Finally, sincen+(M[⊥]) = 0, Proposition 8.13 (iv)
implies thatn−(L) = ∞ for every closed neutral subspaceL ⊆ dom U . This, in
particular, implies that every hyper-maximal semi-definite subspace contained in
the domain ofU is nonnegative.

The above arguments show that alternative (a) hold ifM is hyper-maximal non-
negative. Similar arguments show that alternative (b) holds ifM is hyper-maximal
nonpositive.
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The following two statements contain a characterization of unitary operators of type
II in terms of their associated diagonal block representation.

Theorem 8.16.LetU be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let j2 be a fundamental symmetry of{K2, [·, ·]2}. ThenU is a unitary operator

of type II with strongly equal defect numbers if and only if there exists a hyper-

maximal neutral subspaceM of {K2, [·, ·]2}, a closed operatorB in the Hilbert

space{M, [j2·, ·]2} with dom B = M = ran B andker B = {0} such thatB−1 is

a noncompact operator, and a bounded unitary operatorUt from {K1, [·, ·]1} onto

{K2, [·, ·]2} with dom U ⊆ dom Ut such that

UU−1
t = Υ2(B).

Proof. If U has the indicated representation, thenU is clearly a unitary operator
with strongly equal defect numbers, because the hyper-maximal neutral subspace
U−1

t (j2M) is contained in the domain ofU . Furthermore,Υ2(B), and hence also
U , is not of type I, becauseB−1 is not compact, see Theorem 8.10.

Conversely, assume thatU is a unitary operator and w.l.o.g. assume thatker U =

{0} and letK+
i [+]K−i be the canonical decomposition of{Ki, [·, ·]i} associated

with the fundamental symmetryji of {Ki, [·, ·]i}, for i = 1, 2. Moreover, re-
call that by Proposition 7.25 there exists a hyper-maximal semi-definite subspace
L ⊆ dom U of {K1, [·, ·]1} such thatU(L) is a hyper-maximal semi-definite sub-
space of{K2, [·, ·]2}. W.l.o.g. assume thatL = L[⊥]1 + (L∩ j1L) is hyper-maximal
nonnegative, i.e.L ∩ j1L ⊆ dom U ∩ K+

1 . Now let K be the angular operator of
L[⊥]1 ⊆ L w.r.t. toK+

1 :

L[⊥]1 = {f+ + Kf+ : f+ ∈ P+
1 L[⊥]1 = K+

1 ª1 (L ∩ j1L)}.
SinceL ∩ j1L ⊆ dom U ∩ K+

1 , U is of type II and has strongly equal defect num-
bers, there exists a closed subspaceD−

1 ⊆ dom U ∩ K−1 such thatdim(D−
1 ) = ∞,

if dim(L ∩ j1L) < ∞, or dim(D−
1 ) = dim(L ∩ j1L), if dim(L ∩ j1L) = ∞, see

Proposition 8.13. Since the angular operatorK is a closed isometric operator be-
tween Hilbert spaces,K−1(D−

1 ) ⊆ dom U ∩ K+
1 is a closed subspace of the same

dimension asD−
1 . Hence,D+

1 := K−1(D−
1 ) + L ∩ j1L ⊆ dom U ∩ K+

1 is a closed
subspace of the same dimension asD−

1 .

Consequently,Lr = L ∩ (D+
1 + D−

1 )[⊥]1 is a closed neutral subspace with defect
numbersn+(Lr) = dim(D+

1 ) = dim(D−
1 ) = n−(Lr) and

L[⊥]1
r = Lr ⊕1 D+

1 ⊕1 D−
1 = L + D−

1 ⊆ dom U.

Recall that by assumptionU(L) is a hyper-maximal nonnegative subspace and
that U(D−

1 ) is a closed uniformly definite subspace by Proposition 3.9. Hence,
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U(L
[⊥]1
r ) = U(L)+U(D−

1 ) is closed, because, clearly,(U(L))[⊥]2 +(U(D−
1 ))[⊥]2 =

K2, see Lemma 2.2. Moreover, sinceU(L) is by assumption a hyper-maximal semi-
definite subspace contained in the range ofU , one has

U(L[⊥]1
r )[⊥]2 = U(L + D−

1 )[⊥]2

= U(L)[⊥]2 ∩ U(D−
1 )[⊥]2

= U(L[⊥]1) ∩ U(D−
1 )[⊥]2

= U(L[⊥]1) ∩ U(D−
1 )[⊥]2 ∩ ran U

= U(L[⊥]1) ∩ U((D−
1 )[⊥]1 ∩ dom U)

= U(L[⊥]1 ∩ (D−
1 )[⊥]1) = U(Lr).

SinceU(L
[⊥]1
r ) = U(L) + U(D+

1 ) has been shown to be closed, the above calcula-
tion implies thatU(Lr) is closed and thatU(L

[⊥]1
r ) = U(Lr)

[⊥]2, i.e. U(Lr)
[⊥]2 =

U(Lr) + U(D+
1 ) + U(D−

1 ). From these observations it follows that any hyper-
maximal neutral extension ofLr, which exists becausedim(D+

1 ) = dim(D−
1 ),

is mapped onto a hyper-maximal neutral extension of the closed neutral subspace
U(Lr). Consequently, the stated representation holds by Theorem 7.16.

Using the above characterization for unitary operators of type II with strongly equal
defect numbers, one can easily obtain a characterization for unitary operators of
type II without strongly equal defect numbers.

Corollary 8.17. LetU be an isometric operator from{K1, [·, ·]1} to {K2, [·, ·]2} and

let j2 be a fundamental symmetry of{K2, [·, ·]2}. ThenU is a unitary operator of

type II without strongly equal defect numbers if and only if there exists a hyper-

maximal semi-definite subspaceM of {K2, [·, ·]2} such that eitherdim(D+
2 ) <

dim(M ∩ j2M) for every closed subspaceD+
2 of ran U ∩ K+

2 , or dim(D−
2 ) <

dim(M∩j2M), for every closed subspaceD−
2 of ran U∩K−2 , a closed operatorB in

the Hilbert space{M[⊥]2 , [j2·, ·]2} with dom B = M[⊥]2 = ran B andker B = {0}
such thatB−1 is a noncompact operator, and a bounded unitary operatorUt from

{K1, [·, ·]1} onto{K2, [·, ·]2} with dom U ⊆ dom Ut such that

UU−1
t = Υ2(B)⊕ IM∩j2M.

Proof. W.l.o.g. assume thatker U = {0}, then by Proposition 6.7 there exists a
hyper-maximal semi-definite subspaceM ⊆ ran U in {K2, [·, ·]2}. Now D2 :=

M ∩ j2M is a closed uniformly definite subspace of{K2, [·, ·]2} and, hence,D1 :=

U−1(M∩ j2M) is a closed uniformly definite subspace of{K1, [·, ·]1}, see Proposi-
tion 3.9. Therefore,̃U andÛ defined via

gr Ũ = gr U ∩ (D1 ×D2) and gr Û = gr U ∩ (K1 ∩D
[⊥]1
1 × K2 ∩D

[⊥]2
2 )
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are a standard unitary operator from{D1, [·, ·]1} to {D2, [·, ·]2} and a unitary op-
erator from{K1 ∩ D

[⊥]1
1 , [·, ·]1} to {K2 ∩ D

[⊥]2
2 , [·, ·]2} with strongly equal defect

numbers, respectively, see Lemma 3.13 and Corollary 3.14. Therefore the repre-
sentation in the statement can be obtained via Theorem 8.16. Finally, the conditions
on the dimension ofM ∩ j2M are a direct consequence of the fact thatU does not
have strongly equal defect numbers, cf. Proposition 8.13.

Conversely, ifU has the indicated representation, then by Theorem 8.10U is of type
II and the assumptions on the dimension ofM ∩ j2M imply thatU−1, and hence
alsoU , does not have strongly equal defect numbers, see Proposition 8.13.

Combining some of the above results it is possible to characterize when a unitary
relation has strongly equal defect numbers in the general case.

Corollary 8.18. Let U be a unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}. Then

equivalent are:

(i) U has strongly equal defect numbers;

(ii) there exists a closed neutral subspaceL ⊆ dom U in {K1, [·, ·]1} with finite

and equal defect numbers;

(iii) there exists a hyper-maximal neutral subspaceM in {K2, [·, ·]2}, a closed

operatorB in the Hilbert space{M, [j2·, ·]2} with dom B = M = ran B

andker B = {0}, and a bounded unitary operatorUt from {K1, [·, ·]1} onto

{K2, [·, ·]2} with dom U ⊆ dom Ut such that

UU−1
t = Υ2(B).

Proof. (i) ⇔ (ii): If U has strongly equal defect numbers, then by Definition 8.1,
there exists a hyper-maximal neutral subspaceL ⊆ dom U , i.e., (ii) holds. Con-
versely, if (ii) holds, andU is of type I or II, thenU has strongly equal defect
numbers by Corollary 8.9 or Proposition 8.13, respectively.

(i) ⇔ (iii): If (i) holds, then there exists a representation as in (iii) by Theorem 8.10,
if U is of type I, or by Theorem 8.16, ifU is of type II. Conversely, if (iii) holds, then
U−1

t (j2M) is a hyper-maximal neutral subspace of{K1, [·, ·]1} which is contained
in the domain ofU .
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9 SUMMARY

In order to obtain more insight into the properties and structure of unitary relations,
broadly speaking two approaches, and their interaction, to unitary (and isometric)
relations were presented in this dissertation. In the first approach the behavior of
unitary (and isometric) relations with respect to uniformly definite subspaces was
considered and in the second approach the behavior of unitary (and isometric) rela-
tions with respect to hyper-maximal semi-definite subspaces was considered. These
approaches were used to understand the difference between isometric and unitary
relations and, secondly, to investigate their essential mapping properties.

Weyl identity approach

In the first approach, presented mainly in Chapter 5, it was shown that unitary
relations are characterized by their behavior on uniformly definite subspaces and
that this characterization can be expressed by means of the Weyl identity. IfU is
unitary relation from{K1, [·, ·]1} to {K2, [·, ·]2}, then this identity is given by

U(dom U ∩ K+
1 ) = U(dom U ∩ K−1 )[⊥]2 . (9.1)

As a consequence of this identity, a known quasi-block representation for unitary
operators can be obtained. That representation was shown to be extendable to the
case of maximal isometric operators:V is a maximal isometric operator if and only
if there exists a unitary operatorUK with ker UK = {0} and a maximal isometric
operatorVt with closed domain andker Vt = ker V such that

V = UKVt. (9.2)

Note that if (9.2) holds, thenV is a unitary operator if and only ifVt is a unitary
operator. Since isometric operators with a closed domain have a relatively simple
geometrical behavior, (9.2) implies that certain properties of unitary operators (or
relations) also hold for maximal isometric relations.

The representation in (9.2) shows that in general (maximal) isometric operators (or
relations) can not be characterized by the Weyl identity (9.1), because that repre-
sentation implies that there exist maximal isometric operators (or relations)V such
thatdom V ∩ K+

1 = {0} or dom V ∩ K−1 = {0}. In fact, it can be shown that there
exist (non-maximal) closed isometric operatorsV with dense domain and range



124 Acta Wasaensia

such thatdom V ∩ K+
1 = {0} = dom V ∩ K−1 . I.e., isometric relations can in gen-

eral not be completely understood by considering only their behavior with respect
to uniformly definite subspaces. An exception to that case is provided by isomet-
ric operators whose domain is dense and contains a hyper-maximal semi-definite
subspace.

This Weyl identity approach to unitary relations was also used to give, based on the
work of J.W. Calkin, an expression for the defect numbers of the pre-image of a
neutral subspace under a unitary relation. Therein it was essential to compare the
angular operators of the subspace with the angular operators ofU(dom U∩K+

1 ) and
U(dom U ∩K−1 ). In particular, in that way conditions for the pre-image of a neutral
subspace under a unitary relation to be (hyper-)maximal neutral were obtained

Block representation approach

Secondly, the behavior of unitary (and isometric) relations with respect to hyper-
maximal semi-definite subspaces was investigated. In Chapter 6 a graph decom-
position characterization of unitary relations was presented, extending a domain
decomposition result of J.W. Calkin (1939a). That graph decomposition implied,
in particular, that the domain and range of a unitary relation always contain a hyper-
maximal semi-definite subspace. Note that by means of a simple example it was
shown that there exist densely defined (maximal) isometric relations whose do-
mains do not contain a hyper-maximal semi-definite subspace, see Example 5.10
and the discussion following it.

In the same chapter also some implications of the existence of a hyper-maximal
semi-definite subspace in the domain of an isometric relation were presented, but,
more importantly, the already mentioned graph decomposition was combined with
the Weyl identity approach to obtain necessary and sufficient conditions for an iso-
metric relation to be unitary and to give characterizations for the pre-image of a
neutral subspace to be (essentially) hyper-maximal neutral.

Using the above mentioned graph decomposition of unitary relations, in Chapter 7
the main contribution of this dissertation to the understanding of (unbounded) uni-
tary relations was presented. Namely, there it was shown that unitary operators
can be represented by means of operator block matrices. More specifically, it was
shown that unitary operators can be written as the composition of bounded uni-
tary operators, whose mapping behavior is easily understood, and two types of
unitary operators which have a simple block structure and reflect the possibly un-
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bounded behavior of unitary operators. Those latter unitary operators are the so-
called archetypical unitary operators, see Chapter 4.2. For a Kreı̆n space{K, [·, ·]}
with fundamental symmetryj which contains a hyper-maximal neutral subspace
M, these archetypical unitary operators have w.r.t. the decompositionM ⊕ jM of
K the block representation

(
I 0

ijK I

)
or

(
B 0

0 jB−∗j

)
, (9.3)

whereK is a selfadjoint operator in{M, [j·, ·]} andB is a closed operator inM
with dom B = M = ran B andker B = {0}.
Using the above mentioned representations for unitary operators simple proofs were
obtained for the main results from (Calkin 1939a), see Section 7.4. Moreover, in
Chapter 8 it was shown that the classification of unitary operators occurring in
(Calkin 1939a) can be characterized by the type of the operatorB appearing in the
archetypical unitary operator, see (9.3), which characterizes the unitary operator.
Note that in Chapter 8 also new characterizations and properties of the classifica-
tion of unitary operators from (Calkin 1939a) were presented and that most of the
statements proven in that chapter can directly be generalized to the case of isometric
relations which have a hyper-maximal semi-definite subspace in their domain.

Another manner in which archetypical unitary operators, and their compositions,
were used, was to give elementary examples of the behavior of unitary relations.
For instance, it was shown that a unitary relation may map a hyper-maximal neu-
tral subspace onto a neutral subspace with essentially arbitrary defect numbers and
that the domains of unitary relations can not be distinguished from the domains
isometric relations. I.e., isometric and unitary relations can only be distinguished
by their graphs (action). The block representations were also used to give different
necessary and sufficient conditions for an isometric relation to be (extendable to)
a unitary relation and, moreover, it was shown that they can be used to investigate
when the composition of a unitary and an isometric relation is (extendable to) a
unitary relation.

The above indicated block representation approach was not limited to the inves-
tigation of unitary operators. Namely, it was also shown that isometric operators
whose domain contains a hyper-maximal semi-definite subspace which is mapped
by the isometry to a subspace which is extendable to hyper-maximal semi-definite
subspace, can be represented as the composition of bounded unitary operators and
isometric operators having a block representation as in (9.3). That showed that such
isometric operators, which are the abstract equivalent of the class of quasi-boundary
triplets, see (Behrndt& Langer 2007), are closely related to unitary relations.
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A BOUNDARY TRIPLETS

Here it is shortly illustrated how the results obtained for isometric and unitary re-
lations can be applied to the different types of boundary triplets appearing in the
literature, see e.g. (Behrndt& Kreusler 2007; Behrndt& Langer 2007; Derkach
1995; Derkach& Hassi 2003; Derkach et al. 2006; 2009; Derkach& Malamud
1991; 1995; Mogilevskii 2006; 2011). Therefore in the first section some basic
results on symmetric relations in Kreı̆n spaces are recalled. In the second section
the various notions of boundary triplets occurring in the literature are recalled and
it is shown how they are connected to each other by archetypical isometric oper-
ators. In the third section this connection between the various types of boundary
triplets is lifted to their Weyl functions. Finally, in the fourth section an application
of the composition results obtained in Section 7.5 is presented. Namely, there it is
shown that the results on boundary triplets for intermediate extensions of symmet-
ric relations in a Hilbert space presented in (Derkach et al. 2009: Section 4) remain
without change valid in the Kreı̆n space setting.

A.1 Preliminaries for boundary triplets

The definition of symmetric and selfadjoint relations in Kreı̆n spaces are recalled
and those relations are via their graph connected to neutral and hyper-maximal
neutral subspaces of a Kreı̆n space. Moreover, hyper-maximal nonnegative and
nonpositive subspaces are shown to be interpretable as a special type of maximal
dissipative or accumulative relations, respectively, and, finally, some statements on
defect subspaces of relations are presented.

Symmetric relations in Kreı̆n spaces:A relationS in {K, [·, ·]} is calledsymmet-

ric or selfadjointif
S ⊆ S[∗] or S = S[∗],

respectively. A symmetric relation is calledmaximal symmetricif it has no sym-
metric extensions. For a symmetric relationS in {K, [·, ·]}, the notation̂Nλ(S

[∗]) is
used to denote its defect spaces:

N̂λ(S
[∗]) = {{fλ, λfλ} : fλ ∈ Nλ(S

[∗]) := ker (S[∗] − λ)}, λ ∈ C. (A.1)

Note that (2.6) implies that for a symmetric relationS

ker S ⊆ ker S[∗] = (ran S)[⊥] and mul S ⊆ mul S[∗] = (dom S)[⊥]. (A.2)
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In particular, the adjoint of a densely defined symmetric operator is an operator.

For a Krĕın space{K, [·, ·]} define the operatorjK onK2 as

jK{f, f ′} = i{−f ′, f}. (A.3)

Clearly, if j is a fundamental symmetry of{K, [·, ·]}, thenjK(j× j) = (j× j)jK. As a
consequence of this observation it follows that{K2, [jK·, ·]} is a Krĕın space. This
introduced Krĕın space can be used to connect symmetric and selfadjoint relations
to neutral and hyper-maximal neutral subspaces, respectively.

Proposition A.1. Let{K, [·, ·]} be a Krĕın space, letjK be as in(A.3) and let¿⊥À
denote the orthogonal complement of a subspace ofK2 w.r.t. [jK·, ·]. Then for any

relationH in {K, [·, ·]}
(gr H)¿⊥À = gr H [∗].

In particular,S is a (closed, maximal) symmetric or selfadjoint relation in{K, [·, ·]}
if and only ifgr S is a (closed, maximal) neutral or hyper-maximal neutral subspace

of {K2, [jK·, ·]}, respectively.

Proof. Since the final statements follow essentially from(gr H)¿⊥À = gr H [∗],
only that equality will be proven. By definition{f, f ′} ∈ (gr H)¿⊥À if and only if

0 = [jK{f, f ′}, {g, g′}] = [i{−f ′, f}, {g, g′}] = i ([f, g′]− [f ′, g]) ,

for all {g, g′} ∈ gr H. By definition this implies that{f, f ′} ∈ (gr H)¿⊥À if and
only if {f, f ′} ∈ gr H [∗].

Next recall that there exists a direct connection between symmetric relations in
Hilbert spaces and symmetric relations in Kreı̆n spaces by means of a fundamental
symmetry of the Krĕın space, see (Behrndt et al. 2011a).

Proposition A.2. Let j be a fundamental symmetry of{K, [·, ·]} and let{H, (·, ·)}
be the Hilbert space{K, [j·, ·]}. ThenUj defined as

Uj{f, f ′} = {f, jf ′}, f, f ′ ∈ K

is a standard unitary operator from the Kreı̆n space{K2, [jK·, ·]} to the Krĕın space

{H2, (jH·, ·)}. Moreover, ifK is a relation inK andH is the relation inH such that

gr H = Uj(gr K), then

Uj(gr K [∗]) = gr H∗.

In particular, Uj establishes a bijective correspondence between the (closed, max-

imal) symmetric and selfadjoint relations in{K, [·, ·]} and the (closed, maximal)

symmetric and selfadjoint relations in{H, (·, ·)}, respectively.
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Using Proposition A.2 the defect numbers of a symmetric relationS in the Krĕın
space{K, [·, ·]} are defined to be the defect numbers of the symmetric relationSh,
defined viagr Sh = Uj(gr S), in the Hilbert space{K, [j·, ·]}, see (A.6) below.

Symmetric relations in Hilbert spaces:Next shortly the main difference between
symmetric relations in Krĕın spaces and Hilbert spaces is recalled. Namely, in the
Hilbert space case the defect spacesN̂λ(S

∗) of the symmetric relationS are, outside
the real line, uniformly definite whilst in the Kreı̆n space case they are in general
not. In particular, for a Hilbert space{H, (·, ·)}, defineH+

λ = {{f, λf} : f ∈ H}
andH−

λ = {{f, λf} : f ∈ H}, for λ ∈ C+. Then a direct calculation shows that
H+

λ +H−
λ is a canonical decomposition of{H2, (jH·, ·)}. Evidently, for a symmetric

relationS in {H, (·, ·)}

N̂λ(S
∗) = gr S∗ ∩ H+

λ and N̂λ(S
∗) = gr S∗ ∩ H−

λ , λ ∈ C+. (A.4)

Observe also thatH+
i + H−

i is the canonical decomposition of{H2, (jH·, ·)} corre-
sponding tojH as in (A.3). The above observations together with Proposition A.1
and (2.4) shows that for a symmetric relationS in {H, (·, ·)} the first von Neumann
formula holds:

gr S∗ = gr S+̇N̂λ(S
∗)+̇N̂λ̄(S

∗), λ ∈ C+. (A.5)

The defect numbersn+(S) andn−(S) for S are in this case defined as usual:

n+(S) = dim N̂λ̄(S
∗) and n−(S) = dim N̂λ(S

∗), λ ∈ C+. (A.6)

Defect subspaces and dissipative relations:Recall that Proposition 2.20 implies
that a relationA is a (closed, maximal) dissipative or accumulative relation if
and only if gr A is a (closed, maximal) nonnegative or nonpositive subspace of
{K2, [jK·, ·]}, respectively. As a generalization of these concepts, a dissipative or
accumulative relationA is calledhyper-maximal dissipativeor hyper-maximal ac-

cumulativeif gr A is a hyper-maximal nonnegative or nonpositive subspace, respec-
tively. Proposition A.3 below contains a property of hyper-maximal dissipative and
accumulative relations in the Hilbert space case.

Proposition A.3. LetA be a hyper-maximal dissipative (accumulative) relation in

the Hilbert space{H, (·, ·)}. Then

(i) C− ⊆ ρ(A) (C+ ⊆ ρ(A));

(ii) ran (A− λ) = H for λ ∈ C+ (λ ∈ C−).



132 Acta Wasaensia

Proof. For λ ∈ C+ definePλ on H2 asPλ{f, f ′} = 1
λ−λ

{λf − f ′, λ(λf − f ′)}.
Then a direct calculation shows that

ker Pλ = {{f, λf} : f ∈ H} and ran Pλ = {{f, λf} : f ∈ H}.

Moreover, withH+
λ := ker Pλ andH−

λ := ran Pλ, H+
λ + H−

λ is a canonical decom-
position of{H2, (jH·, ·)} with associated projectionsI − Pλ = Pλ andPλ.

Now assume w.l.o.g. thatA is a hyper-maximal dissipative relation, i.e.gr A is
a hyper-maximal nonnegative subspace of{H2, (jH·, ·)}. ThenP+(gr A) = K+,
P−(gr A) = K− andP−((gr A)<⊥>) = P−(gr A∗) = K− for any canonical de-
compositionK+ + K− of {H2, (jH·, ·)} with associated projectionsP+ andP−, see
Section 2.2. Hence, by takingK+ andK− asH+

λ andH−
λ as above, the aforemen-

tioned conditions become:

{{f, λf} : f ∈ H} = ran Pλ = Pλgr A = {{f, λf} : f ∈ ran (A− λ)};
{{f, λf} : f ∈ H} = ran Pλ = Pλgr A = {{f, λf} : f ∈ ran (A− λ)};
{{f, λf} : f ∈ H} = ran Pλ = Pλgr A∗ = {{f, λf} : f ∈ ran (A∗ − λ)}.

In other words,ran (A − λ), ran (A − λ) andran (A∗ − λ) = (ker (A − λ))⊥ are
all equal toH. This shows that the statement holds.

In particular, by means of the canonical decomposition in the above proof it follows
that if A is a hyper-maximal dissipative or accumulative relation, then

gr A = gr A∗ + N̂λ(A), λ ∈ C+, or gr A = gr A∗ + N̂λ(A), λ ∈ C−,

respectively, see Proposition 2.9 (iii).

Next a special case of Proposition 2.13 is presented, which in particular shows
that if a relation extends a hyper-maximal dissipative or accumulative relation in
a Hilbert space, then the graph of the extension can be decomposed with respect
to the dissipative or accumulative relation. Note further that the first assertion in
Corollary A.4 also follows easily from direct arguments; see e.g. (Hassi et al. 2007:
Lemma 1.4).

Corollary A.4. LetH andA be relations in{K, [·, ·]} such thatA ⊆ H. Then

ran (H − λ) = ran (A− λ) if and only if gr H = gr A + N̂λ(H), λ ∈ C.

Furthermore, ifρ(A) ∩ (C \ R) 6= ∅, then forλ ∈ ρ(A) ∩ (C \ R) the following

statements hold:

(i) H is closed if and only ifNλ(H) is closed;
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(ii) Nλ(H) is dense inNλ(clos H).

Proof. For λ ∈ ρ(A) ∩ (C \ R) define the projectionPλ on K2 asPλ{f, f ′} =
1

λ−λ
{λf−f ′, λ(λf−f ′)}. Then a direct calculation shows thatker Pλ = {{f, λf} :

f ∈ K} andran Pλ = {{f, λf} : f ∈ K} and thatK2 = ker Pλ ¿ + À ran Pλ,
i.e. Pλ is an orthogonal projection in the Kreı̆n space{K2, [jK·, ·]}. Moreover,

Pλgr A = {{f, λf} : f ∈ ran (A− λ)};
(I − Pλ)(gr A)¿⊥À = Pλ(gr A[∗]) = {{f, λf} : f ∈ ran (A[∗] − λ)},

see Proposition A.1. Since by assumptionλ ∈ ρ(A), the above equalities imply
thatPλ(gr A) = ran Pλ and(I − Pλ)(gr A)¿⊥À = ker Pλ. Hence, the statement is
now a direct consequence of Corollary 2.14.

Next it is shown how the defect subspaces ofH are holomorphically connected,
cf. (Derkach et al. 2006: Proposition 4.1). In particular, this observation explains
why the Weyl function of a (quasi-)boundary triplet is a holomorphic function, see
Section A.3,

Lemma A.5. LetH andA be relations in{K, [·, ·]} and letλ, µ ∈ C. Then

N̂λ(H) ⊆ gr A + N̂µ(H) ⇐⇒ Nλ(H) ⊆ (I + (λ− µ)(A− λ)−1)Nµ(H).

In particular, gr A + N̂λ(H) = gr A + N̂µ(H) if and only if

Nλ(H) = (I + (λ− µ)(A− λ)−1)Nµ(H).

Proof. Assume that̂Nλ(H) ⊆ gr A + N̂µ(H), then for everyfλ ∈ Nλ(H) there
exists anfµ ∈ Nµ(H) such that

{fλ − fµ, λfλ − µfµ} = {fλ, λfλ} − {fµ, µfµ} ∈ gr A.

I.e,, {fλ − fµ, (λ − µ)fµ} ∈ gr (A − λ) or, equivalently,{(λ − µ)fµ, fλ − fµ} ∈
gr ((A− λ)−1). From this the inclusionNλ(H) ⊆ (I + (λ− µ)(A− λ)−1)Nµ(H)

follows (note that(A − λ)−1 need not be an operator). The converse implication
in the first equivalence can be proven by reversing the above arguments and the
second equivalence follows from the first equivalence by symmetry.

In particular, ifU is an isometric relation from{H2, (jH·, ·)} to {H2, (jH·, ·)}, S and
T are the relations such thatgr S = ker U andgr T = dom U , and there exists a
hyper-maximal dissipative relationA such thatS ⊆ A ⊆ T , thenA∗ ⊆ A and by
Proposition A.3 combined with Corollary A.4

gr T = gr A+̇N̂λ(T ), λ ∈ C−, and gr T = gr A∗+̇N̂λ(T ), λ ∈ C+.
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Therefore for such isometric operators

Nλ(T ) = (I + (λ− µ)(A∗ − λ)−1)Nµ(T ), λ, µ ∈ C+;

Nλ(T ) = (I + (λ− µ)(A− λ)−1)Nµ(T ), λ, µ ∈ C−.
(A.7)

If A is a hyper-maximal accumulative relation, then a similar result holds, and if
A is hyper-maximal dissipative and accumulative at the same time, i.e. ifA is
selfadjoint, then

Nλ(T ) = (I + (λ− µ)(A− λ)−1)Nµ(T ), λ, µ ∈ C \ R. (A.8)

A.2 Basic properties of boundary triplets

Here the various notions of boundary triplets occurring in the literature are recalled
and it is shown how they can be interpreted as unitary or isometric operators.

Ordinary boundary triplets: First the definition of an ordinary (or standard)
boundary triplet is presented, see (Gorbachuk& Gorbachuk 1991: Ch 3: Section
1.4) and (Derkach 1995: Definition 2.1).

Definition A.6. LetS be a closed symmetric operator in{K, [·, ·]}with dom S = K.
Then the triplet{H, Γ0, Γ1}, where{H, (·, ·)} is a Hilbert space andΓi : K → H is
a linear operator fori = 0, 1, is called anordinary boundary tripletfor S[∗] if

(i) the Lagrange identity (or Greens identity) holds: For everyf, g ∈ dom S[∗]

[S[∗]f, g]− [f, S [∗]g] = (Γ1f, Γ0g)− (Γ0f, Γ1g);

(ii) the mappingΓ : {f, S [∗]f} → {Γ0f, Γ1f} from gr S[∗] toH2 is surjective.

SinceS is a symmetric operator,gr S[∗] = (gr S)¿⊥À, see Proposition A.1. There-
fore Definition A.6 implies that

ker Γ = gr S = (gr S[∗])¿⊥À = (dom Γ)¿⊥À. (A.9)

Using the operatorsjK and jH for K2 andH2 as defined in (A.3) condition (i) is
saying thatΓ defined asΓ : {f, S∗f} ⊆ K2 → {Γ0f, Γ1f} is an isometric operator
from the Krĕın space{K2, [jK·, ·]} to the Krĕın space{H2, (jH·, ·)}. Combining
that observation with (A.9) and the assumption thatΓ is surjective yields thatΓ is a
bounded unitary operator from{K2, [jK·, ·]} onto{H2, (jH·, ·)}, see Corollary 4.4.
In fact, sincegr S[∗] is a closed subspace of{K2, [jK·, ·]}, that statement shows that
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condition (ii) can be weakened toran Γ = H2. Also the condition thatdom S = K,
i.e. thatS[∗] is an operator, can be dropped without difficulties. By means of these
observations the following more general definition of an ordinary boundary triplet
is obtained, cf. (Derkach& Malamud 1995: Definition 1.6).

Definition A.7. Let S be a closed symmetric relation in{K, [·, ·]}. Then the triplet
{H, Γ0, Γ1}, where{H, (·, ·)} is a Hilbert space andΓi : K2 → H is a linear
operator fori = 0, 1, is called anordinary boundary tripletfor S[∗] if

(i) the Lagrange identity (or Greens identity) holds: For every{f, f ′}, {g, g′} ∈
gr S[∗]

[f ′, g]− [f, g′] = (Γ1{f, f ′}, Γ0{g, g′})− (Γ0{f, f ′}, Γ1{g, g′});

(ii) the mappingΓ : {f, f ′} → {Γ0{f, f ′}, Γ1{f, f ′}} from gr S[∗] toH2 is sur-
jective.

Note that ifH++H− is a canonical decomposition of{H2, (jH·, ·)}, thendim H+ =

dim H−. Hence, Corollary 6.5 implies that there exist ordinary boundary triplets
only for symmetric relations with equal defect numbers.

Generalized boundary triplets: Next a generalization of the ordinary boundary
triplet is presented, the so-called generalized boundary triplet, see (Derkach&

Malamud 1995: Definition 6.1); note that here the Kreı̆n space analogue of that
definition is stated.

Definition A.8. Let S be a closed symmetric relation in{K, [·, ·]}. Then the triplet
{H, Γ0, Γ1}, where{H, (·, ·)} is a Hilbert space andΓi : K2 → H is a linear
operator fori = 0, 1, is called ageneralized boundary tripletfor S[∗] if

(i) dom Γ = gr S[∗] and the Lagrange identity (or Greens identity) holds: For
every{f, f ′}, {g, g′} ∈ dom Γ

[f ′, g]− [f, g′] = (Γ1{f, f ′}, Γ0{g, g′})− (Γ0{f, f ′}, Γ1{g, g′});

(ii) ran Γ0 = H andker Γ0 is the graph of a selfadjoint relation in{K, [·, ·]}.

Again, the first condition in Definition A.8 implies thatΓ defined asΓ : {f, f ′} ∈
dom Γ ⊆ K2 → {Γ0{f, f ′}, Γ1{f, f ′}} is an isometric operator from the Kreı̆n
space{K2, [jK·, ·]} to the Krĕın space{H2, (jH·, ·)} and the second condition im-
plies thatΓ is a unitary operator from{K2, [jK·, ·]} to {H2, (jH·, ·)}, see Theo-
rem 7.19. Note that if the triplet{H, Γ0, Γ1} is a generalized boundary triplet for
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S[∗], then by (the second part of) Theorem 7.19 there exists an ordinary boundary
triplet {H, Γo

0, Γ
o
1} for S[∗], a bounded selfadjoint operatorK in {H, (·, ·)} and a

closed operatorB in {H, (·, ·)} with dom B = H = ran B andker B = {0} such
that (

Γ0

Γ1

)
=

(
B 0

KB B−∗

)(
Γo

0

Γo
1

)
. (A.10)

Conversely, if a triplet{H, Γ0, Γ1} has the above representation, then direct argu-
ments show that it is a generalized boundary triplet.

Remark A.9. Since a generalized boundary triplet can be interpreted as a unitary
operator, a generalized boundary triplet is said to be of type Ia, type Ib or type II
if its interpretation as a unitary operator is of type Ia, type Ib or type II, respec-
tively. In fact every generalized boundary triplet can only be of type Ia or type II
(with strongly equal defect numbers), because by definition there exists a hyper-
maximal neutral subspace in the domain of every generalized boundary triplet,
see Corollary 8.18. Since composition with bounded unitary operators does not
change the type of a unitary relation, (A.10) shows that a generalized boundary
triplet {H, Γ0, Γ1} with the representation (A.10) is of type I if and only ifB−1 is a
compact operator, cf. Theorem 8.10.

Unitary boundary triplets: As a further generalization of generalized boundary
triplets, the notion of a unitary boundary triplet for the adjoint of a symmetric rela-
tion S was introduced, see (Derkach et al. 2006: Definition 3.1) and (Behrndt et al.
2011a: Definition 3.1).

Definition A.10. Let S be a closed symmetric linear relation in{K, [·, ·]}. Then the
triplet {H, Γ0, Γ1}, where{H, (·, ·)} is a Hilbert space andΓi : K2 → H is a linear
operator fori = 0, 1, is called aunitary boundary tripletfor S[∗] if

(i) dom Γ = gr S[∗] and the Lagrange identity (or Greens identity) holds: For
every{f, f ′}, {g, g′} ∈ dom Γ

[f ′, g]− [f, g′] = (Γ1{f, f ′}, Γ0{g, g′})− (Γ0{f, f ′}, Γ1{g, g′});

(ii) if g, g′ ∈ H andk, k′ ∈ H are such that

[f ′, g]− [f, g′] = (Γ1{f, f ′}, k)− (Γ0{f, f ′}, k′), ∀{f, f ′} ∈ dom Γ,

then{g, g′} ∈ dom Γ and{k, k′} = Γ{g, g′} = {Γ0{g, g′}, Γ1{g, g′}}.



Acta Wasaensia 137

The first condition in Definition A.8 implies thatΓ defined asΓ : {f, f ′} ∈
gr T ⊆ K2 → {Γ0{f, f ′}, Γ1{f, f ′}} is an isometric operator from the Kreı̆n space
{K2, [jK·, ·]} to the Krĕın space{H2, (jH·, ·)} and the second condition implies that
Γ is a unitary operator from{K2, [jK·, ·]} to {H2, (jH·, ·)}, see Proposition 3.1. Con-
sequently, the condition thatdom Γ = gr S[∗] implies thatker Γ = gr S, see Propo-
sition A.1 and (3.4). As in the preceding cases, unitary boundary triplets only exist
for symmetric relation with equal defect numbers. For symmetric relations with
unequal defect numbers boundary relations or D-boundary triplets are needed, see
(Derkach et al. 2006: Proposition 3.7) or (Mogilevskii 2006), respectively.

Corollary 7.17 implies that{H, Γ0, Γ1} is a unitary boundary triplet forS[∗], where
the symmetric relationS has strongly equal defect numbers, if and only if there
exists an ordinary boundary triplet{H, Γo

0, Γ
o
1}, a closed operatorB in {H, (·, ·)}

with dom B = H = ran B andker B = {0}, and a standard unitary operatorUa in
{H2, (jH·, ·)} such that

(
Γ0

Γ1

)
= Ua

(
B 0

0 B−∗

)(
Γo

0

Γo
1

)
. (A.11)

Note also that Corollary 7.21 shows that{H, Γ0, Γ1} is a unitary boundary triplet
for S[∗] such thatker Γ0 is the graph of a selfadjoint relation in{K, [·, ·]} if and only
if there exists an ordinary boundary triplet{H, Γo

0, Γ
o
1}, an operatorB in {H, (·, ·)}

with dom B = H = ran clos (B) andker clos (B) = {0}, and a selfadjoint operator
K in {H, (·, ·)} with dom K = ran B such that

(
Γ0

Γ1

)
=

(
B 0

KB B−∗

)(
Γo

0

Γo
1

)
. (A.12)

Quasi-boundary triplet: In (Behrndt& Langer 2007: Definition 2.1) the concept
of an ordinary boundary triplet for the adjoint of a symmetric relation in a Hilbert
space was generalized to the concept of a quasi-boundary triplet; below the natural
generalization to the Kreı̆n space case is presented.

Definition A.11. Let S be a closed symmetric relation in{K, [·, ·]}. Then the triplet
{H, Γ0, Γ1}, where{H, (·, ·)} is a Hilbert space andΓi : K2 → H is a linear
operator fori = 0, 1, is called aquasi-boundary tripletfor S[∗] if

(i) dom Γ = gr S[∗] and the Lagrange identity (or Greens identity) holds: For
every{f, f ′}, {g, g′} ∈ dom Γ

[f ′, g]− [f, g′] = (Γ1{f, f ′}, Γ0{g, g′})− (Γ0{f, f ′}, Γ1{g, g′});



138 Acta Wasaensia

(ii) ker Γ0 is the graph of a selfadjoint relation in{K, [·, ·]};

(iii) ran Γ = H2, whereΓ : {f, f ′} ∈ dom U → {Γ0{f, f ′}, Γ1{f, f ′}}.

Condition (i) in Definition A.11 implies thatΓ is an isometric operator from the
Krĕın space{K2, [jK·, ·]} to the Krĕın space{H2, (jH·, ·)}. Conditions (ii) and (iii)
do not guaranty thatΓ is a unitary operator as the following example shows.

Example A.12. Let {H, (·, ·)} be a Hilbert space and letT be a symmetric operator
in {H, (·, ·)} with dom T = H which is not a selfadjoint operator. Then define the
linear operatorΓ in {H2, (jH·, ·)} as

Γ =

(
I 0

T I

)
,

where the block representation ofΓ is w.r.t. the decompositionH × H of H2.
Then a direct calculation shows that{H, Γ0, Γ1}, whereΓ0 = PH×{0}Γ andΓ1 =

P{0}×HΓ, is a quasi-boundary triplet forS∗, wheregr S∗ = H × H. Moreover,Γ
is (extendable to) a unitary operator in{H2, (jH·, ·)} if and only if T is (extendable
to) a selfadjoint operator, see Proposition 4.8.

Like Definition A.10, Definition A.11 can be extended by allowingΓ to be a rela-
tion. In that case condition (iii) should be replaced by the condition thatmul Γ =

(ran Γ)<⊥>, where<⊥> is the orthogonal complement inH2 w.r.t. (jH·, ·). The
conditions (ii) and (iii) in Definition A.11 imply thatker Γ = (dom Γ)¿⊥À, where
¿⊥À is the orthogonal complement w.r.t.[jK·, ·], see Lemma 6.1 and Proposi-
tion A.1. Therefore, as for boundary triplets,ker Γ = gr S. Note further that if
{H, Γ0, Γ1} is a quasi-boundary triplet forS[∗], then also{H, clos (Γ0), clos (Γ1)}
is a quasi-boundary triplet forS[∗].

Theorem 7.9 implies that{H, Γ0, Γ1} is a quasi-boundary triplet forS[∗] if and only
if there exists an ordinary boundary triplet{H, Γo

0, Γ
o
1} for S[∗], an operatorB in

{H, (·, ·)}with dom B = H = ran clos (B) andker clos (B) = {0}, and a symmet-
ric operatorT in {H, (·, ·)}with dom T = ran B anddom T ∗∩mul clos (B) = {0}
such that (

Γ0

Γ1

)
=

(
B 0

TB B−∗

)(
Γo

0

Γo
1

)
. (A.13)

In particular,{H, Γ0, Γ1} is extendable to a unitary boundary triplet if and only if
T is extendable to a selfadjoint operator, see Proposition 7.3 and Remark 7.10 (i).
I.e., the following necessary and sufficient conditions for a quasi-boundary triplet
to be (extendable to) a unitary boundary triplet hold.
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Proposition A.13. Let S be a closed and symmetric relation in{K, [·, ·]} and let

{H, Γ0, Γ1} be a quasi-boundary triplet forS[∗]. Then{H, Γ0, Γ1} is (extendable

to) a unitary boundary triplet forS[∗] if and only ifΓ(jker Γ0∩dom Γ) is (extendable

to) a hyper-maximal neutral subspace of{H2, (jH·, ·)} for some (and hence for

every) fundamental symmetryj of {K2, [jK·, ·]}.

The characterization of quasi-boundary triplets in (A.13) shows that they are very
closely connected to generalized boundary triplets, the following statement makes
that connection precise. Therefore note that for a symmetric relationS in (the
Hilbert space){H, (·, ·)} and a relationB in {H, (·, ·)}, the archetypical isometric
relationsΥ1(S) andΥ2(B) in {H2, (jH·, ·)} take the form

Υ1(S){f, g} = {f, Sf + g}, f ∈ dom S, g ∈ M;

Υ2(B){f, g} = {Bf,B−∗g}, f ∈ dom B, g ∈ ran B∗.

cf. Section 4.2. In particular, ifΥ1(S) andΥ2(B) are operators, then w.r.t. the
decompositionH×H of H2, they have the following block representation:

Υ1(S) =

(
I 0

S I

)
and Υ2(B) =

(
B 0

0 B−∗

)
,

Proposition A.14. Let {H, Γq
0, Γ

q
1} be a quasi-boundary triplet for the adjoint of

the closed symmetric relationS in {K, [·, ·]}. Then there exists a boundary relation1

{H, Γ} for S[∗] withH×{0} ⊆ ran Γ andker Γ0 = (ker Γ0)
¿⊥À, and a symmetric

operator T in {H, (·, ·)} with dom T = H and dom T ∗ ∩ mul Γ0 = {0} such

that Γq = Υ1(T )Γ. Conversely, ifT andΓ are as above, then{H, Γq
0, Γ

q
1}, where

Γq
0 = PH×{0}Υ1(T )Γ and Γq

1 = P{0}×HΥ1(T )Γ, is a quasi-boundary triplet for

S[∗].

Proof. For the direct part recall that by Theorem 7.9 there exists an operatorB in
{H, (·, ·)} with dom B = H = ran clos (B) andker clos (B) = {0}, a symmet-
ric operatorT in {H, (·, ·)} with dom T = ran B anddom T ∗ ∩ mul clos (B) =

{0}, and a bounded unitary operatorΓ from {K2, [jK·, ·]} onto {H2, (jH·, ·)} with
dom Γq ⊆ dom Γ such that

Γq =

(
Γq

0

Γq
1

)
= Υ1(T )Υ2(B)Γ.

Consequently,Γ := Υ2(clos (B))Γ satisfies the stated conditions.

1A boundary relation is a unitary boundary triplet which is allowed to be multi-valued, see
(Derkach et al. 2006: Definition 3.1).
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To prove the converse note that by the assumptions onΓ, mul Γ ⊆ H × {0}. Con-
sequently, arguments as in Theorem 7.19 show that there exists a closed relationB

in {H, (·, ·)} with dom B = H = ran B andker B = {0}, a bounded selfadjoint
operatorK in {H, (·, ·)} and a standard boundary triplet{H, Γo

0, Γ
o
1} such that

Γ = Υ1(K)Υ2(B)

(
Γo

0

Γo
1

)
.

Consequently, (
Γq

0

Γq
1

)
= Υ1(T + K)Υ2(B)

(
Γo

0

Γo
1

)
,

where the righthand side is an operator as a consequence of the assumption that
dom T∩mul Γ0 = {0}. Clearly,ker Γq

0 = Γ−1({0}×H) is the graph of a selfadjoint
relation in{K, [·, ·]} and ran Γq = H2 as a consequence of the assumption that
dom T ∗ ∩mul Γ0 = {0}, see Step 3 of the proof of Theorem 7.9.

Note that if the symmetric operatorT in Proposition A.14 has equal defect numbers,
then the quasi-boundary triplet can be extended to a unitary boundary triplet, see
e.g. Proposition 7.3

A.3 Weyl functions of boundary triplets

Here the Weyl function of boundary triplets for the adjoint of a symmetric relation
in a Hilbert space are shortly described and, in particular, it is shown how each Weyl
function is the transformation of a bounded and boundedly invertible Nevanlinna
function. Therefore recall first that by means of eigenspaces, see (A.1), a Weyl
family can be associated with boundary triplets, see (Derkach et al. 2006; Behrndt
& Langer 2007; Behrndt et al. 2011a).

Definition A.15. Let S be a closed symmetric relation in the Kreı̆n space{K, [·, ·]},
let {H, Γ0, Γ1} be a unitary boundary triplet or a quasi-boundary triplet forS[∗] and
let T be the relation in{K, [·, ·]} such thatgr T = dom U . Then theWeyl family

associated withΓ is the operator-valued functionM(λ) defined forλ ∈ C via

gr (M(λ)) = Γ(N̂λ(T )) = {{Γ0{fλ, λfλ}, Γ1{fλ, λfλ}} : {fλ, λfλ} ∈ N̂λ(T )},

or, equivalently,

M(λ) = Γ1(Γ0 ¹bNλ(T ))
−1, λ ∈ C.
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Recall also the definition of the so-called Nevanlinna family, see (Derkach et al.
2006: Section 2.6).

Definition A.16. A family of linear relationsM(λ), λ ∈ C \ R, in {H, (·, ·)} is
called aNevanlinna familyif it has the following properties:

(i) for everyλ ∈ C+ (C−) the relationM(λ) is maximal dissipative (resp. accu-
mulative);

(ii) M(λ)∗ = M(λ), λ ∈ C \ R;

(iii) for some, and hence for all,µ ∈ C− (C−) the operator family(M(λ)− µ)−1

is an everywhere defined operator function which depends holomorphically
onλ for λ ∈ C+ (C−).

With this definition it can easily be seen that every Weyl family of a boundary re-
lation for the adjoint of a symmetric relation in a Hilbert space is a Nevanlinna
function, i.e., a Nevanlinna family whose values are operators. Namely the condi-
tions (i) and (ii) are satisfied as a consequence of Proposition 5.1, Proposition A.1
and (A.4). In light of the fact that(M(λ)− µ)−1 is everywhere defined forλ ∈ C+

andµ ∈ C−, becauseM(λ) is maximal dissipative forλ ∈ C+, the third condition
holds as a consequence of the definition ofM(λ), see Definition A.15, and (A.7).
Conversely, every Nevanlinna family can be realized (nonuniquely) as the Weyl
family of a boundary relation, see (Derkach et al. 2006: Theorem 3.9). Note also
that as a consequence of the fact that the Weyl function associated to a boundary
triplet satisfiesM(λ)∗ = M(λ), the identity in Proposition 5.1 is called the Weyl
identity.

Weyl functions of ordinary boundary triplets: Let the triplet{H, Γ0, Γ1} be
an ordinary boundary triplet for the adjoint of a closed symmetric relationS in
{H, (·, ·)}. Thenran Γ = ran (Γ0 × Γ1) = H2 implies that the hyper-maximal
neutral subspacesH×{0} and{0}×H of {H2, (jH·, ·)} are contained in the range
of Γ. Hence,A0 andA1 defined via

gr A0 = Γ−1({0} × H) and gr A1 = Γ−1(H× {0})
are selfadjoint relations in{H, (·, ·)}, see Proposition A.1 and Proposition 4.5. Con-
sequently, forλ ∈ C \ R

dom Γ = gr A0 + N̂λ(S
∗) and dom Γ = gr A1 + N̂λ(S

∗), (A.14)

see Corollary A.4. From (A.14) it follows thatPH×{0}Γ(N̂λ(S
∗)) = PH×{0}ran Γ

andP{0}×HΓ(N̂λ(S
∗)) = P{0}×Hran Γ, i.e. (A.14) implies that

dom M(λ) = dom M(µ) and ran M(λ) = ran M(µ) λ, µ ∈ C \ R.
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In fact, sinceran Γ = H2, the above observation yieldsdom M(λ) = H =

ran M(λ) for all λ ∈ C \ R, i.e. the Weyl function associated to an ordinary bound-
ary triplet is a bounded and boundedly invertible Nevanlinna function.

Weyl functions of generalized boundary triplets: Using the above arguments,
one can show that the Weyl function of a generalized boundary triplet is an every-
where defined Nevanlinna function. This can also be seen from the connection
of generalized boundary triplets to ordinary boundary triplets presented above.
Namely, (A.10) implies thatM(·) is the Weyl function of a generalized boundary
triplet {H, Γ0, Γ1} if and only if there exists a bounded and boundedly invertible
Nevanlinna functionMo(·), a closed operatorB in {H, (·, ·)} with dom B = H =

ran B andker B = {0}, and a bounded selfadjoint operatorK in {H, (·, ·)} such
that

M(λ) = K + B−∗Mo(λ)B−1, λ ∈ C \ R.

As a consequence of Remark A.9,Im M(λ) is a compact operator if{H, Γ0, Γ1}
is a generalized boundary triplet of type I; the converse also holds. Therefore re-
call thatγλ, the mapping fromH onto Nλ(T ), wheregr T = dom Γ, such that
Γ0{γλh, λgλh} = h, satisfies

(λ− λ)γ∗λγλ = M(λ)−M(λ)∗,

see (Derkach& Malamud 1995: (6.7)). Since by assumptionIm M(λ) = (M(λ)−
M(λ)∗)/(2i) is an everywhere defined compact operators, the above equality shows
thatγ∗λγλ is a compact operator. From this it follows immediately thatγλ is a com-
pact operator and, hence,Nλ(T ) as the range of a compact operator contains only
finite-dimensional closed subspaces forλ ∈ C \ R. I.e. {H, Γ0, Γ1} is a general-
ized boundary triplet of type I, see Remark A.9 and (A.4). Note that this situation
occurs for instance in the case of partial differential equations, see (Behrndt&

Langer 2007) and the references therein.

Weyl functions of unitary boundary triplets: From (A.11) it follows thatM(λ) is
the Weyl function of a unitary boundary triplet for the adjoint of a closed symmet-
ric relation with strongly equal defect numbers if and only if there exists a closed
operatorB in {H, (·, ·)} with dom B = H = ran B andker B = {0} = mul B,
everywhere defined operatorsAij, 1 ≤ i, j ≤ 2 such that

(
A11 A12

A21 A22

)

is a unitary operator in{H2, (·, ·)}, and a bounded and boundedly invertible Nevan-
linna functionMo such that

M(λ) = (A21 + A22B
−∗Mo(λ)B−1)(A11 + A12B

−∗Mo(λ)B−1)−1, λ ∈ C \ R.
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In the special case thatA0 defined viagr A0 = Γ−1({0} × H) is selfadjoint,M(λ)

is as a consequence of (A.12) the Weyl function of a unitary boundary triplet if and
only if there exists a bounded and boundedly invertible Nevanlinna functionMo(λ),
a closed relationB in {H, (·, ·)} with dom B = H = ran B andker B = {0} =

mul B, and a selfadjoint operatorK in {H, (·, ·)} with dom K ∩mul B = {0} such
that

M(λ) = K + B−∗Mo(λ)B−1, λ ∈ C \ R.

Note that in the preceding case the domain ofclos (Im M(λ)) is independent of
λ ∈ C \ R and equal toH. The converse also holds, if for a Weyl functionM(λ)

dom (clos (Im M(λ))) = H for λ ∈ C \ R, thenM(λ) is the Weyl function of a
boundary relation for whichA0 is selfadjoint, see (Derkach et al. 2012).

Weyl functions of quasi-boundary triplets: Quasi-boundary triplets can also be
characterized by their associated Weyl functions, cf. (Behrndt& Langer 2007:
Proposition 2.6) and (Alpay& Behrndt 2009: Proposition 2.6).

Proposition A.17. Let {H, (·, ·)} be a Hilbert space and letM(·) be aH-valued

operator function. ThenM(·) is the Weyl family of a quasi-boundary triplet (for the

adjoint of a certain closed symmetric relation) if and only if there exists a symmet-

ric operator T in {H, (·, ·)} such thatdom M(λ) ⊆ dom T and thatMΓ′(·) :=

clos (M(·) + T ) is a Nevanlinna family which satisfiesdom MΓ′(λ) = H and

ker MΓ′(λ) ∩ dom T ∗ = {0} for all λ ∈ C \ R.

Proof. If {H, Γ0, Γ1} is a quasi-boundary triplet for the adjoint of a symmetric re-
lationS in a Hilbert space{H, (·, ·)}, then by Proposition A.14 there exists a sym-
metric operatorT in {H, (·, ·)} with dom T = H and a boundary relation{H, Γ′}
for S∗ with (ker Γ′0)

∗ = ker Γ′0, ran Γ′0 = H anddom T ∗ ∩ mul Γ0 = {0} such
thatΓ = Υ1(T )Γ′. The Weyl familyMΓ′(·) associated toΓ′ is a Nevanlinna family
of bounded operators, i.e.dom MΓ′(λ) = H for all λ ∈ C \ R, see (Derkach et
al. 2009: Proposition 3.15). Note also that the conditiondom T ∗ ∩ mul Γ0 = {0}
implies thatker MΓ′(λ) ∩ dom T ∗ = {0} for all λ ∈ C \ R. Finally, a direct cal-
culation shows that the Weyl familyM(λ), λ ∈ C \ R, associated toΓ = Γ0 × Γ1

is

M(λ) = T + MΓ′(λ), dom M(λ) = dom T.

Sincedom T = H anddom MΓ′(·) = H, the above equality implies thatMΓ′(·) =

clos (M(·)− T ).

Conversely, ifMΓ′ := clos (M(·) + T ) is a Nevanlinna family which satisfies
dom MΓ′(λ) = H for all λ ∈ C \ R, then, see (Derkach et al. 2009: Proposition
3.15), there exists a closed symmetric relationS in a Hilbert space{H, (·, ·)} and
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a boundary relation{H, Γ′} for S∗ satisfying(ker Γ′0)
∗ = ker Γ′0 and ran Γ′0 =

H such that its associated Weyl family isMΓ′. Then, sincedom T = H and
ker MΓ′(λ)∩dom T ∗ = {0}, {H,PH×{0}Υ1(−T )Γ′,P{0}×HΥ1(−T )Γ′} is a quasi-
boundary triplet forS∗ by Proposition A.14 and a calculation shows that its Weyl
family is MΓ′(·)− T = M(·).

Note that ifT has equal defect numbers in the above statement, then the quasi-
boundary triplet forM(·) can be extended to a boundary relation.

A.4 Boundary triplets for intermediate extensions

The results in (Derkach et al. 2009: Section 4) for boundary relations in the Hilbert
space setting are here shown to remain valid in the Kreı̆n space setting. Therefore
first observe the following simple statement about the renormalization of the Weyl
function of a unitary boundary triplet, see (Derkach et al. 2009: Proposition 3.11).

Lemma A.18. LetS be a closed symmetric relation in{K, [·, ·]} and let{H, Γ0, Γ1}
be a unitary boundary triplet forS[∗] with associated Weyl functionMΓ(·). More-

over, letB be a closed operator in{H, (·, ·)} with dom B = H = ran B and

ker B = {0}, and letK be a bounded selfadjoint operator in{H, (·, ·)}. Then,

with (
Γ′0
Γ′1

)
:= Υ1(K)Υ2(B)

(
Γ0

Γ1

)
,

also{H, Γ′0, Γ
′
1} is a unitary boundary triplet forS[∗]. Its Weyl functionMΓ′(·) is

MΓ′(λ) = K + B−∗M(λ)B−1, dom MΓ′ = dom (M(λ)B−1), λ ∈ C \ R.

Proof. SinceΥ1(K) andΥ2(B) are standard unitary operators in{H2, (jH·, ·)},
Υ1(K)Υ2(B)(Γ0 × Γ1) is a unitary operator from{K2, (jK·, ·)} to {H2, (jH·, ·)},
see Lemma 3.10. Consequently,{H, Γ′0, Γ

′
1} is a unitary boundary triplet forS[∗].

The expression forMΓ′ follows from a direct calculation after the observation that
dom Γ = dom Γ′ and, hence,̂Nλ(T ) = N̂λ(T

′), whereT andT ′ are the relations
in {K, [·, ·]} such thatgr T = dom Γ andgr T ′ = dom Γ′.

To obtain results on generalized boundary triplets for intermediate extensions, the
above lemma is combined with Proposition A.19 below. Note that the following
statement is a generalization of a similar statement for generalized boundary triplets
from the Hilbert space setting to the Kreı̆n space setting.
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Proposition A.19. Let S be a closed and symmetric relation in{K, [·, ·]} and let

{H, Γ0, Γ1} be a generalized boundary triplet forS[∗] with associated Weyl function

MΓ(·). Moreover, letH′ be a closed subspace ofH and define the operatorsΓ′0 and

Γ′1 fromK2 toH′ as

Γ′0{f, f ′} = Γ0{f, f ′} and Γ′1{f, f ′} = PH′Γ1{f, f ′}

for all {f, f ′} ∈ dom Γ such thatΓ0{f, f ′} ∈ H′. Then{H′, Γ′0, Γ
′
1} is a gener-

alized boundary triplet forS[∗]
r ⊆ S[∗], wheregr Sr = ker Γ′. Its associated Weyl

functionMΓ′(·) is

MΓ′(λ) = PH′MΓ(λ), dom MΓ′ = dom MΓ(λ) ∩H′ = H′, λ ∈ C.

Proof. The first part is a direct consequence of Corollary 7.34 withUb defined as
Ub{f, f ′} = {f,PH′f ′}, f ∈ H′ andf ′ ∈ H. The formula for the Weyl function
is a direct consequence of the definition ofΓ′ together with the observation that
dom Γ′ ⊆ dom Γ and, hence,̂Nλ(T

′) ⊆ N̂λ(T ), whereT andT ′ are the relations
in {K, [·, ·]} such thatgr T = dom Γ andgr T ′ = dom Γ′.

In the Hilbert space setting the above result corresponds to (Derkach et al. 2009:
Proposition 4.1). The other statements from (Derkach et al. 2009: Section 4) can
be obtained by combining Proposition A.19 with Lemma A.18; following is an
example, cf. (Derkach et al. 2009: Corollary 4.5).

Corollary A.20. Let Si be a closed and symmetric relation in{Ki, [·, ·]i} and let

{H, Γi
0, Γ

i
1} be a generalized boundary triplet forS

[∗]
i with associated Weyl function

Mi, for i = 1, 2. WithK := K1 ⊕ K2, define the operatorsΓ0 andΓ1 fromK2 toH
as

Γ0{f1 ⊕ f2, f
′
1 ⊕ f ′2} = Γ1

0{f1, f
′
1}

and

Γ1{f1 ⊕ f2, f
′
1 ⊕ f ′2} = Γ1

1{f1, f
′
1}+ Γ2

1{f2, f
′
2},

where

dom Γ = {{f1 ⊕ f2, f
′
1 ⊕ f ′2} ∈ K2 : {f1, f

′
1} ∈ dom Γ1, {f2, f

′
2} ∈ dom Γ2

and Γ1
0{f1, f

′
1} = Γ2

0{f2, f
′
2}}.

Then{H, Γ0, Γ1} is a generalized boundary triplet forS[∗] ⊆ S
[∗]
1 ⊕ S

[∗]
2 , where

gr S = ker Γ, and its associated Weyl function isM1 + M2.
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Proof. DefineΓ′0 andΓ′1 as

Γ′0{f1 ⊕ f2, f
′
1 ⊕ f ′2} =

(
Γ1

0{f1, f
′
1}

Γ2
0{f2, f

′
2}

)
, Γ′1{f1 ⊕ f2, f

′
1 ⊕ f ′2} =

(
Γ1

1{f1, f
′
1}

Γ2
1{f2, f

′
2}

)
,

where{f1, f
′
1} ∈ dom Γ1 and{f2, f

′
2} ∈ dom Γ2. Then{H2, Γ′0, Γ

′
1} is a general-

ized boundary triplet forS[∗]
1 ⊕ S

[∗]
2 with associated Weyl functionM1(·)⊕M2(·).

Next define the operatorB onH2 by B{f, f ′} = {f ′, f−f ′}, f, f ′ ∈ H. Then with
ΓB

0 andΓB
1 defined viaΓB

0 ×ΓB
1 = Υ2(B)(Γ′0×Γ′1), {H2, ΓB

0 , ΓB
1 } is a generalized

boundary triplet forS[∗]
1 ⊕ S

[∗]
2 . Here

ΓB
0 {f1 ⊕ f2, f

′
1 ⊕ f ′2} =

(
Γ2

0{f2, f
′
2}

Γ1
0{f2, f

′
2} − Γ2

0{f1, f
′
1}

)

and

ΓB
0 {f1 ⊕ f2, f

′
1 ⊕ f ′2} =

(
Γ1

1{f2, f
′
2}+ Γ2

1{f1, f
′
1}

Γ1
1{f2, f

′
2}

)
,

for {f1, f
′
1} ∈ dom Γ1 and{f2, f

′
2} ∈ dom Γ2. Its associated Weyl function is

MB(λ) = B−∗
(

M1(λ) 0

0 M2(λ)

)
B−1 =

(
M1(λ) + M2(λ) M1(λ)

M1(λ) M1(λ)

)
,

see Lemma A.18. After these observations the statement follows from Proposi-
tion A.19.
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