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On unitary relations between Krĕın spaces

Rudi Wietsma

Abstract. The structure of unitary relations between Krĕın spaces is
investigated in geometrical terms. Two approaches are presented: The
first relies on the so-called Weyl identity, which characterizes unitary
relations, and the second approach is based on a graph decomposition
of unitary relations. Both approaches yield new necessary and suffi-
ciency conditions for isometric relations to be unitary. In particular, a
quasi-block and a proper block representation of unitary relations are
established.

Mathematics Subject Classification (2010). 47A06, 47B25, 47B50; 47A56.

Keywords. Unitary relation, Von Neumann formulas, Weyl function, Ex-
tension theory.

1. Introduction

As is well known, unitary operators between Hilbert spaces are bounded
everywhere defined isometric mappings with bounded everywhere defined
inverse. In Krĕın spaces unitary operators were initially introduced as ev-
erywhere defined isometric operators with everywhere defined inverse; such
operators are called standard unitary operators. Standard unitary operators
are closely connected to unitary operators between Hilbert spaces and, conse-
quently, they behave essentially in the same way as unitary operators between
Hilbert spaces. R. Arens introduced in [1] an alternative, very general, defini-
tion of unitary relations (multivalued operators): a relation U between Krĕın
spaces is unitary if

U−1 = U [∗],

where the adjoint is taken with respect to the underlying inner products.
This class of unitary relations contains the class of standard unitary opera-
tors. Each unitary relation is closed, however, they need not be bounded nor
densely defined and they can be multivalued as the following example shows,
cf. [7, Example 2.11].
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Example 1.1. Let {H, (·, ·)H} be a Hilbert space and define the indefinite inner
product [·, ·]H on H2 by

[{f1, f2}, {g1, g2}]H = −i ((f2, g1)H − (f1, g2)H) , f1, f2, g1, g2 ∈ H.

Moreover, let K be a selfadjoint operator in {H0, (·, ·)}, where H0 is a closed
subspace of H. Then U defined by

U{f1+ f, f2} = {f1+Kf2+ f ′, f2}, f1 ∈ H0, f2 ∈ domK, f, f ′ ∈ H⊖H0}
is a unitary relation from {H2

0, [·, ·]} to {H2, [·, ·]} with kerU = (H ⊖ H0) ×
{0} = mulU . In particular, U has closed domain (and range) if and only if
K is bounded, and U is a unitary operator with a trivial kernel if and only
if H0 = H.

The study of unitary relations in Krĕın spaces is motivated by the ex-
tension theory of symmetric operators. These extensions have initially been
studied by means of von Neumann’s formula, see e.g. [4]. An alternative
approach by means of so-called boundary triplets was introduced by V.M.
Bruck and A.N. Kochubei (see [9] and the references therein). This approach
was generalized by V.A. Derkach and M.M. Malamud who also associated
so-called Weyl functions to boundary triplets, see e.g. [8]. Later those two
authors together with S. Hassi and H.S.V. de Snoo developed this approach
further by incorporating Krĕın space methods into this approach, see [6, 7].
In fact, in [6] it was shown that the boundary triplet, and its generalizations,
can be seen as unitary relations between Krĕın spaces with a suitable, fixed,
inner product.

In this paper unitary relations between Krĕın spaces will be studied,
foremost in geometrical terms, without auxiliary assumptions on the struc-
ture of the Krĕın spaces. This simplifies proofs for various well-known state-
ments, the obtained statements can also be easier generalized and superfluous
conditions can be eliminated. Moreover, the developed theory can be used,
without modifications, to study for instance extension theory of symmetric
relations in Krĕın space as developed by V.A. Derkach, see e.g. [5]. Similarly,
D-boundary triplets, recently introduced by V. Mogilevskii in [11], are cap-
tured within the framework of this paper. It is interesting to note that J.W.
Calkin had a similar, geometrical, approach in [4] where the structure of the
inner product was only fixed on the side of the domain. As a consequence of
the geometrical approach the Weyl function will not be introduced, although
a similar (non-analytic) object will be introduced, which will be called the
Weyl identity.

It is the purpose of this paper to investigate the general properties and
structure of isometric and unitary relations in Krĕın spaces. Therefore, the
investigation of the difference between isometric and unitary relation is cen-
tral. This difference will be expressed by giving criteria for isometric relations
to be unitary. Those conditions are obtained by means of (abstract) von Neu-
mann formulas, the Weyl identity, the Potapov-Ginzburg transformation and
a graph decomposition of unitary relations. All these different investigations
give also information about the structure of unitary relations.
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Apart from the introduction this paper is organized into four sections.
In the second section notation and general results about Krĕın spaces and
linear relations are recalled. In the third section basic properties of isometric
and unitary relations are given. In the fourth and fifth section the major
results are obtained, central in these two sections are the Weyl identity and
a graph decomposition, respectively. In particular, in these last two sections
several different necessary and sufficient conditions for isometric relations to
be unitary are obtained.

2. Preliminary results

2.1. Some basic properties of Krĕın spaces

A vector space K with an indefinite inner product [·, ·] is called a Krĕın space
if there exist a decomposition of K into the direct sum of two subspaces (linear
subsets) K+ and K− of K such that {K+, [·, ·]} and {K−,−[·, ·]} are Hilbert
spaces and [f+, f−] = 0, f+ ∈ K+ and f− ∈ K−: A decomposition K+[+]K−

of K is called a canonical decomposition of {K, [·, ·]}. (Here the sum of two
subspaces M and N is said to be direct if M ∩ N = {0}, in which case the
sum is denoted by M+̇N.) The dimensions of K+ and K− are independent
of the canonical decomposition of {K, [·, ·]} and are denoted by k+ and k−,
respectively.

For a Krĕın space {K, [·, ·]} there exist a linear operator j in K such that
{K, [j·, ·]} is a Hilbert space and with respect to its inner product j∗ = j−1 = j.
Any mapping j satisfying the preceding properties is called a fundamental
symmetry for {K, [·, ·]}. Conversely, if {H, (·, ·)} is a Hilbert space and j is a
fundamental symmetry in {H, (·, ·)}, then {H, (j·, ·)} is a Krĕın space. Each
fundamental symmetry induces a canonical decomposition and, conversely,
each canonical decomposition induces a fundamental symmetry. However,
all the norms generated by fundamental symmetries are equivalent. Hence a
subspace of the Krĕın space {K, [·, ·]} is called closed if it is closed with respect
to the definite inner product [j·, ·] for one (and hence for every) fundamental
symmetry of {K, [·, ·]}.

For a subspace L of the Krĕın space {K, [·, ·]} the orthogonal complement
of L, denoted by L[⊥], is the closed subspace defined by

L[⊥] = {f ∈ K : [f, g] = 0, ∀g ∈ L}.

If j is a (fixed) fundamental symmetry for {K, [·, ·]}, then the j-orthogonal
complement of L, i.e. the orthogonal complement with respect to [j·, ·], is
denoted by L⊥. Clearly, L[⊥] = jL⊥ = (jL)⊥.

For subspaces M and N of the Krĕın space {K, [·, ·]} with a fixed fun-
damental symmetry j the notation M[+]N and M ⊕ N is used to indicate
that the sum of M and N is orthogonal or j-orthogonal, i.e. M ⊆ N[⊥] and
N ⊆ M[⊥] or M ⊆ jN[⊥] and N ⊆ jM[⊥], respectively. Moreover,

M[⊥] ∩N[⊥] = (M + N)[⊥] and M[⊥] + N[⊥] ⊆ (M ∩N)
[⊥]

. (2.1)
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Furthermore, the following version of [10, Ch. IV: Theorem 4.8] holds.

Lemma 2.1. Let M and N be closed subspaces of the Krĕın space {K, [·, ·]}.
Then M + N is closed if and only if M[⊥] + N[⊥] is closed.

Moreover, if either of the above equivalent conditions holds, then

M[⊥] + N[⊥] = (M ∩N)[⊥].

A projection P or P onto a closed subspace of the Krĕın space {K, [·, ·]}
with fundamental symmetry j is called orthogonal or j-orthogonal if

K = kerP [+]ranP or K = kerP ⊕ ranP,

respectively. Recall that {kerP, [·, ·]} and {ranP, [·, ·]} are Krĕın spaces, see [2,
Ch. I: Theorem 7.16]. In particular, for a canonical decomposition K+[+]K−

of {K, [·, ·]}, with associated fundamental symmetry j, the projections P+ and
P− onto K+ and K−, respectively, are orthogonal and j-orthogonal projec-
tions.

Remark 2.2. In this paper the notation {H, (·, ·)} and {K, [·, ·]} is used to
denote Hilbert and Krĕın spaces, respectively. To distinguish different Hilbert
and Krĕın spaces subindexes are used: H1,K1,H2,K2, etc.. Closed subspaces
of {K, [·, ·]} which are themselves Krĕın (with the inner product [·, ·]) are

denoted by K̃ or K̂. A canonical decomposition of {Ki, [·, ·]i} is denoted by
K+
i [+]K−

i . Its associated fundamental symmetry is denoted by ji and the
projections P+

i and P−
i associated to a canonical decomposition K+

i [+]K−
i

always mean the orthogonal projection onto K+
i and K+

i , respectively.

A subspace L of {K, [·, ·]} is called positive, negative, nonnegative, non-
positive or neutral if [f, f ] > 0, [f, f ] < 0, [f, f ] ≥ 0, [f, f ] ≤ 0 or [f, f ] = 0
for every f ∈ L, respectively. A positive or negative subspace L is called
uniformly positive or negative if there exists a constant α > 0 such that
[jf, f ] ≤ α[f, f ] or [jf, f ] ≤ −α[f, f ] for all f ∈ L and one (and hence every)
fundamental symmetry j of {K, [·, ·]}, respectively. Furthermore, a subspace
of {K, [·, ·]} having a certain property is said to be maximal with respect to
that property, if there exists no extensions of L having the same property. A
subspace is said to essentially having a certain property if its closure has the
indicated property. Note that a subspace L of {K, [·, ·]} is neutral if and only
if L ⊆ L[⊥].

Proposition 2.3. ([2, Ch. I: Corollary 5.8]) Let L be a neutral subspace of
{K, [·, ·]}. Then the space {L[⊥]/clos (L), [·, ·]} is a Krĕın space1.

Let K+[+]K− be a canonical decomposition of {K, [·, ·]} with associated
projection P+ and P−, then for any closed subspace L

L[⊥] ∩ K+ = K+ ⊖ P+L and L[⊥] ∩ K− = K− ⊖ P−L. (2.2)

Next some characterizations of maximal nonnegative and nonpositive sub-
spaces are recalled, see [2, Ch. I: Section 8] and [3, Ch. V: Section 4].

1The indefinite inner product on the quotient space, induced by the indefinite inner product

on the original space, is always indicated by the same symbol.
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Proposition 2.4. Let L be a nonnegative (nonpositive) subspace of {K, [·, ·]}
and let K+[+]K− be a canonical decomposition of {K, [·, ·]} with associated
projections P+ and P−. Then equivalent are

(i) L is a maximal nonnegative (nonpositive) subspace of {K, [·, ·]};
(ii) P+L = K+ (P−L = K−);
(iii) L is closed and L[⊥] is a nonpositive (nonnegative) subspace of {K, [·, ·]};
(iv) L is closed and L[⊥] is a maximal nonpositive (nonnegative) subspace of

{K, [·, ·]};
(v) KL := {{P+f, P−f} : f ∈ L} (KL := {{P−f, P+f} : f ∈ L} ) is

an everywhere defined contraction from {K+, [·, ·]} to {K−,−[·, ·]} (from
{K−,−[·, ·]} to {K+, [·, ·]}).

The operator KL in (v) is called the angular operator associated to L.
If KL as above is the angular operator for a maximal nonnegative subspace
L, then (KL)

∗ is the angular operator for L[⊥], see [2, Ch. I: Theorem 8.11].

2.2. Hyper-maximal subspaces

Recall that a neutral subspace L of {K, [·, ·]} is called hyper-maximal neutral if
it is simultaneously maximal nonnegative and maximal nonpositive. Equiva-
lently, L is hyper-maximal neutral if and only if L = L[⊥], see Proposition 2.4.
I.e., if j is a fundamental symmetry for {K, [·, ·]}, then L is hyper-maximal
neutral if and only if K has the j-orthogonal decomposition

K = L⊕ jL. (2.3)

The following result gives additional characterizations of hyper-maximal neu-
trality by means of a canonical decomposition of the corresponding Krĕın
space, see [2, Ch. I: Theorem 4.13 & Theorem 8.10].

Proposition 2.5. Let L be a neutral subspace of {K, [·, ·]} and let K+[+]K−

be a canonical decomposition of {K, [·, ·]} with associated projections P+
1 and

P−
1 . Then equivalent are

(i) L is hyper-maximal neutral;
(ii) P+L = K+ and P−L = K−;
(iii) UL := {{P+f, P−f} ∈ K+×K− : f ∈ L} is a standard unitary operator

from {K+, [·, ·]} onto {K−,−[·, ·]}.

As a consequence of Proposition 2.5, k+ = k− if there exists a hyper-
maximal neutral subspace in {K, [·, ·]}. The converse also holds: If k+ = k−,
then there exist hyper-maximal neutral subspaces in {K, [·, ·]}. By definition
hyper-maximal neutral subspaces are maximal neutral, the converse does not
hold as the following example shows.

Example 2.6. Let {H, (·, ·)} be a separable Hilbert space with orthonormal
basis {en}n≥0, en ∈ H. Define the indefinite inner product [·, ·] on H2 by

[{f1, f2}, {g1, g2}] = (f1, g1)− (f2, g2), f1, f2, g1, g2 ∈ H.

Then {H2, [·, ·]} is a Krĕın space. Define L1 and L2 by

L1 = span {{en, e2n} : n ∈ N} and L2 = span {{en, en} : n ∈ N}.
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Then L1 and L2 are maximal neutral subspaces of {H2, [·, ·]}, but only L2 is
a hyper-maximal neutral subspace of {H2, [·, ·]}.

The above example can be modified to show that there also exist differ-
ent types of maximal nonpositive and nonnegative subspaces of Krĕın spaces.
Hence the notion of hyper-maximality can meaningfully be extended to semi-
definite subspaces.

Definition 2.7. Let L be a nonnegative or nonpositive subspace of {K, [·, ·]}.
Then L is called hyper-maximal nonnegative or hyper-maximal nonpositive if
L is closed and L[⊥] is a neutral subspace of {K, [·, ·]}.

The following proposition gives alternative characterizations for a semi-
definite subspace to be hyper-maximal semi-definite.

Proposition 2.8. Let L be a nonnegative (nonpositive) subspace of {K, [·, ·]}
and let K+[+]K− be a canonical decomposition of {K, [·, ·]} with associated
fundamental symmetry j and projections P+ and P−. Then equivalent are

(i) L is hyper-maximal nonnegative (nonpositive);
(ii) L is closed, L[⊥] ⊆ L and P−L[⊥] = K− (P+L[⊥] = K+);
(iii) L is closed, L = L[⊥] + L ∩ K+ (L = L[⊥] + L ∩ K−);
(iv) L is closed and induces a j-orthogonal decomposition of K:

K = L[⊥] ⊕ (L ∩ jL)⊕ jL[⊥].

Proof. The statement will only be proven in the case that L is a nonnegative
subspace; the case L is a nonpositive subspace can be proven by similar
arguments.

(i) ⇒ (ii): Since L[⊥] is neutral, L[⊥] ⊆ L[⊥][⊥]
= closL = L. Next let

f− ∈ K−⊖P−L[⊥] = clos (L)∩K−, see (2.2). Since L is by assumption closed
and nonnegative, it follows that f− = 0, i.e., K− = P−L[⊥].

(ii) ⇒ (iii): Clearly, it suffices to prove the inclusion L ⊆ L[⊥] + L ∩
K+. Hence let f ∈ L be decomposed as f+ + f−, where f± ∈ K±. Then
the assumption P−L[⊥] = K− implies that there exists g+ ∈ K+ such that
g+ + f− ∈ L[⊥] and, hence, f − (g+ + f−) = f+ − g+ ∈ L ∩ K+, because by
assumption L[⊥] ⊆ L.

(iii) ⇒ (iv): Since L is closed, L ∩ K+ = L ∩ jL. Moreover, since L
is nonnegative, L is in fact the j-orthogonal sum of L[⊥] and L ∩ K+. In
other words, L[⊥] is a hyper-maximal neutral subspace of the Krĕın space
{K⊖ (L ∩ jL), [·, ·]}. Hence, (2.3) implies that (iv) holds.

(iv) ⇒ (i): The decomposition in (iv) implies that L[⊥] is a hyper-
maximal neutral neutral subspace of the Krĕın space {K ⊖ (L ∩ jL), [·, ·]},
see (2.3), and, hence, L[⊥] is a neutral subspace of {K, [·, ·]}. �

Corollary 2.9. Let L be a semi-definite subspace of {K, [·, ·]}. Then L is hyper-
maximal semi-definite if and only if P+L = K+ and P−L = K− for every
canonical decomposition K+[+]K− of {K, [·, ·]} with associated projections P+

and P−.
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Proof. Assume that L is hyper-maximal semi-definite and let K+[+]K− be
a canonical decomposition of {K, [·, ·]} with associated projections P+ and
P−. Then Proposition 2.8 (iv) implies that L ∩ jL is closed and that L[⊥] is
a hyper-maximal neutral subspace of the Krĕın space {K ⊖ (L ∩ jL), [·, ·]}.
Hence, P±

1 L[⊥] = K± ⊖ (L ∩ jL), see Proposition 2.5, and L[⊥] + L ∩ jL ⊆ L,
because L is by assumption closed. These observations show that the stated
characterization holds.

To prove the converse assume w.l.o.g. that L is nonnegative. Then the
assumption that P+L = K+ implies that L is maximal nonnegative, and
hence closed, and that L[⊥] is a maximal nonpositive subspace, see Proposi-
tion 2.4. Suppose that f ∈ L[⊥] is such that [f, f ] < 0, then there exists a

canonical decomposition K̃+[+]K̃− of {K, [·, ·]} such that f ∈ K̃−, see [3, Ch.

V: Theorem 5.6]. Then f ∈ K̃− ⊖ P̃−L, see (2.2), which is in contradiction

with the assumption P̃−L = K̃−. Consequently, L[⊥] is neutral and, hence, L
is hyper-maximal nonnegative. �

Corollary 2.9 shows that hyper-maximal nonnegative (nonpositive) sub-
spaces are also maximal nonnegative (nonpositive), justifying the terminol-
ogy. Moreover, it also shows that in a Krĕın space {K, [·, ·]} with k+ > k−

or k+ < k− every hyper-maximal semi-definite subspace is nonnegative or
nonpositive, respectively. If k+ = k−, then a hyper-maximal semi-definite
subspace can be neutral, nonnegative or nonpositive, cf. Example 2.6. Note
also that Proposition 2.8 (ii) shows that if L is hyper-maximal semi-definite,
then L[⊥] is maximal neutral. Clearly, the converse also holds: if L is a max-
imal neutral subspace, then L[⊥] is a hyper-maximal semi-definite subspace.

2.3. Abstract von Neumann formulas

Let L be a neutral subspace of the Krĕın space {K, [·, ·]} with a canonical
decomposition K+[+]K−. Then the first von Neumann formula holds:

L[⊥] = clos (L)[⊕]L[⊥] ∩ K+[⊕]L[⊥] ∩ K−, (2.4)

see [2, Ch. 1 : 4.20] and (2.2). As a consequence of the first von Neumann for-
mula and Proposition 2.3, the notion of defect numbers for neutral subspaces
of Krĕın spaces as introduced below is well-defined. This definition extends
the usual definition of defect numbers for symmetric relations.

Definition 2.10. Let L be a neutral subspace of {K, [·, ·]} and let K+[+]K− be
a canonical decomposition of {K, [·, ·]}. Then the defect numbers n+(L) and
n−(L) of L are defined as

n+(L) = dim(L[⊥] ∩ K−) and n−(L) = dim(L[⊥] ∩ K+).

The following generalization of the second von Neumann formula will
be of importance in the analysis of unitary relations, see Section 4.1.

Proposition 2.11. Let L and M be subspaces of {K, [·, ·]} such that M ⊆ L
and let P be an orthogonal projection in {K, [·, ·]}. Then

PL ⊆ PM if and only if L = M+ L ∩ kerP. (2.5)
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Furthermore, if M is closed, PL ⊆ PM and (I−P )M[⊥]+(I−P )(L∩kerP )[⊥]

is closed, then

(i) L ∩ kerP is closed if and only if L is closed;
(ii) clos (L ∩ kerP ) = (closL) ∩ kerP .

Proof. The proof for the equivalence (2.5) is simple and left for the reader.
(i): If L is closed, then clearly L∩ kerP is closed. To prove the converse

note first that ranP ⊆ (L ∩ kerP )[⊥]. Therefore the assumption that (I −
P )M[⊥] + (I − P )(L ∩ kerP )[⊥] is closed implies that M[⊥] + (L ∩ kerP )[⊥]

is closed. This fact together with the assumption that L ∩ kerP is closed
implies that M + clos (L ∩ kerP ) is closed, see Lemma 2.1. Consequently,
M+ L ∩ kerP is closed and the closedness of L now follows from (2.5).

(ii): The assumptions PL ⊆ PM and M ⊆ L together with (2.5) show
that

L = M+ (L ∩ kerP ) ⊆ M+ clos (L ∩ kerP ) ⊆ closL.

Since M + clos (L ∩ kerP ) is closed (see the proof of (i)), taking closures in
the above equation yields that clos (L) = M+ clos (L ∩ kerP ) and therefore
P (closL) ⊆ PM. Consequently, (2.5) implies that clos (L) = M+ (closL) ∩
kerP , i.e.,

M+ clos (L ∩ kerP ) = clos (L) = M+ (closL) ∩ kerP.

This implies (ii). �
Let j be a fundamental symmetry for {K, [·, ·]}. Then note that (I −

P )M[⊥] + (I − P )(L ∩ kerP )[⊥] is closed, if the following inclusion holds

(I − P )M[⊥] ⊇ ((I − P )(L ∩ kerP )[⊥])⊥ ∩ kerP

= jclos (L ∩ kerP ) ∩ kerP + (jranP ) ∩ kerP.

Corollary 2.12. Let L and M be subspaces of {K, [·, ·]} such that M ⊆ L.
Moreover, let K+[+]K− be a canonical decomposition of {K, [·, ·]} with asso-
ciated projections P+ and P−. Then{

P−L ⊆ P−M if and only if L = M+ L ∩ K+;
P+L ⊆ P+M if and only if L = M+ L ∩ K−.

Furthermore, if M is closed, P−L ⊆ P−M and clos (L ∩ K+) ⊆ P+M[⊥],
then

(i) L ∩ K+ is closed if and only if L is closed;
(ii) clos (L ∩ K+) = (closL) ∩ K+;

and if M is closed, P+L ⊆ P+M and clos (L ∩ K−) ⊆ P−M[⊥], then

(i’) L ∩ K− is closed if and only if L is closed;
(ii’) clos (L ∩ K−) = (closL) ∩ K−.

Proof. The discussion preceding this corollary shows that the condition that
(I−P )M[⊥]+(I−P )(L∩kerP )[⊥] is closed (in Proposition 2.11) is satisfied for
P = P− or P = P+, if clos (L ∩ K+) ⊆ P+M[⊥] or clos (L ∩ K−) ⊆ P−M[⊥],
respectively. Hence, this statement follows directly from Proposition 2.11 by
taking P to be P− and P+. �
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Note that if L is an arbitrary subspace of {K, [·, ·]}, then the conditions
P−L ⊆ P−M and clos (L ∩ K+) ⊆ P+M[⊥] are satisfied for any hyper-
maximal nonpositive subspace M, and the conditions P+L ⊆ P+M and
clos (L∩K−) ⊆ P−M[⊥] are satisfied for any hyper-maximal nonnegative sub-
space M. Furthermore, Corollary 2.12 shows that if a subspace L of {K, [·, ·]}
contains a maximal semi-definite subspace M and its orthogonal comple-
ment, then L[⊥] is neutral. Because if e.g. M is maximal nonnegative, then
P−M = K− and, hence, L = M + L ∩ K+ by Corollary 2.12. Consequently,
using (2.1),

L[⊥] =
(
M+ L ∩ K+

)[⊥]
= M[⊥] ∩ (L ∩ K+)[⊥] ⊆ M[⊥] ⊆ L.

2.4. Linear relations in Krĕın spaces

Let {K1, [·, ·]1} and {K2, [·, ·]2} be Krĕın spaces, then H is called a (linear)
relation from {K1, [·, ·]1} to {K2, [·, ·]2} if its graph, denoted by gr(H), is a
subspace of K1 × K2

2. In particular, H is closed if and only if its graph is
closed. The symbols domH, ranH, kerH, and mulH stand for the domain,
range, kernel, and the multivalued part of H, respectively. In particular,
mulH = {0} if and only if H is an operator. For a subspace L of domH,
H(L) denotes {f ′ ∈ K2 : ∃f ∈ L s.t. {f, f ′} ∈ H}.

The inverse H−1 and the adjoint H [∗] of H are defined as

H−1 = {{f, f ′} ∈ K2 × K1 : {f ′, f} ∈ H};

H [∗] = {{f, f ′} ∈ K2 × K1 : [f ′, g]1 = [f, g′]2, ∀{g, g′} ∈ H}.
Using these definitions

(domH)[⊥]1 = mulH [∗] and (ranH)[⊥]2 = kerH [∗]. (2.6)

For linear relations G and H from K1 to K2 the notation G+H stands
for the usual operator-like sum of relations. The componentwise sum (linear
span of the graphs) of G and H is the relation whose graph is given by
gr(G) + gr(H), where the sum is that of linear subspaces (of K1 × K2. If the
componentwise sum is direct, i.e. gr(G) ∩ gr(H) = {0}, then the graph of
the componentwise sum of G and H is denoted by gr(G)+̇gr(H). If G is a
linear relation from {K1, [·, ·]1} to {K2, [·, ·]2} and H is a linear relation from
{K2, [·, ·]2} to {K3, [·, ·]3}, then their product, denoted by HG, is defined by

HG = {{f, f ′} ∈ K1 × K3 : ∃h ∈ K2 s.t. {f, h} ∈ G and {h, f ′} ∈ H}.
The following basic facts can be found in e.g. [1].

Lemma 2.13. Let {Ki, [·, ·]i}, i = 1, 2, 3, be Krĕın spaces and let G : K1 → K2

and H : K2 → K3 be linear relations. Then

(i)
(
H [∗])−1

=
(
H−1

)[∗]
;

(ii) (HG)−1 = G−1H−1;
(iii) G[∗]H [∗] ⊆ (HG)[∗];

2The interpretation of relations (operators) as subspaces in appropriate spaces, and vice

versa, is used throughout the paper. These interpretations will not always be explicitly
mentioned.
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(iv) if G is closed, ranG is closed and domH ⊆ ranG or H is closed, domH
is closed and ranG ⊆ domH, then (HG)[∗] = G[∗]H [∗].

Let Pi be an orthogonal projection in {Ki, [·, ·]i}, i = 1, 2, then the
projection P1 ×P2 in K1 ×K2 is defined as (P1 ×P2)(f1 × f2) = P1f1 ×P2f2,
f1 ∈ K1 and f2 ∈ K2. Note that for a relation H from K1 to K2 one has that

(P1 × P2)gr(H) = {P1f × P2f
′ : {f, f ′} ∈ H} ⊆ (P1 × P2)(domH × ranH).

The following statement shows when the inverse inclusion holds.

Proposition 2.14. Let H be a relation from {K1, [·, ·]1} to {K2, [·, ·]2} and let
Pi be an orthogonal projection in {Ki, [·, ·]i}, for i = 1, 2. Then equivalent are

(i) (P1 × P2)(domH × ranH) ⊆ (P1 × P2)gr(H);
(ii) P1H

−1(ranH ∩ kerP2) = P1domH;
(iii) P2H(domH ∩ kerP1) = P2ranH;
(iv) domH = H−1(ranH ∩ kerP2) + (domH ∩ kerP1);
(v) ranH = H(domH ∩ kerP1) + (ranH ∩ kerP2).

Proof. (i) ⇒ (ii): If (i) holds, then for every f1 ∈ P1domH there exists
{f, f ′} ∈ H such that P1f = f1 and P2f

′ = 0. Therefore f ′ ∈ ranH ∩ kerP2

and hence P1domH ⊆ P1H
−1(ranH∩P2). Since the inverse inclusion clearly

holds, this shows that (ii) holds.
(ii)⇔ (iv): Let f ∈ domH, then by (ii) there exists {g, g′} ∈ H such that

P1g = P1f and g′ ∈ ranH∩kerP2. Hence f = g+h, where h = f−g ∈ domH
and P1h = P1(f − g) = 0, i.e., domH ⊆ H−1(ranH ∩ kerP2) + (domH ∩
kerP1). Since the inverse inclusion clearly holds, this proves the implication
from (ii) to (iv). The reverse implication is direct.

(iii) ⇔ (v): This proof is similar to the proof of the equivalence of (ii)
and (iv).

(iv) ⇔ (v): This follows by applying H and H−1.
(ii) & (iii) ⇒ (i): If f1 ∈ P1domH and f2 ∈ P2ranH, then by (ii) there

exists {f, f ′} ∈ H such that P1f = f1, P2f
′ = 0 and by (iii) there exists

{g, g′} ∈ H such that P1g = 0 and P2g
′ = f2. Hence, {f + g, f ′ + g′} ∈ H,

P1(f + g) = P1f = f1 and P2(f
′ + g′) = P2g

′ = f2. �

3. Basic properties of isometric and unitary relations

Basic properties of isometric and unitary relations are given. In particular,
it is shown how to reduce isometric (and unitary) relations by removing
their easily understood parts. The properties of these separated-off parts,
which are in fact unitary relations with closed domain and closed range, are
investigated.

3.1. Isometric and unitary relations

A relation U from {K1, [·, ·]1} to {K2, [·, ·]2} is called isometric or unitary if

U−1 ⊆ U [∗] or U−1 = U [∗], (3.1)
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respectively, see [1]. Since
(
U [∗])−1

= (U−1)[∗], see Lemma 2.13, the above
definition implies directly that a relation U is isometric (unitary) if and only
if U−1 is isometric (unitary). In particular, the action of isometric (unitary)
relations and their inverse are of the same type and, hence, the structure of
their domain and range is of the same type.

For an isometric relation V from {K1, [·, ·]1} to {K2, [·, ·]2} (2.6) becomes

kerV ⊆ (domV )[⊥]1 and mulV ⊆ (ranV )[⊥]2 . (3.2)

Hence, in particular, kerV and mulV are neutral subspaces of {K1, [·, ·]1}
and {K2, [·, ·]2}, respectively. For a unitary relation U from {K1, [·, ·]1} to
{K2, [·, ·]2} the inequalities in (3.2) become equalities:

kerU = (domU)[⊥]1 and mulU = (ranU)[⊥]2 . (3.3)

Recall the following basic characterizations of isometric and unitary
relations.

Proposition 3.1. Let V be a relation from {K1, [·, ·]1} to {K2, [·, ·]2}. Then
equivalent are

(i) V is isometric;
(ii) [f, g]1 = [f ′, g′]2 for every {f, f ′}, {g, g′} ∈ V ;
(iii) [f, f ]1 = [f ′, f ′]2 for every {f, f ′} ∈ V ;
(iv) closV is isometric.

Proof. (i)⇔ (ii) and (ii)⇔ (iii): These equivalences are clear by the definition
(3.1) and by polarizing.

(i) ⇔ (iv): If (i) holds, then, since V [∗] is closed, V −1 ⊆ V [∗] implies

that (closV )
−1

= clos
(
V −1

)
⊆ V [∗], i.e., closV is isometric. The reverse

implication follows from the fact that V ⊆ closV and that V [∗] is closed. �

Proposition 3.2. Let U be a relation from {K1, [·, ·]1} to {K2, [·, ·]2}. Then U
is unitary if and only if U is isometric and if {f, f ′} ∈ K1 × K2 is such that

[f, g]1 = [f ′, g′]2, ∀{g, g′} ∈ U,

then {f, f ′} ∈ U .

Proof. If {f, f ′} ∈ K1 ×K2 satisfies the stated condition, then {f ′, f} ∈ U [∗].
Hence the equivalence is clear by the definition of unitary relations. �

For Krĕın spaces {K1, [·, ·]1} and {K2, [·, ·]2}, the notation [·, ·]1,−2 is used
to denote the (indefinite) inner product on K1 × K2 defined by

[f1 × f2, g1 × g2]1,−2 = [f1, g1]1 − [f2, g2]2, f1, g1 ∈ K1, f2, g2 ∈ K2. (3.4)

With this inner product, {K1×K2, [·, ·]1,−2} is a Krĕın space and for a relation

H from K1 to K2 one has that (gr(H))[⊥]1,−2 = gr
(
H−[∗]). The preceding

observation yields the following result which can be found in [12].

Proposition 3.3. Let U be a relation from {K1, [·, ·]1} to {K2, [·, ·]2}. Then U
is an isometric or a unitary relation if and only if gr(U) is a neutral or a
hyper-maximal neutral subspace of {K1 × K2, [·, ·]1,−2}, respectively.
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In light of Proposition 2.5 and the discussion following that statement,
Proposition 3.3 implies that if U is a unitary relation from the Krĕın space
{K1, [·, ·]1} to the Krĕın space {K2, [·, ·]2}, then k+1 + k−2 = k−1 + k+2 .

The following statement, which generalizes Proposition 2.5, can be inter-
preted as an inverse to Proposition 3.3; it shows how hyper-maximal neutral
subspaces can be interpreted (nonuniquely) as unitary relations.

Proposition 3.4. Let L be a subspace of {K, [·, ·]} and let P be an orthogonal
projection in {K, [·, ·]}. Then L is neutral or hyper-maximal neutral if and only
if the relation UL := {{Pf, (I − P )f} : f ∈ L} is an isometric or a unitary
relation from the Krĕın space {ranP, [·, ·]} to the Krĕın space {kerP,−[·, ·]},
respectively.

Proof. If L is neutral, then for f, g ∈ L

0 = [f, g] = [(I −P )f +Pf, (I −P )g+Pg] = [Pf, Pg] + [(I −P )f, (I −P )g],

i.e. UL is an isometric relation. Next let {g, g′} ∈ ranP × kerP be such that
[Pf, g] = −[(I − P )f, g′] for all f ∈ L. Then [f, g + g′] = 0 for all f ∈ L. If
L is hyper-maximal neutral, the preceding equation implies that g + g′ ∈ L.
Hence by Proposition 3.2 UL is an unitary relation.

The converse assertion is a direct consequence of Proposition 3.3. �

The previous two propositions together with Proposition 2.5 show that
with each unitary relation between Krĕın spaces one can associate a unitary
relation between Hilbert spaces; that association is the Potapov-Ginzburg
transformation, see Proposition 3.20.

The following proposition which can be found in [14, Proposition 2.3.1],
gives some necessary and sufficient conditions for an isometric relation to be
unitary. To prove the proposition, observe that if G and H are relations from
K1 to K2, then

G = H if and only if G ⊆ H, domH ⊆ domG, mulH ⊆ mulG. (3.5)

Proposition 3.5. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then U is a unitary if and only if domU [∗] ⊆ ranU and (domU)[⊥]1 ⊆ kerU
or, equivalently, ranU [∗] ⊆ domU and (ranU)[⊥]2 ⊆ mulU .

Proof. If U is unitary, then (3.1) and (3.3) imply that domU [∗] = ranU
and (domU)[⊥]1 = kerU . Conversely, since U is isometric U−1 ⊆ U [∗] and
mulU ⊆ (domU)[⊥]1 , see (3.1) and (3.2). Therefore the assumptions imply
that domU [∗] = domU−1 and mulU−1 = kerU = (domU)[⊥]1 = mulU [∗],
see (2.6). Hence, the equality U−1 = U [∗] holds due to (3.5), i.e., U is unitary.

The second equivalence is obtained from the first by passing to the
inverses. �

3.2. Isometric relations and closures of subspaces

A standard unitary operator U from {K1, [·, ·]1} to {K2, [·, ·]2} satisfies

U(L[⊥]1) = (U(L))
[⊥]2 , L ⊆ K. (3.6)
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Since a unitary relation between Krĕın spaces need not be everywhere defined,
(3.6) does not hold in general for unitary relations.

Lemma 3.6. Let V be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let L ⊆ domV . Then

V (L[⊥]1 ∩ domV ) = (V (L))
[⊥]2 ∩ ranV.

Proof. If f ′ ∈ V
(
L[⊥]1 ∩ domV

)
, then there exists a f ∈ L[⊥]1 ∩ domV such

that {f, f ′} ∈ V . In particular, [f, h]1 = 0 for all h ∈ L. Since V is isometric,

this implies that [f ′, h′]2 = 0 for all h′ ∈ V (L), i.e., f ′ ∈ (V (L))
[⊥]2 ∩ ranV .

This shows that V
(
L[⊥]1 ∩ domV

)
⊆ (V (L))

[⊥]2 ∩ ranV . The inverse inclu-

sion follows from the proven inclusion by applying it to V −1 and V (L). �

Lemma 3.6 can be used to show the under certain conditions an essen-
tially hyper-maximal neutral subspace is mapped onto an essentially hyper-
maximal neutral subspace.

Corollary 3.7. Let V be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let L be a neutral subspace of {K1, [·, ·]1} such that closL = L[⊥]1 and
(closL) ∩ domV = L. Then equivalent are

(i) closV (L) = V (L)[⊥]2 ;

(ii)
(
V (L)[⊥]2 ∩ ranV

)[⊥]2
= closV (L).

If either of the above equivalent conditions holds, then (closV (L)) ∩ ranV =
V (L).

Proof. By the assumptions on L and Lemma 3.6

V (L) = V ((closL) ∩ domV ) = V (L[⊥]1 ∩ domV ) = V (L)[⊥]2 ∩ ranV. (3.7)

If (i) holds, then (3.7) shows that (ii) and the final conclusion hold. Con-
versely, if (ii) holds, then by taking orthogonal complements in (3.7) (i) fol-
lows immediately. �

Since the above statement holds for all isometric relations, it shows
that the (essential) hyper-maximal neutrality of a subspace L is only weakly
connected to the (essential) hyper-maximal neutrality of the subspace V (L).

If U is a standard unitary operator from {K1, [·, ·]1} to {K2, [·, ·]2}, then
(3.6) implies that U(closL) = closU(L) for any subspace L of K1. Clearly,
this equality does not hold for general unitary relations and a similar result
only holds for certain subspaces. For instance if V is an isometric relation
from {K1, [·, ·]1} to {K2, [·, ·]2} and kerV ⊆ L ⊆ domV is such that

closL = (L[⊥]1 ∩ domV )[⊥]1 and closV (L) = (V (L)[⊥]2 ∩ ranV )[⊥]2 .

Then applying Lemma 3.6 twice yields that

V (closL ∩ domV ) = (closV (L)) ∩ ranV.

The above example indicates that the behavior of isometric relations with
respect to the closure of subspaces is in general not easy to describe. However,
for uniformly definite subspaces this behavior is specific.
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Proposition 3.8. Let V be a closed and isometric operator from {K1, [·, ·]1} to
{K2, [·, ·]2} and let D ⊆ domV be a uniformly definite subspace of {K1, [·, ·]1}.
Then

(i) if D = clos (D) ∩ domV , then V (D) is closed;
(ii) D is closed if and only if V (D) + [mulV ] is a closed uniformly definite

subspace of {(mulV )[⊥]2/mulV, [·, ·]2}.

Proof. To prove the statements w.l.o.g. assume D to be uniformly positive
and let j1 and j2 be fundamental symmetries of {K1, [·, ·]1} and {K2, [·, ·]2},
respectively.

(i) : Let f ′ ∈ closV (D), then there exists a sequence {{fn, f ′
n}}n≥0,

where fn ∈ D and {fn, f ′
n} ∈ V , such that f ′ = limn→∞ f ′

n. By the isometry
of V

[j2(f
′
m − f ′

n), f
′
m − f ′

n]2 ≥ [f ′
m − f ′

n, f
′
m − f ′

n]2 = [fm − fn, fm − fn]1.

Since D is uniformly positive, there exists a constant α > 0 such that
α[j1g, g]1 ≤ [g, g]1 for all g ∈ D. Combining this fact with the above in-
equality yields

[j2(f
′
m − f ′

n), f
′
m − f ′

n]2 ≥ α[j1(fm − fn), fm − fn]1.

Since {f ′
n}n≥0 converges by assumption in the Hilbert space {K2, [j2·, ·]2}, the

preceding inequality shows that {fn}n≥0 is a Cauchy-sequence in the Hilbert
space {K1, [j1·, ·]1} and, hence, converges to a f ∈ clos (D). Consequently,
{{fn, f ′

n}}n≥0 converges (in the graph norm) to {f, f ′} ∈ K1×K2 and, hence,
{f, f ′} ∈ V by the closedness of V . Therefore f ∈ clos (D)∩domV = D and,
hence, f ′ ∈ V (D).

(ii) : For simplicity assume that mulV = {0}. Let D ⊆ domV be
closed, then V �D is an everywhere defined closed (isometric) operator from
the Hilbert space {D, [·, ·]1} to {K2, [·, ·]2}. I.e., there exists a M > 0 such
that

[j2V f, V f ]2 ≤ M [f, f ]1, ∀f ∈ D.

Moreover, since D is uniformly positive, there exists a constant α > 0 such
that [j1f, f ]1 ≤ α[f, f ]1 for all f ∈ D. Consequently,

[j2V f, V f ]2 ≤ M [j1f, f ]1 ≤ αM [f, f ]1 = αM [V f, V f ]2, f ∈ D.

I.e., V (D) is a uniformly definite subspace of {K2, [·, ·]2}. The converse im-
plication is obtained by applying (i) to V −1 and V (D). �

3.3. Reduction of unitary relations

Here unitary relations are reduced in two different ways: by means of neu-
tral subspaces contained in their domain (or range) and by splitting them.
These reductions allow us to remove from unitary relations that part of their
behavior which is well understood. To start with, observe the following basic
composition results for isometric relations, see [6, Section 2.2].

Lemma 3.9. Let S be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2} and
let T an isometric relation from {K2, [·, ·]2} to {K3, [·, ·]}. Then
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(i) TS is isometric;
(ii) if S and T are unitary, ranS ⊆ domT and domT is closed or domT ⊆

ranS and ranS is closed, then TS is unitary.

Proof. Combine Lemma 2.13 with (3.1). �

The following lemma associates to each neutral subspace a unitary rela-
tion which can be used to reduce unitary relations, see Corollary 3.11 below.

Lemma 3.10. Let L be a closed neutral subspace of {K, [·, ·]}. Then UL defined
by

UL : K → L[⊥]/L, f ∈ domUL = L[⊥] 7→ f + [L]

is a unitary operator from {K, [·, ·]} onto the Krĕın space {L[⊥]/L, [·, ·]}.

Proof. Note first that by Proposition 2.3 {L[⊥]/L, [·, ·]} is a Krĕın space and
that the isometry of UL is a direct consequence of the neutrality of L. Next let
h ∈ K and k ∈ L[⊥]/L be such that [f, h] = [ULf, k] for all f ∈ L[⊥] = domUL.
Since UL maps onto L[⊥]/L by its definition, there exists g ∈ domUL such
that ULg = k and, hence, [f, h − g] = 0 for all f ∈ L[⊥]. This shows that
h−g ∈ clos (L) = L ⊆ kerUL. Consequently, {h, k} = {g, ULg}+{h−g, 0} ∈
UL and, hence, Proposition 3.2 implies that UL is unitary. �

Since kerV and mulV are neutral subspaces for an isometric relation V ,
see (3.2), composing isometric relations with the unitary relations provided
by Corollary 3.10 yields isometric mappings without kernel and multivalued
part. In other words the interesting behavior of isometric relations takes
place on the quotient spaces domV/kerV and ranV/mulV . In particular, the
following corollary can be used to simplify proofs for statements concerning
unitary relations.

Corollary 3.11. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then

Ur = {{f, f ′ + [mulU ]} ∈ K1 × ranU/mulU : {f, f ′} ∈ U}

is a unitary operator from {K1, [·, ·]1} to the Krĕın space {ranU/mulU, [·, ·]2}
with dense range and

Ud = {{f + [kerU ], f ′} ∈ domU/kerU × K2 : {f, f ′} ∈ U}

is a unitary relation from the Krĕın space {domU/kerU, [·, ·]1} to {K2, [·, ·]2}
with dense domain. In particular, (Ur)d = (Ud)r is a unitary operator from
{domU/kerU, [·, ·]1} to {ranU/mulU, [·, ·]2} with dense domain and dense
range.

Proof. Since kerU and mulU are closed neutral subspaces, UkerU and UmulU

are unitary operators by Lemma 3.10 with closed domain and closed range.
Consequently, Lemma 3.9 implies that Ur := UmulUU and Ud := U(UkerU )

−1

are unitary relations which clearly have the stated properties. �

Next observe the following simple but useful result.
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Lemma 3.12. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let {K̃i, [·, ·]i}[+]{K̂i, [·, ·]i} be an orthogonal decomposition of {Ki, [·, ·]i}
into two Krĕın spaces, for i = 1, 2, such that gr(U) = gr(Ũ) + gr(Û), where

gr(Ũ) := gr(U) ∩ K̃1 × K̃2 and gr(Û) := gr(U) ∩ K̂1 × K̂2. Then U is unitary

if and only if Ũ and Û are unitary.

Proof. This follows from the definition of unitary relations (U [∗] = U−1) and
the orthogonal decomposition of U . �

Corollary 3.13. Let U be a closed and isometric relation from {K1, [·, ·]1} to
{K2, [·, ·]2}. Moreover, let D1 ⊆ domU be a closed uniformly definite sub-
space of {K1, [·, ·]1} and let D2 be the closed uniformly definite subspace of
{K2, [·, ·]2} such that U(D1) = D2 + mulU . Then U is a unitary relation if
and only if

Ũ = {{f, f ′} ∈ U : f ∈ D
[⊥]1
1 and f ′ ∈ D

[⊥]2
2 }

is a unitary relation from {K1 ∩D
[⊥]1
1 , [·, ·]1} to {K2 ∩D

[⊥]2
2 , [·, ·]2}.

Proof. Note first that the existence of D2 as stated follows from Proposi-

tion 3.8 and that Û := {{f, f ′} ∈ U : f ∈ D1 and f ′ ∈ D2} is an everywhere
defined isometric operator from the Hilbert space {D1, [·, ·]1} onto the Hilbert

space {D2, [·, ·]2} and, hence, unitary. Since, clearly, gr(U) = gr(Ũ) + gr(Û),
the statement follows now directly from Lemma 3.12. �

3.4. Unitary operators with closed domain and range

The following proposition shows that unitary relations with closed domain
and range have almost the same properties as standard unitary operators
(everywhere defined unitary operators with everywhere define inverse.)

Proposition 3.14. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
with closed domain and range. Let L be a subspace of K1 with kerU ⊆ L ⊆
domU , then

U(L[⊥]1) = (U(L))[⊥]2 .

In particular, L is a (essentially, closed) (hyper-maximal, maximal) nonneg-
ative, nonpositive or neutral subspace of {K1, [·, ·]1} if and only if U(L) is a
(essentially, closed) (hyper-maximal, maximal) nonnegative, nonpositive or
neutral of {K2, [·, ·]2}, respectively.

Proof. Let kerU ⊆ L ⊆ domU , then (domU)[⊥]1 ⊆ L[⊥]1 ⊆ (kerU)[⊥]1 .
Hence, using (3.3) and the closedness of the domain of U , it follows that
kerU ⊆ L[⊥]1 ⊆ domU . Similar arguments show that mulU ⊆ (U(L))[⊥]2 ⊆
ranU . Consequently, the equality U(L[⊥]1) = (U(L))[⊥]2 follows directly from
Lemma 3.6, cf. (3.6). �

The condition that the domain and range of U are closed in Proposi-
tion 3.14 is too strong; they are always closed simultaneously as the following
result from [12] shows, cf. [13]. Here an elementary proof is given.
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Proposition 3.15. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then domU is closed if and only if ranU is closed.

Proof. Since U is unitary if and only if U−1 is unitary, it suffices to prove
that if domU is closed, then ranU is closed.

Assume that domU is closed, then Uc := UmulUU(UkerU )
−1 is an ev-

erywhere defined unitary operator from the Krĕın space {domU/kerU, [·, ·]1}
to the Krĕın space {ranU/mulU, [·, ·]2} with dense range, see Lemma 3.10.
Let D+

1 [+]D−
1 be a canonical decomposition of {domU/kerU, [·, ·]1}, then

Uc(D
+
1 ) and Uc(D

−
1 ) are a closed uniformly positive and negative subspace of

{ranU/mulU, [·, ·]2} which are orthogonal to each other, see Proposition 3.8
and Lemma 3.6. Therefore, ranUc = Uc(D

+
1 ) + Uc(D

−
1 ) is closed, see [3, Ch.

V: Theorem 5.3]. Since (UmulU )
−1 is a unitary operator, Proposition 3.14

implies that (UmulU )
−1ranUc = ranU(UkerU )

−1 = ranU is closed. �

Corollary 3.16. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
with closed domain. Then for any neutral subspace L, kerU ⊆ L ⊆ domU ,
of {K1, [·, ·]1}

n+(L) = n+(U(L)) and n−(L) = n−(U(L)).

Proof. Since domU is closed, (Ud)r is a standard unitary operator from
{domU/kerU, [·, ·]1} to {ranU/mulU, [·, ·]2}, see Proposition 3.15 and Corol-
lary 3.11. Hence, n±(0d) = n±(0r), where 0d and 0r are the trivial subspaces
in {domU/kerU, [·, ·]1} and {ranU/mulU, [·, ·]2}, respectively. Furthermore,
the first von Neumann formula ((2.4)) implies that n±(0d) = n±(kerU) and
n±(0r) = n±(ranU). Together these observations yield the statement. �

Let U be a standard unitary operator from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1}. Then the proof

of Proposition 3.15 shows that U(K+
1 )[+]U(K−

1 ) is a canonical decomposi-
tion of {K2, [·, ·]2}. Consequently, standard unitary operators in Krĕın spaces
are the orthogonal sum of two Hilbert space unitary operators. This shows
that standard unitary operators give a one-to-one correspondence between
fundamental symmetries.

Proposition 3.17. Let U be a standard unitary operator from {K1, [·, ·]1} onto
{K2, [·, ·]2}. Then the mapping j1 7→ U j1U

−1 is a bijective mapping from the
set of all fundamental symmetries of {K1, [·, ·]1} onto the set of all fundamen-
tal symmetries of {K2, [·, ·]2}.

Proof. Let j1 be a fundamental symmetry of {K1, [·, ·]1}, then

U j1U
−1U j1U

−1 = I and (U j1U
−1)[∗] = U−[∗]j1U

[∗] = U j1U
−1.

This shows that U j1U
−1 is a fundamental symmetry for {K2, [·, ·]2}. The

bijectivity of the mapping is clear, because for any fundamental symmetry
j2 of {K2, [·, ·]2} one has that j2 = UU−1j2UU−1 and similar arguments as
above show that U−1j2U is a fundamental symmetry for {K1, [·, ·]1}. �
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Analogues of Proposition 3.17 hold for unitary relations with closed
domain and range. For instance, if ranU = K2, then the indicated mapping
is surjective.

The following proposition gives a characterization for unitary relations
with closed domain, cf. [3, Ch. VI: Theorem 3.5].

Proposition 3.18. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then U has closed domain if and only if U maps every uniformly positive
(negative) subspace D ⊂ domU of {K1, [·, ·]1} onto the sum of mulU and a
uniformly positive (negative) subspace of {K2, [·, ·]2}.

Proof. (Ur)d is a unitary operator from the Krĕın space {domU/kerU, [·, ·]1}
to the Krĕın space {ranU/mulU, [·, ·]2} with dense domain and dense range,
see Corollary 3.11. Clearly, (Ur)d has closed domain if and only if U has
closed domain. Hence, it suffices to prove the statement for a densely defined
unitary operator.

If U has closed domain andD ⊆ domU is a uniformly positive (negative)
subspace, then clos (D) ⊆ domU is a uniformly positive (negative) subspace
which is mapped by U onto a uniformly positive (negative) subspace, see
Proposition 3.8. Hence D is also mapped onto a uniformly positive subspace.
To prove the converse implication let K+

1 [+]K−
1 be a canonical decomposition

of {K, [·, ·]}, then K1 = domU = clos (domU ∩ K+
1 ) + clos (domU ∩ K−

1 ), see
(4.1) below. By the assumption together with Proposition 3.8 domU ∩ K+

1

and domU ∩K−
1 are closed. Hence, K1 = domU ∩K+

1 +domU ∩K−
1 ⊆ domU

shows that domU is closed. �

Corollary 3.19. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then

(i) if {K1, [·, ·]1} is a Hilbert space, then domU = K1;
(ii) if {K1, [·, ·]1} and {K2, [·, ·]2} are Hilbert spaces, then U is a standard

unitary operator.

Proof. Clearly, (ii) follows from (i). If the assumption in (i) holds, then by
Proposition 3.18 (applied to U−1) U has closed range and, hence, closed

domain, see Proposition 3.15. Since kerU = (domU)
[⊥]1 is a neutral sub-

space, see (3.3), the assumption also implies that kerU = {0} and, hence,
domU = domU = K1. �

Potapov-Ginzburg transformations, see [2, Ch. I: Section 1], can be in-
terpreted as a standard unitary operator. Therefore introduce the Hilbert
spaces {H1, (·, ·)1} := {K+

1 ×K−
2 , (·, ·)1} and {H2, (·, ·)2} := {K+

2 ×K−
1 , (·, ·)2},

where

(f × f ′, g × g′)1 = [f, g]1 − [f ′, g′]2, f, g ∈ K+
1 , f

′, g′ ∈ K−
2 ;

(f × f ′, g × g′)2 = [f, g]2 − [f ′, g′]1, f, g ∈ K+
2 , f

′, g′ ∈ K−
1 .

(3.8)

Here K+
i [+]K−

i is a canonical decomposition of the Krĕın space {Ki, [·, ·]i},
for i = 1, 2.
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Proposition 3.20. Let {K1, [·, ·]1} and {K2, [·, ·]2} be Krĕın spaces with asso-
ciated Hilbert spaces {H1, (·, ·)1} and {H2, (·, ·)2} as defined above for fun-
damental symmetries j1 and j2. Then the Potapov-Ginzburg transformation
Pj1,j2 defined by

Pj1,j2{f, g} = {P+
1 f × P−

2 g, P+
2 g × P−

1 f}
is a standard unitary operator from {K1, [·, ·]1}×{K2,−[·, ·]2} to {H1, (·, ·)1}×
{H2,−(·, ·)2} and for any relation H from {K1, [·, ·]1} to {K2, [·, ·]2}

Pj1,j2(H
−[∗]) = (Pj1,j2(H))

−∗
.

In particular, Pj1,j2 maps the graph of (closed) isometric and unitary relations
from the Krĕın space {K1, [·, ·]1} to the Krĕın space {K2, [·, ·]2} to the graph
of (closed) isometric and unitary relations from the Hilbert space {H1, (·, ·)1}
to the Hilbert space {H2, (·, ·)2}, respectively.

Proof. Let f, g ∈ K1 and f ′, g′ ∈ K2, then with the introduced inner products

[f, g]1 − [f ′, g′]2

= [P+
1 f, P+

1 g]1 + [P−
1 f, P−

1 g]1 − [P+
2 f ′, P+

2 g′]2 − [P−
2 f ′, P−

2 g′]2

= (P+
1 f × P−

2 f ′, P+
1 g × P−

2 g′)1 − (P+
2 f ′ × P−

1 f, P+
2 g′ × P−

1 g)2.

Hence the Potapov-Ginzburg transformation Pj1,j2 is an everywhere defined
isometric operator from the Krĕın space {K1, [·, ·]1} × {K2,−[·, ·]2} onto the
Krĕın space {H1, (·, ·)1}×{H2,−(·, ·)2}, i.e., it is a standard unitary operator,

see e.g. Proposition 3.5. Finally, the equality Pj1,j2(H
−[∗]) = (Pj1,j2(H))

−∗

follows from Lemma 3.6 combined with an interpretation of the orthogonal
complement, cf. the arguments preceding Proposition 3.3. �
3.5. Kernels and multivalued parts of isometric relations

Recall that for an isometric operator from {K1, [·, ·]1} to {K2, [·, ·]2} one has
that kerV ⊆ (domV )[⊥]1 and mulV ⊆ (ranV )[⊥]2 . The following statement
contains a useful consequence of the equality kerV = (domV )[⊥]1 .

Corollary 3.21. Let V be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
which satisfies kerV = (domV )[⊥]1 and let K+

1 [+]K−
1 be a canonical decompo-

sition of {K1, [·, ·]1} with associated orthogonal projections P+
1 and P−

1 . Then

P+
1 domV = K+

1 and P−
1 domV = K−

1 .

Proof. The assumption kerV = (domV )[⊥]1 together with equation (2.2)
implies that domV ∩K±

1 = K±
1 ⊖ kerV . Since kerV ⊆ domV , the conclusion

follows from the preceding equalities. �
The following statement gives conditions under which the inequalities in

(3.2) become equalities given that equality holds in either of the two inclusion.

Lemma 3.22. Let V be a closed and isometric relation from {K1, [·, ·]1} to
{K2, [·, ·]2}. Then{

kerV = (domV )[⊥]1

(ranV )[⊥]2 ⊆ ranV
⇐⇒

{
mulV = (ranV )[⊥]2

(domV )[⊥]1 ⊆ domV



20 Working Papers

Proof. Because V −1 is an isometric relations if V is an isometric relation,
it suffices to prove only one implication. Therefore, assume that kerV =

(domV )[⊥]1 and (ranV )[⊥]2 ⊆ ranV . Then, clearly, (domV )
[⊥]1 ⊆ domV .

Furthermore, the assumption kerV = (domV )[⊥]1 and Lemma 3.6 yield that

mulV = V (kerV ) = V ((domV )
[⊥]1) = V (domV )[⊥]2 ∩ ranV

= (ranV )[⊥]2 ∩ ranV.

Hence, the assumption (ranV )[⊥]2 ⊆ ranV yields mulV = (ranV )[⊥]2 . �

Corollary 3.23. Let V be a closed and isometric relation from {K1, [·, ·]1}
to {K2, [·, ·]2} and assume that there exists a hyper-maximal semi-definite
subspace L of {K1, [·, ·]1} such that L ⊆ domV . Then mulU = (ranU)[⊥]2

implies that kerU = (domU)[⊥]1 .

Proof. Recall that L[⊥]1 ⊆ L for hyper-maximal semi-definite subspaces, see
Proposition 2.8. Hence, the assumption L ⊆ domV implies that

(domV )[⊥]1 ⊆ L[⊥]1 ⊆ L ⊆ domV.

Consequently, Lemma 3.22 implies that kerV = (domV )[⊥]1 . �

A further condition for the equality kerU = (domU)[⊥]1 to hold is
furnished by the following lemma which will be used later.

Lemma 3.24. Let V be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let j1 be a fundamental symmetry of {K1, [·, ·]1}. Moreover, assume that
there exists a hyper-maximal semi-definite subspace L of {K1, [·, ·]1} such that
kerV ⊆ L ⊆ domV . Then kerV = (domV )[⊥]1 if and only if j1L ∩ domV +
kerV is an essentially hyper-maximal semi-definite subspace of {K1, [·, ·]1}.

Proof. Since L, being hyper-maximal semi-definite, is closed, the inclusion
kerV ⊆ L implies that kerV is closed. Using this observation and the hyper-
maximality of L, it follows that K1 has the following j1-orthogonal decompo-
sition:

K1 = L[⊥]1 ⊕1 (L ∩ j1L)⊕1 j1(L
[⊥]1 ⊖1 kerV )⊕1 j1kerV, (3.9)

cf. Proposition 2.8 (iv). Hence domV (⊆ (kerV )[⊥]1) and (kerV )[⊥]1 have
the decompositions:

domV = kerV ⊕1 (L
[⊥]1 ⊖1 kerV )⊕1 (L ∩ j1L)⊕1 (j1L

[⊥]1 ∩ domV ),

(kerV )[⊥]1 = kerV ⊕1 (L
[⊥]1 ⊖1 kerV )⊕1 (L ∩ j1L)⊕1 j1(L

[⊥]1 ⊖1 kerV ).

Since kerV is closed, kerV = (domV )[⊥]1 if and only if (kerV )[⊥]1 = domV .
Hence, the above two formula lines show that kerV = (domV )[⊥]1 if and only
if clos (j1L

[⊥]1 ∩ domV ) = j1L
[⊥]1 ⊖1 j1kerV . Since, j1L ⊖1 j1kerV = (L ∩

j1L)⊕ (j1L
[⊥]1 ⊖1 j1kerV ), it follows from (3.9) together with Proposition 2.8

that the statement holds. �
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If equalities hold in (3.2) for an isometric relation and additionally its
domain or range is closed, then the isometry must be unitary. Note that
without the condition that the domain or range is closed this is not in general
true, see e.g. Example 5.17.

Lemma 3.25. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
which has closed domain or closed range and satisfies

kerU = (domU)[⊥]1 and mulU = (ranU)[⊥]2 .

Then U is a unitary relation with closed domain and range.

Proof. Assume that U has closed range, then the assumptions and (2.6) yield

domU [∗] ⊆ domU [∗] = (mul clos (U))[⊥]2 ⊆ (mulU)[⊥]2 = ranU.

Therefore U is unitary by Proposition 3.5 and U has closed domain by Propo-
sition 3.15. The case that U has closed domain follows by passing to the
inverse. �

Finally, some additions to Proposition 3.5 are given, cf. [6, Section 2.3].

Corollary 3.26. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then

(i) U is a unitary operator (not necessarily densely defined) if and only if
ranU [∗] ⊆ domU and ranU = K2;

(ii) U is a unitary operator with closed domain (not necessarily densely
defined) if and only if (domU)[⊥]1 ⊆ domU and ranU = K2.

Proof. (i): Since ranU ⊆ (mulU)[⊥]2 for any isometric relation U , see (3.2),
(i) can be obtained from Proposition 3.5.

(ii): If U is a unitary operator, then by (3.3) (domU)[⊥]1 = kerU ⊆
domU and by (i) ranU = K2. Hence, necessity of the conditions follows from
the fact that the domain and range of a unitary relation are simultaneously
closed, see Proposition 3.15.

Conversely, if (domU)[⊥]1 ⊆ domU and ranU = K2, then mulU = {0}
by (3.2) and, hence, ker clos (U) = (domU)[⊥]1 by Lemma 3.22 (applied to
closU). Moreover, the assumption (domU)[⊥]1 ⊆ domU also yields that

ker clos (U) = (domclos (U))[⊥]1 = (domU)[⊥]1 ⊆ domU.

Consequently, kerU is closed and, hence, U is unitary by Lemma 3.25. �

In view of Proposition 3.5 and Lemma 3.22, the following statement is
also true (cf. [6, Corollary 2.6]):

(i) ⇔ domU [∗] ⊆ ranU, (domU)[⊥]1 ⊆ domU, ranU = K2.
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4. Unitary relations and the Weyl identity

In order to further investigate unitary relations it is shown that they satisfy a
geometrical identity, theWeyl identity, which is shown to characterize unitary
relations. This identity is then used to obtain a quasi-block decomposition of
unitary relations and to split unitary relations.

4.1. Unitary relations and the von Neumann formula

As a consequence of interpreting unitary relations as hyper-maximal neu-
tral subspaces, the second von Neumann formula gives rise to the following
statement.

Proposition 4.1. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} with associated

orthogonal projections P+
i and P−

i , i = 1, 2. Then

(P+
1 × P−

2 )gr(U) = K+
1 × K−

2 and (P−
1 × P+

2 )gr(U) = K−
1 × K+

2 .

In particular,

clos (domU ∩ K±
1 ) = domU ∩ K±

1 and clos (ranU ∩ K±
2 ) = ranU ∩ K±

2 .

Proof. Note first that (K+
1 ×K−

2 )[+](K−
1 ×K+

2 ) is a canonical decomposition of
{K1×K2, [·, ·]1,−2}, see (3.4), with associated orthogonal projections P+

1 ×P−
2

and P−
1 × P+

2 , and recall that gr(U) is a hyper-maximal neutral subspace of
{K1 × K2, [·, ·]1,−2}, see Proposition 3.3. These observations together with
Proposition 2.5 show that the first assertion holds.

Using the proven equalities and the hyper-maximal neutrality of gr(U),
Corollary 2.12 (applied to L = domU × ranU and M = gr(U) with P+ =
P+
1 × P−

2 and P− = P−
1 × P+

2 ) yields that

clos ((domU × ranU) ∩ (K+
1 × K−

2 )) = clos (domU × ranU) ∩ (K+
1 × K−

2 );

clos ((domU × ranU) ∩ (K−
1 × K+

2 )) = clos (domU × ranU) ∩ (K−
1 × K+

2 ).

This shows that the final assertion holds. �

With the notation as in Proposition 4.1, Proposition 4.1 combined with
Proposition 2.14 shows domU has the following direct sum decompositions:

domU ∩K+
1 +U−1(ranU ∩K−

2 ) = domU = domU ∩K−
1 +U−1(ranU ∩K+

2 ),

see also [4, Theorem 3.9]. Furthermore, Proposition 4.1 combined with the
first von Neumann formula (2.4) yields

domU = kerU + clos (domU ∩ K+
1 ) + clos (domU ∩ K−

1 ), (4.1)

see also [6, Lemma 2.14 (ii)]. Combining (4.1) with the last equalities in
Proposition 4.1 yields the following equalities:

K±
1 = P±

1 kerU + clos (domU ∩ K±
1 ). (4.2)
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On the other hand, if an isometric relation V satisfies (4.1) and kerV =
(domV )[⊥]1 , then, clearly,

clos (domV ∩ K±
1 ) = domV ∩ K±

1 ;

clos (ranV ∩ K±
2 ) = ranV ∩ K±

2 .
(4.3)

The following statement gives an alternative condition for (4.3) to hold.

Corollary 4.2. Let V be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and assume that there exists a hyper-maximal semi-definite subspace L of
{K1, [·, ·]1} such that L ⊆ domV . Then clos (domV ∩ K±

1 ) = domV ∩ K±
1 .

Proof. This follows directly from Corollary 2.12 (applied to L = domV and
M = L, and L = domV and M = L[⊥]1). �

The following theorem shows that the first two equalities in Proposi-
tion 4.1 almost characterize unitary relations among the set of all isometric
relations.

Theorem 4.3. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then U is unitary if and only if there exist orthogonal projections P1 and P2

in {K1, [·, ·]1} and {K2, [·, ·]2}, respectively, such that

(i) (domU)
[⊥]1 ⊆ kerU and (ranU)

[⊥]2 ⊆ mulU ;
(ii) (P1 × P2)(domU × ranU) ⊆ (P1 × P2)gr(U);
(iii) ((I − P1)× (I − P2))(domU × ranU) ⊆ ((I − P1)× (I − P2))gr(U);
(iv) P1domU = P1domU and P2ranU = P2ranU .

Proof. Let K+
i [+]K−

i be a canonical decomposition of {Ki, [·, ·]i} with associ-
ated projections P+

i and P−
i , i = 1, 2. Then necessity of the condition (i) is

clear by (3.3) and the conditions (ii) and (iii) are satisfied for P1 = P+
1 and

P2 = P+
2 by the first two equalities in Proposition 4.1. Those same equalities

in Proposition 4.1 show that P+
1 domU = K+

1 and P−
2 ranU = K−

2 , which
shows that (iv) holds.

Conversely, observe first that by Proposition 2.14 condition (iii) is equiv-
alent to

domU = U−1(ranU ∩ ranP2) + (domU ∩ ranP1). (4.4)

Now assume that f ∈ K1 and f ′ ∈ K2 satisfy [f, g]1 = [f ′, g′]2, for all {g, g′} ∈
U . Then f ∈ (kerU)[⊥]1 ⊆ domU and f ′ ∈ (mulU)[⊥]2 ⊆ ranU by (i). By
(ii) and (iv) there exists a {h, h′} ∈ U such that P1h = P1f and P2h

′ = P2f
′.

Consequently,

[(I−P1)(f−h), g]1 = [f−h, g]1 = [f ′−h′, g′]2 = [(I−P2)(f
′−h′), g′]2, (4.5)

for all {g, g′} ∈ U . If g ∈ dom (U ∩ ranP1), then the inner-product on the
lefthand side of (4.5) is zero. If g′ ∈ ran (U ∩ ranP2), then the inner product
on the righthand side of (4.5) is zero. Hence, (4.4), (4.5) and (i) imply that

f−h ∈ (domU)[⊥]1 ⊆ kerU and f ′−h′ ∈ (ranU)
[⊥]2 ⊆ mulU . Consequently,

{f, f ′} = {h, h′}+ {f − h, 0}+ {0, f ′ − h′} ∈ U and, hence, U is unitary, see
Proposition 3.2. �
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4.2. The Weyl identity

Here it is shown that a unitary relation satisfies an identity which will be
called the Weyl identity. The reason for this name is that it is the abstract
equivalent of the so-called Weyl function (or family) which plays an important
role in the study of spectral properties of extensions of symmetric operators,
see e.g. [6, Definition 3.3].

Proposition 4.4. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1}. Then the Weyl

identity holds:

U(domU ∩ K+
1 ) =

(
U(domU ∩ K−

1 )
)[⊥]2

.

In particular, U(domU∩K+
1 ) and U(domU∩K−

1 ) are a maximal nonnegative
and maximal nonpositive subspace of {K2, [·, ·]2}, respectively.

Proof. Let K+
2 [+]K−

2 be a canonical decomposition of {K2, [·, ·]2} and let P+
i

and P−
i be the projections associated to K+

i [+]K−
i , i = 1, 2. Then by Propo-

sition 4.1

(P+
1 × P−

2 )(domU × ranU) ⊆ (P+
1 × P−

2 )gr(U) = K+
1 × K−

2 .

Hence Proposition 2.14 (with P1 = P+
1 and P2 = P−

2 ) implies that

P−
2 U(domU ∩ kerP+

1 ) = P−
2 ranU = K−

2 .

Hence, U(domU ∩ K−
1 ) is a maximal nonpositive subspace of {K2, [·, ·]2}.

Similar arguments show that U(domU ∩K+
1 ) is a maximal nonnegative sub-

space of {K2, [·, ·]2}. Moreover, evidently domU ∩ K+
1 ⊆ (domU ∩ K−

1 )
[⊥]1 .

Therefore, applying U and using Lemma 3.6 yields

U(domU ∩ K+
1 ) ⊆ (U(domU ∩ K−

1 ))
[⊥]2 ∩ ranU.

Since U(domU∩K+
1 ) and (U(domU∩K−

1 ))
[⊥]2 are both maximal nonnegative,

see Proposition 2.4, the Weyl identity follows from the previous inclusion. �

Note also that the equality (domU ∩ K+
1 ) ∩ (domU ∩ K−

1 ) = {0} yields

U(domU ∩ K+
1 ) ∩ U(domU ∩ K−

1 ) = mulU. (4.6)

Remark 4.5. For an isometric relation V (4.6) remains true. In general Propo-
sition 4.4 does not hold, but instead the following inclusions hold:

V (domV ∩ K+
1 ) ⊆

(
V (domV ∩ K−

1 )
)[⊥]2 ∩ ranV ;

V (domV ∩ K−
1 ) ⊆

(
V (domV ∩ K+

1 )
)[⊥]2 ∩ ranV.

(4.7)

Since clos (domV ∩K±
1 )∩domV = domV ∩K±

1 , Proposition Proposition 3.8
implies that V (domV ∩ K+

1 ) and V (domV ∩ K+
1 ) are closed if V is a closed

isometric relation. Furthermore, equalities hold in (4.7) when clos (domV ∩
K±
1 ) = clos (domV )∩K±

1 . These last equalities hold for instance if there exists
a hyper-maximal semi-definite subspace L ⊆ domV , see Corollary 4.2.
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Combining Proposition 4.4 with Proposition 4.1 yields the following
result for the defect numbers of kerU and mulU , see Definition 2.10; it is an
analog of [6, Lemma 2.14 (iii)].

Corollary 4.6. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}.
Then

n+(kerU) = n+(mulU) and n−(kerU) = n−(mulU).

Proof. Let UkerU and UmulU be the unitary operators (with closed domain
and range) associated to kerU and mulU as in Corollary 3.10. Then Corol-
lary 3.16 implies that

n±(kerU) = n±(UkerU (kerU)) = n±(0d);

n±(mulU) = n±(UmulU (mulU)) = n±(0r).

Here 0d and 0r denote the trivial subspaces in {domU/kerU, [·, ·]1} and
{ranU/mulU, [·, ·]2}, respectively. Now note that (Ud)r = UmulUU(UkerU )

−1

is a unitary operator with dense domain and dense range, see Corollary 3.11,
which maps 0d onto 0r and that n±(0d) = k∓d and n±(0r) = k∓r . Here for

a canonical decomposition K+
d [+]K−

d of {domU/kerU, [·, ·]1} and a canoni-

cal decomposition K+
r [+]K−

r of {ranU/mulU, [·, ·]2}, k±d = dimK±
d and k±r =

dimK±
r . This discussion shows that the statement is proven if it is shown that

for a unitary operator with dense domain from {K1, [·, ·]1} to {K2, [·, ·]2} one
has k±1 = k±2 .

Under that assumption, let K+
1 [+]K−

1 be a canonical decomposition of
{K1, [·, ·]1}, then dim(domU ∩ K+

1 ) ≤ k+1 . Moreover, Proposition 4.4 implies
that U(domU ∩ K+

1 ) is a maximal nonnegative subspace of {K2, [·, ·]2} and,
hence, dimU(domU ∩ K+

1 ) = k+2 . Since U is a injective mapping this yields
k+2 ≤ k+1 and a similar argument yields the inequality k−2 ≤ k−1 . Since the
inequalities k+1 ≤ k+2 and k−1 ≤ k−2 follow by the same arguments applied to
U−1, this completes the proof. �

Now some further characterization for the closedness of the domain
of a unitary relation can be given; they are closely related to results on
Weyl families of boundary relations studied in [6]. Moreover, note that the
equivalence of (i), (ii) and (iii) goes back to [4, Theorem 3.10] and that the
characterization (vii) gives an inverse to a statement in [6, Lemma 4.4].

Proposition 4.7. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1}. Then equivalent

are

(i) domU is closed;
(ii) domU ∩ K+

1 is closed;
(iii) domU ∩ K−

1 is closed;
(iv) U(domU ∩K+

1 ) + [mulU ] is uniformly positive in {ranU/mulU, [·, ·]2};
(v) U(domU ∩K−

1 )+ [mulU ] is uniformly negative in {ranU/mulU, [·, ·]2};
(vi) domU = kerU + domU ∩ K+

1 + domU ∩ K−
1 ;

(vii) ranU = U(domU ∩ K+
1 ) + U(domU ∩ K−

1 );
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Proof. (i)-(v): The implication from (i) to (ii) and (iii) is clear, the equiv-
alences of (ii) and (iv), and (iii) and (v) follows from Proposition 3.8. The
equivalence of (iv) and (v) follows from Proposition 4.4, and (4.1) shows that
(ii) and (iii) imply (i).

(i)-(v) ⇔ (vi) : By (4.1) the conditions (i)-(iii) imply (vi). Conversely,
if (vi) holds, then, using Proposition 4.1, it follows that

K+
1 = P+

1 domU = P+
1 kerU + domU ∩ K+

1 ,

where P+
1 is the orthogonal projection onto K+

1 . Comparing this with (4.2)
shows that (ii) holds.

(vi) ⇔ (vii) : This is obvious. �
Using the Potapov-Ginzburg transformation the following necessary and

sufficiency conditions for isometric relations to be unitary are obtained. Those
conditions are subsequently used to prove that the Weyl identity characterizes
unitary relations almost completely.

Lemma 4.8. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} with associated

projection P+
i and P−

i , i = 1, 2. Then U is unitary if and only if

(i) U is closed, and kerU = (domU)[⊥]1 and mulU = (ranU)[⊥]1 ;
(ii) there exists a subspace M+ ⊆ domU ∩K+

1 with clos (P+
2 U(M+)) = K+

2 ;
(iii) there exists a subspace M− ⊆ domU ∩K−

1 with clos (P−
2 U(M−)) = K−

2 .

Proof. Necessity of (i) is clear by (3.1) and (3.3). Since P±
2 U(domU ∩K+

±) =

K±
2 by Proposition 4.4, (ii) and (iii) hold for M± = domU ∩ K±

1 .
Conversely, if (i)-(iii) hold, then by (i) U is a closed isometric relation.

Now let UPG be the Potapov-Ginzburg transformation of U , i.e.,

gr(UPG) = {{P+
1 f × P−

2 f ′, P+
2 f ′ × P−

1 f} : {f, f ′} ∈ U},
see Proposition 3.20. Then UPG is a closed isometric operator from the Hilbert
space {K+

1 ×K−
2 , (·, ·)1} to the Hilbert space {K+

2 ×K−
1 , (·, ·)2}, see (3.8). Now

observe that the assumption (ii) implies that K+
2 × {0} ⊆ ranUPG. More-

over, the assumption kerU = (domU)[⊥]1 implies that P−
1 domU = K−

1 ,
see Corollary 3.21, and, hence, there exists a subspace N−

1 ⊆ K−
1 satisfying

closN−
1 = K−

1 , i.e., P
−
1 ranUPG = N−

1 . Combining the preceding observations
shows that K+

2 ×N−
1 ⊆ ranUPG and, hence, ranUPG = K+

2 ×K−
1 . Similar ar-

guments show that domUPG = K+
1 ×K−

2 . Consequently, clos (UPG) = UPG is
a unitary operator and therefore, using the inverse Potapov-Ginzburg trans-
formation, U is unitary. �
Theorem 4.9. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1}. Then U is uni-

tary if and only if

(i) U is closed;
(ii) kerU = (domU)[⊥]1 ;

(iii) U(domU ∩ K+
1 ) =

(
U(domU ∩ K−

1 )
)[⊥]2

.
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Proof. Necessity of the conditions (i)-(iii) follows from (3.1), (3.3) and Propo-
sition 4.4. Conversely, if (iii) holds, then

(ranU)[⊥]2 ⊆
(
U(domU ∩ K−

1 )
)[⊥]2

= U(domU ∩ K+
1 ) ⊆ ranU.

By Lemma 3.22 this result combined with the assumptions (i) and (ii) show
that mulU = (ranU)[⊥]2 . As a consequence of Proposition 3.8 U(domU∩K+

1 )
and U(domU ∩ K−

1 ) are closed and, hence, assumption (iii) combined with
Proposition 2.4 implies that U(domU∩K+

1 ) and U(domU∩K−
1 ) are a maximal

nonnegative and nonpositive subspace of {K2, [·, ·]2}, respectively. Hence the
sufficiency of the conditions (i)-(iii) follows now from Lemma 4.8. �

Geometrically Theorem 4.9 says that closed isometric operators with
dense domain are unitary precisely when they map essentially uniformly def-
inite subspaces onto maximal definite subspaces. It can be seen as an abstract
extension of [6, Proposition 3.6].

4.3. A quasi-block representation for unitary relations

Here a quasi-block representation for unitary relations is given which is based
on the Weyl identity. That representation is an extension of the representation
for standard unitary operators in [2, Ch. II: Theorem 5.10]. To obtain that
representation two lemmas will be used.

Lemma 4.10. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2} and
let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1}. Then L = kerU +

domU ∩ K+
1 + domU ∩ K−

1 is a core for U , i.e., clos (U �L) = U .

Proof. Note that Ur := U �L is an isometric relation which satisfies

Ur(domUr ∩ K+
1 ) =

(
Ur(domUr ∩ K−

1 )
)[⊥]2

. (4.8)

Because, by definition, domUr ∩ K±
1 = domU ∩ K±

1 and U satisfies (4.8) by

Proposition 4.4. Since domUr = domU , see (4.1), it follows from (3.3) that

kerUr = kerU = (domU)[⊥]1 = (domUr)
[⊥]1 .

Consequently, closUr is a closed isometric relation satisfying the conditions of
Theorem 4.9, i.e., Ur is unitary. Since Ur ⊆ U , this completes the proof. �

For the following statement recall that for an everywhere defined con-
tractionK from the Hilbert space {H1, (·, ·)1} to the Hilbert space {H2, (·, ·)2}

ker (I −K∗K) = {0} if and only if ker (I −KK∗) = {0}. (4.9)

Lemma 4.11. Let {K, [·, ·]} be a Krĕın space with fundamental symmetry j and
let K+[+]K− be associated canonical decomposition of {K, [·, ·]}. Moreover,
let K be an everywhere defined contractive operator K from {K+, [·, ·]} to
{K−,−[·, ·]} with ker (I −K∗K) = {0}. Then UK defined as

UK = clos

((
I K∗

K I

)(
(I −K∗K)−

1
2 0

0 (I −KK∗)−
1
2

))
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is a unitary relation in {K, [·, ·]} with kerUK = {0} = mulUK and

UK(domUK ∩ K+) = {f+ +Kf+ : f+ ∈ K+};
UK(domUK ∩ K−) = {f− +K∗f− : f− ∈ K−}.

Furthermore, UK = jU
[∗]
K j.

Proof. In this proof the following notation will be used

DK = (I −K∗K)−
1
2 and DK∗ = (I −KK∗)−

1
2 . (4.10)

Step 1: With respect to the decomposition K+ × K− of K, define S and T as

S =

(
I K∗

K I

)
and T =

(
DK 0
0 DK∗

)
.

Then S is an everywhere defined operator and, hence, by Lemma 2.13

(ST )[∗] = T [∗]S[∗] =

(
DK 0
0 DK∗

)(
I −K∗

−K I

)
. (4.11)

Consequently, V := ST satisfies

V [∗]V =

(
DK 0
0 DK∗

)(
I −K∗

−K I

)(
I K∗

K I

)(
DK 0
0 DK∗

)
=

(
DK 0
0 DK∗

)(
I −K∗K 0

0 I −KK∗

)(
DK 0
0 DK∗

)
= IdomV .

This shows that V is an isometric operator in {K, [·, ·]}. Moreover, the con-
dition ker (I −K∗K) = {0} implies that V has dense domain, see (4.9) and
(2.6). Consequently, (3.2) implies that (domV )[⊥]1 = {0} = kerV .

Moreover, evidently, domV ∩ K+ = DK and domV ∩ K− = DK∗ , and
ran (I −K∗K)−

1
2 = K+ and ran (I −KK∗)−

1
2 = K−

2 . Hence

V (domV ∩ K+) = {f+ +Kf+ : f+ ∈ K+};
V (domV ∩ K−) = {f− +K∗f− : f− ∈ K−}.

These equations show that V (domV ∩K+
2 ) and V (domV ∩K−

2 ) are a maximal
nonnegative and a maximal nonpositive subspace, respectively, and that

V (domV ∩ K+
2 ) = (V (domV ∩ K−

2 ))
[⊥]2 ,

see Proposition 2.4 and the discussion following that statement. Consequently,
UK = clos (V ) is unitary by Theorem 4.9 and, since V (domV ∩ K+

2 ) ∩
V (domV ∩ K−

2 ) = {0}, it follows from (4.6) that mulUK = {0}.
Step 2: Next observe that (I −KK∗)K = K(I −K∗K) and that (I −

K∗K)K∗ = K∗(I −KK∗). Hence,

(I −KK∗)
1
2K = K(I −K∗K)

1
2 and (I −K∗K)

1
2K∗ = K∗(I −KK∗)

1
2 ,

and, consequently,

KDK = DK∗KIdomDK and K∗DK∗ = DKK∗IdomDK∗ .
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Now define L = domDK × domDK∗ , then using the above equalities

V =

(
DK K∗DK∗

KDK DK∗

)
=

(
DK 0
0 DK∗

)(
I K∗

K I

)
�L = jU

[∗]
K j �L .

Since jU
[∗]
K j is a unitary operator, see Lemma 3.9, and, hence, closed, the

above equation shows that UK = clos (V ) ⊆ jU
[∗]
K j. In fact, since UK is also a

unitary operator, the preceding inclusion yields that UK = jU
[∗]
K j. �

Theorem 4.12. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
with kerU = {0} = mulU and let K+

2 [+]K−
2 be a canonical decomposi-

tions of {K2, [·, ·]2}. Then there exists a standard unitary operator Ut from
{K1, [·, ·]1} to {K2, [·, ·]2} and an everywhere defined contractive operator K
from {K+

2 , [·, ·]2} to {K−
2 ,−[·, ·]2} with ker (I − K∗K) = {0} such that with

respect to the decomposition K+
2 × K−

2 of K2

UU−1
t = clos

((
I K∗

K I

)(
(I −K∗K)−

1
2 0

0 (I −KK∗)−
1
2

))
.

Proof. Let U be a unitary operator with kerU = {0} and let K+
1 [+]K−

1 be a
canonical decomposition of {K1, [·, ·]1}. Then by Proposition 4.4 and 2.4 there
exists a (unique) contractive operator K from {K+

2 , [·, ·]2} to {K−
2 ,−[·, ·]2}

such that

U(domU ∩ K+
1 ) = {f+

2 +Kf+
2 : f+

2 ∈ K+
2 };

U(domU ∩ K−
1 ) = {f−

2 +K∗f−
2 : f−

2 ∈ K−
2 }.

Here ker (I − K∗K) = {0}, because by (4.6) {0} = U(domU ∩ K+
1 ) ∩

U(domU ∩ K−
1 ). With this K, let UK be the unitary operator in {K2, [·, ·]2}

with mulUK = {0} given by Lemma 4.11 and define L to be domU ∩ K+
1 +

domU ∩K−
1 . Then ran (U �L) ⊆ ranUK and, hence, U−1

K U �L is an isometric
operator, see Lemma 3.9, which satisfies

U−1
K (U �L)(domU ∩ K+

1 ) = dom (I −K∗K)−
1
2 × {0};

U−1
K (U �L)(domU ∩ K−

1 ) = {0} × dom (I −KK∗)−
1
2 .

Now observe that domU ∩ K+
1 and dom (I − K∗K)−

1
2 are dense in the

Hilbert spaces {K+
1 , [·, ·]1} and {K+

2 , [·, ·]2}, respectively, and domU ∩ K−
1

and dom (I − KK∗)−
1
2 are dense in the Hilbert spaces {K−

1 ,−[·, ·]1} and
{K−

2 ,−[·, ·]2}, respectively, see Proposition 4.1. Hence there exists standard
unitary operators U+

t and U−
t from {K+

1 , [·, ·]1} to {K+
2 , [·, ·]2} and from

{K−
1 ,−[·, ·]1} to {K−

2 ,−[·, ·]2}, respectively, such that with respect to the
decompositions K+

1 × K−
1 and K+

2 × K−
2 of K1 and K2, respectively, Ut :=

clos (U−1
K U �L) = U+

t × U−
t , i.e., U ⊆ UKUt. Since Ut is a standard unitary

operator, UKUt is unitary by Lemma 3.9 and, hence, the inclusion U ⊆ UKUt

yields that U = UKUt. �

In particular, Theorem 4.12 combined with Lemma 4.11 shows that if
U is a unitary operator in {K, [·, ·]} without kernel and j is a fundamental
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symmetry of {K, [·, ·]}, then there exists a standard unitary operator Ut in
{K, [·, ·]} such that (UU−1

t ) = (UU−1
t )−[∗] = (UU−1

t )∗ (where the ∗-adjoint
is with respect to the inner product {K, [j·, ·]}). I.e., up to standard unitary
transformation unitary operators without kernel are ”unbounded fundamen-
tal symmetries”.

Remark 4.13. Theorem 4.12, see also the discussion below, shows that unitary
relations can be classified by the nature of the spectrum of an associated
contraction K at 1.

The condition ker (I−K∗K) = {0} in Theorem 4.12 can be dropped by
allowing U to have a kernel and a multivalued part. In that case the repre-
sentation for unitary operators in Theorem 4.12 remains valid for arbitrary
everywhere defined contractions K if the operator(

(I −K∗K)−
1
2 0

0 (I −KK∗)−
1
2

)
occurring in that representation is interpreted as having the following graph

gr

((
(I −K∗K)(−

1
2 ) 0

0 (I −KK∗)(−
1
2 )

))
+

{(
f

UKf

)
: f ∈ K

}
×
(
K
K̃

)
,

where K = ker (I − K∗K) and K̃ = ker (I − KK∗), (I − K∗K)(−
1
2 ) and

(I−KK∗)(−
1
2 ) denote the Moore-Penrose inverses of the respective operators,

and UK is a unitary operator from {K+
2 , [·, ·]2} to {K−

2 ,−[·, ·]2} such that

UK(K) = K̃. In particular,

mulU = {f +Kf : f ∈ K} = {f +K∗f : f ∈ K̃};
kerU = U−1

t ({f + UKf : f ∈ K}).

The above discussion shows how to obtain representations for a unitary re-
lation U from {K1, [·, ·]1} to {K2, [·, ·]2} when k±1 = k±2 and dimP±

1 kerU =
dimP±

2 mulU . Representation of unitary relations for which these equalities
do not hold can be obtained by composing them (on the domain side) with
unitary operators with closed domain as furnished by Lemma 3.10.

Theorem 4.12 together with the above discussion can also be interpreted
as a realization result for maximal nonnegative and nonpositive subspaces (or,
equivalently, for maximal dissipative or accumulative relations). Therefore
observe that if L is a closed neutral subspace of {K, [·, ·]} with fundamen-
tal symmetry j, then L is a hyper-maximal neutral subspace of the Krĕın
space {L+ jL, [·, ·]} and L× L is a unitary relation in {L+ jL, [·, ·]}, see e.g.
Lemma 3.25.

Theorem 4.14. Let M+ or M− be a maximal nonnegative or nonpositive sub-
space of {K, [·, ·]}, respectively, and let K+[+]K− be a canonical decomposition
of {K, [·, ·]}. Then there exists a unitary relation U in {K, [·, ·]} such that

M+ = U(domU ∩ K+) or M− = U(domU ∩ K−),
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respectively. If U1 and U2 are two unitary relations satisfying the above condi-
tions, then clos (U−1

2 U1) is a unitary relation in {K, [·, ·]} with closed domain.

Proof. Let j be the fundamental symmetry associated with the canonical
decomposition K+[+]K− and let M0 be defined as M+∩(M+)[⊥]. Clearly, M0

is a closed neutral subspace of {K, [·, ·]} and by means of this neutral subspace

define K0 = M0 + jM0 and Kr = K ∩ K
[⊥]
0 . Then {K0, [·, ·]} and {Kr, [·, ·]}

are Krĕın spaces and K+
0 [+]K−

0 = (K+ ∩ K0)[+](K− ∩ K0) and K+
r [+]K−

r =
(K+ ∩ Kr)[+](K− ∩ Kr) are canonical decompositions for these spaces.

Now let Kr be the angular operator of M+ ∩ Kr, i.e.,

M+ ∩ Kr = {f+
r +Krf

+
r : f+

r ∈ K+
r }.

Since M+ ∩ (M+)[⊥] ∩ Kr = {0}, it follows that ker (I − K∗
rKr) = {0}.

Hence, UKr is a unitary operator in {Kr, [·, ·]} such that UKr (domUKr ∩
K+
r ) = M+ ∩ Kr, see Lemma 4.11. Since U0 defined via gr(U0) = M0 ×M0

is a unitary relation in {K0, [·, ·]}, Lemma 3.12 shows that U defined via
gr(U) = gr(U0) + gr(UKr ) is a unitary relation in {K, [·, ·]}, which clearly
satisfies U(domU ∩ K+) = M+. Similar arguments can be used to show the
existence of a unitary relation U such that U(domU ∩ K−) = M−.

Finally, let U1 and U2 be unitary relations such that U1(domU1∩K+) =
M+ = U2(domU2 ∩ K+), then U1(domU1 ∩ K−) = U2(domU2 ∩ K−), see
Proposition 4.4. Hence, clos (U−1

2 U1) is an isometric relation which maps
clos (domU1 ∩ K±) onto clos (domU2 ∩ K±) + kerU2. In particular, since
(clos (domU2∩K+)+kerU2)

[⊥]2 = clos (domU2∩K−) by (4.1), clos (U−1
2 U1)

satisfies the Weyl identity. Furthermore, since clos (kerU1 + domU1 ∩ K+ +
domU1 ∩ K−) = domU1 by (4.1), it follows that

kerU−1
2 U1 = kerU1 = (domU1)

[⊥]1 = (domU−1
2 U1)

[⊥]1 .

Consequently, Theorem 4.9 implies that clos (U−1
2 U1) is a unitary operator

which has a closed domain by (the proof of) Proposition 3.18. �

4.4. Intermediate extensions of unitary relations

A unitary relation Ũ is called an intermediate extension of the unitary rela-

tion U if kerU ⊆ ker Ũ and the action of Ũ coincides with the action of U on
dom Ũ ⊖ ker Ũ . Here it will be shown, using the Weyl identity, that interme-
diate extensions are closely related to the splitting of unitary relations into
two unitary relations.

Therefore first observe the following simple result.

Proposition 4.15. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} with associated

projections P+
i and P−

i , i = 1, 2. Moreover, let L1 and L2 be closed subspaces
of kerU and mulU , respectively, and assume that there exist subspaces M+ ⊆
domU ∩ K+

1 and M− ⊆ domU ∩ K−
1 such that

(i) P+
2 U(M+) and P−

2 U(M−) are closed;
(ii) P−

2 U(M+) ⊆ P−
2 U(M−) and P+

2 U(M−) ⊆ P+
2 U(M+).
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Then Ũ defined by

Ũ = {{f + g, f ′} ∈ U : f ∈ clos (M+ +M−), f ′ ∈ L⊥2
2 , g ∈ L1}

is a unitary relation from the Krĕın space {K̃1, [·, ·]1} to the Krĕın space

{K̃2, [·, ·]2}, where K̃1 = clos (M++M−)+(L1+j1L1) and K̃2 = (P+
2 U(M+)+

P−
2 U(M−)) ∩ (L2 + j2L2)

[⊥]2 .

Proof. Note first that by definition and the assumptions (i) and (ii) {K̃1, [·, ·]1}
and {K̃2, [·, ·]2} are Krĕın spaces and that Ũ is closed being the intersec-

tion of U with K̃1 × K̃2. Moreover, since M+ + M− ∈ (kerU)[⊥]1 , it fol-

lows that ker Ũ = (dom Ũ)[⊥]1 ∩ K̃1. Furthermore, the assumptions (i) and
(ii) imply that U(M+) and U(M−) are a maximal nonnegative and maxi-
mal nonpositive subspace of the Krĕın space P+

2 U(M+)+P−
2 U(M−)). Since

L2 ⊆ mulU ⊆ U(M+) ∩ U(M−), it follows that Ũ(M+) = U(M+) ∩ K̃2

and Ũ(M−) = U(M−) ∩ K̃2 are a maximal nonnegative and maximal non-

positive subspace of {K̃2, [·, ·]2}. Since U(M+) ⊆ (U(M−))[⊥]2 , see Proposi-

tion 4.4, the maximality of Ũ(M+) and Ũ(M−) now implies that Ũ(M+) =

Ũ(M−)[⊥]2 ∩ K̃2. Hence, Theorem 4.9 yields that Ũ is a unitary relation. �

The splitting result is now given; it partially strengthens Lemma 3.12.

Theorem 4.16. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2},
let {K̃i, [·, ·]i}[+]{K̂i, [·, ·]i} be an orthogonal decomposition of {Ki, [·, ·]i} into

two Krĕın spaces, for i = 1, 2, and define Ũ and Û via

gr(Ũ) = gr(U) ∩ (K̃1 × K̃2) and gr(Û) = gr(U) ∩ (K̂1 × K̂2).

Then Ũ is unitary if and only if Û is unitary.

Proof. W.l.o.g. assume that kerU = {0} = mulU . Furthermore, let K̃+
i [+]K̃−

i

and K̂+
i [+]K̂−

i be canonical decomposition of {K̃i, [·, ·]i} and {K̃i, [·, ·]i}, re-
spectively, for i = 1, 2. Denote the associated canonical decomposition of
{Ki, [·, ·]i} by K+

i [+]K−
i and let P+

i and P−
i denote the associated projec-

tions, i = 1, 2.
Clearly, to prove the equivalence it suffices to prove only one implication.

Hence assume that Ũ is unitary. Define Û+
r as

Û+
r = {{f, f ′} ∈ U : f ∈ domU ∩ K+

1 and P+
2 f ′ ∈ K̂+

2 },

then P+
2 ran Û+

r = K̂+
2 , see Proposition 4.4. If {f, f ′} ∈ Û+

r and {g, g′} ∈ Ũ

where g ∈ dom Ũ ∩ K−
1 , then [f, g]1 = 0 and [P+

2 f ′, P+
2 g′]2 = 0. Therefore

0 = [f, g]1 = [f ′, g′]2 = [P−
2 f ′, P−

2 g′]2.

Since Ũ is unitary, P−
2 U(dom Ũ∩K−

2 ) = K̃−
2 and, hence, the previous equality

implies that P−
2 f ′ ∈ (K̃−

2 )
[⊥]2 ∩K−

2 = K̂−
2 , i.e., ran Û

+
r ⊆ K̂2. Now if {g, g′} ∈

Ũ , where g ∈ dom Ũ ∩ K+
1 , then, since ran Û+

r ⊆ K̂2 = K̃
[⊥]2
2 ,

[f, g]1 = [f ′, g′]2 = 0.
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This shows that f ∈ (dom Ũ ∩ K+
1 )

[⊥]1 = (K̃+
1 )

[⊥]1 = K̂+
1 , see (4.2).

The above arguments show that Û+
r ⊆ Û and, hence, P+

2 U(dom Û ∩
K+
1 ) = K̂+

2 and P−
2 U(dom Û∩K+

1 ) ⊆ K̂−
2 . By similar arguments P−

2 U(dom Û∩
K−
1 ) = K̂−

2 and P+
2 U(dom Û ∩ K−

1 ) ⊆ K̂+
2 . Therefore Û is unitary by Propo-

sition 4.15. �

Next it is indicated how the splitting of unitary relations into two
unitary relations can be used to obtain intermediate extension. Therefore

let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}. Moreover, Ũ

and Û be as in Theorem 4.16 and assume that they are unitary. Then by
Proposition 5.4 below there exists hyper-maximal semi-definite subspaces L1

and L2 of {K̂1, [·, ·]1} and {K̂2, [·, ·]2} such that ker Û ⊆ L1 ⊆ dom Û and

mul Û ⊆ L2 ⊆ ran Û , respectively, and Û(L1 ∩ j1L1) = (L2 ∩ j2L2) + mul Û .
Hence

{{f + g + h, f ′ + g′ + k} : {f, f ′} ∈ Ũ , {g, g′} ∈ Û ,

g ∈ L1 ∩ j1L1, h ∈ L
[⊥]1
1 , k ∈ L

[⊥]2
2 }

is an intermediate extension of U . This shows how a splitting of a unitary
relations gives rises to intermediate extensions; the converse is obvious.

5. Structure of unitary relations

In this section the structure of unitary relations is investigated by means
of a graph decomposition. This decomposition is thereafter used to obtain
different necessary and sufficiency conditions for isometric relations to be
unitary. In particular, a block decomposition for unitary operators without
kernel is obtained.

5.1. A graph decomposition of unitary relations

The graph decomposition of unitary relations in Theorem 5.1 below is the
main result here; it is inspired by [4, Lemma 4.4]. The difference is that here
the graph of a unitary relation is decomposed whereas in [4] only the domain
of a unitary relation was decomposed.

Theorem 5.1. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2} and
let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} associated to the fun-

damental symmetry ji, for i = 1, 2. Define U+ and U− as

gr(U+) = gr(U) ∩ (K+
1 × K+

2 ) and gr(U−) = gr(U) ∩ (K−
1 × K−

2 ).

Moreover, with K̃1 := K1 ∩ (kerU + j1kerU + domU+ + domU−)
[⊥]1 and

K̃2 := K2 ∩ (mulU + j2mulU + ranU+ + ranU−)
[⊥]2 , define Uo as

gr(Uo) = gr(U) ∩ (K̃1 × K̃2).

Then U has the graph decomposition

gr(U) = (kerU ×mulU) +̇ gr(U+) +̇ gr(U−) +̇ gr(Uo),
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where

(i) U+ and U− are (Hilbert space) unitary operators from {domU+, [·, ·]1}
and {domU−,−[·, ·]1} to {ranU+, [·, ·]2} and {ranU−,−[·, ·]2}, respec-
tively. In particular, gr(U+)+̇gr(U−) is the graph of the standard unitary
operator Uc defined by

Uc = {{f, f ′} ∈ U : [j1f, g, ]1 = [j2f
′, g′]2, ∀{g, g′} ∈ U}

from the Krĕın space {domUc, [·, ·]1} to the Krĕın space {ranUc, [·, ·]2};
(ii) Uo is a unitary operator from the Krĕın space {K̃1, [·, ·]1} to the Krĕın

space {K̃2, [·, ·]2} with dense domain and dense range. Moreover, there

exist hyper-maximal neutral subspaces Ld and Lr of {K̃1, [·, ·]1} and

{K̃2, [·, ·]2}, respectively, such that

domUo = Ld ⊕1 (j1Ld ∩ domUo) and ranUo = Lr ⊕2 (j2Lr ∩ ranUo)

Uo(Ld) = j2Lr ∩ ranUo and Uo(j1Ld ∩ domUo) = Lr.

In particular, k̃+1 = k̃−1 = k̃+2 = k̃−2 .

Proof. Note first that the stated graph decomposition of U is a consequence
of (i). Secondly, note that kerU × mulU is the graph of a unitary relation
from {kerU + j1kerU, [·, ·]1} to {mulU + j2mulU, [·, ·]2}, see the discussion
preceding Theorem 4.14.

(i): The first part of the statement is immediate by Proposition 3.8.
Furthermore, by Proposition 3.2 it follows that {f, f ′} ∈ Uc if and only if
{j1f, j2f ′} ∈ U . Consequently, {f, f ′} ∈ Uc if and only if {j1f, j2f ′} ∈ Uc. By
means of this observation the second part of (i) is clear. (Note that gr(Uc) =
gr(U) ∩ gr(U∗).)

(ii): Since kerU ×mulU , U+ and U− are unitary relations, Lemma 3.12
implies that Uo is a unitary relation. In fact, it is evident that Uo and also
U−1
o are unitary operators. The final dimension result follows directly from

the existence of the indicated Ld and Lr, cf. Lemma 3.24. The existence of
these sets and their indicated properties will be proven next.

Step 1: Let A := j1U
−1
o j2Uo, then A = U∗

oUo where U∗
o is the adjoint

of Uo as an operator from {K1, [j1·, ·]1} to {K2, [j2·, ·]2}. Since Uo is a closed
operator, A is nonnegative sefadjoint operator in {K1, [j1·, ·]1}. Moreover, a
direct calculation shows that A−1 = j1Aj1.

Step 2: Define the operators Vk and Vg as

Vk = {{f, Uof} ∈ Uo : [j1f, g]1 ≤ [j2Uof, Uog]2, ∀g ∈ domUo};
Vg = {{f, Uof} ∈ Uo : [j1f, g]1 ≥ [j2Uof, Uog]2, ∀g ∈ domUo}.

Then Vk ∩ Vg = {0}, see the definition of Uc in (i), and being restrictions
of the unitary operator Uo, Vk and Vg are isometric operators. Moreover, by
their definition and the closedness of Uo, it follows that Vk and Vg are closed
operators.

Next let L := dom (U−1
o j2Uo), then

Uo(L) = ranUo∩dom (U−1
o j2) = ranUo∩j2ranUo ⊇ ranUo∩K̃+

2 +ranUo∩K̃−
2 .
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Hence, Lemma 4.10 implies that Uo(L) is a core for U−1
o , i.e. L is a core for

Uo. Now, with A = j1U
−1
o j2Uo as in Step 1, one has that

domVk ∩ L = {f ∈ domA : [j1f, g]1 ≤ [j1Af, g]1, ∀g ∈ domUo};
domVg ∩ L = {f ∈ domA : [j1f, g]1 ≥ [j1Af, g]1, ∀g ∈ domUo}.

Step 3: Now using the spectral family of A (see Step 1) yields that

L = domVk ∩ L⊕1 domVg ∩ L.

Consequently, by definition of Vk and Vg

Uo(L) = ranVk ∩ Uo(L)⊕2 ranVg ∩ Uo(L).

Hence, using the fact that L is a core for Uo and that Vk and Vg are closed
isometric operators, one has that

gr(Uo) = clos gr(Uo �L) = clos gr(Vk �L) + clos gr(Vg �L) = gr(Vk) + gr(Vg)

and, consequently,

domVk ⊕1 domVg = domUo and ranVk ⊕2 ranVg = ranUo. (5.1)

Step 4: Next observe that the equality A−1 = j1Aj1 (see Step 1) implies that

clos (domVk ∩ L) = j1clos (domVg ∩ L). (5.2)

This equation together with (5.1) shows that domVk and domVg are neutral

subspaces of {K̃1, [·, ·]1} and, hence, the definition of Vk and Vg imply that

ranVk and ranVg are neutral subspaces of {K̃2, [·, ·]2}. Since Vg is by definition

a closed bounded operator from {K̃1, [j1·, ·]1} to {clos (ranVg), [j2·, ·]2}, Ld :=

domVg is a closed neutral subspace of {K̃1, [·, ·]1}. Hence, (5.1), (5.2) and the
fact that kerUo = {0} imply that

K̃1 = domUo = domVk ⊕1 clos (domVg) = Ld ⊕ j1Ld.

This shows that Ld is a hyper-maximal neutral subspace of {K̃1, [·, ·]1}. A
similar argument shows that Lr := ranVk is a hyper-maximal neutral sub-

space of {K̃2, [·, ·]2}. Finally, Ld and Lr satisfy the further stated properties
as a consequence of (5.1). �

Remark 5.2. The above proof shows that there is a close connection between
unitary relations without kernel and multivalued part, and nonnegative self-
adjoint operators in Hilbert spaces, cf. [4, Theorem 3.6] and Section 4.3.

Since the unitary relations kerU ×mulU , U+ and U− are easily under-
stood, the above theorem shows that (from a theoretical point of view) the
most interesting unitary relations are those with dense domain and range in
a Krĕın space {K, [·, ·]} with k+ = k−. Furthermore, Theorem 5.1 shows
that if U is a unitary relation such that kerU does not have equal de-
fect numbers, then there exists uniformly definite subspaces D1 and D2 of

{K1, [·, ·]1} and {K2, [·, ·]2} such that U(D1) = D2 +mulU and Ũ defined via

gr(Ũ) = gr(U)∩ (D
[⊥]1
1 ×D

[⊥]2
2 ) is a unitary relation from {K1 ∩D

[⊥]1
1 , [·, ·]1}
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to {K2 ∩ D
[⊥]2
2 , [·, ·]2} whose kernel (and multivalued part) has equal defect

numbers.

The subspace Ld in Theorem 5.1 has the following special properties.

Proposition 5.3. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let Ld be the closed neutral subspace as in Theorem 5.1 for fixed fun-
damental symmetries j1 and j2 of {K1, [·, ·]1} and {K2, [·, ·]2}, respectively.
Then

(i) U has closed domain if and only if U maps some (any hence every)
closed neutral subspace L of {K1, [·, ·]1} which extends Ld onto a closed
neutral subspace of {K2, [·, ·]2};

(ii) L := kerU + Ld is such that kerU ⊆ L ⊆ L[⊥]1 ⊆ domU ;
(iii) if L is a neutral subspace of {K1, [·, ·]1} such that kerU ⊆ L and Ld ⊆ L

or j1Ld ∩ domU ⊆ L, then

n+(L) = n+(U(L)) and n−(L) = n−(U(L)).

Proof. In this proof the notation as in Theorem 5.1 is used.

(i): By Theorem 5.1 a closed neutral extension of Ld can be written as
kerU⊕1Ld⊕1N1, where N1 is a closed neutral subspace of domU++domU−.
This extension is mapped onto mulU ⊕2 (j2Lr ∩ domU)⊕N2, where N2 is a
closed neutral subspace of ranU+ + ranU− (because U+ + U− is a standard
unitary operator). Consequently, this subspace is closed if and only if j2Lr ∩
domU is closed, which by Theorem 5.1 is the case if and only if ranUo. Since
ranUo and ranU are simultaneously closed, this proves the statement, see
Proposition 3.15.

(ii): Since Ld is hyper-maximal neutral in {K̃1, [·, ·]1}, it follows from
Theorem 5.1 that (Ld)

[⊥]1 = Ld + domU+ + domU− + kerU ⊆ domU .

(iii): This follows from the fact that the defect numbers of kerU + Ld

and U(Ld) coincide (since clos (j2Lr ∩ ranU) is hyper-maximal neutral in

{K̃2, [·, ·]2}), combined with Corollary 3.16 and Lemma 3.12. �

Next let Ld, U+ and U− be as in Theorem 5.1, and let D+ := domU+

and D− := domU−. Then, see Section 4.4, Ui defined as

Ui = {{f + h, f ′ + k} : h ∈ kerU + Ld, k ∈ clos (U(Ld)),

{f, f ′} ∈ U, f ∈ D+ +D−}

is a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}. In particular, if D+ and
D− have the same dimension, then there exists a hyper-maximal neutral
extension of kerU which is contained in domU . If their dimensions are greater
than the cardinality of the continuum, then, clearly, there exists maximal
neutral subspaces contained in the domain of Ui (and hence in the domain
of U) with arbitrary defect numbers smaller than or equal to max(D+,D−),
cf. [4, Theorem 4.3].
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5.2. A block representation for unitary relations

Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2} and let K+
i [+]K−

i

be a canonical decomposition of {Ki, [·, ·]i} with associated fundamental sym-
metry ji, i = 1, 2. Then define d+U (j1, j2) and d−U (j1, j2) as

d+U (j1, j2) = dim{f ∈ K+
1 : ∃f ′ ∈ K+

2 s.t. {f, f ′} ∈ U};
d−U (j1, j2) = dim{f ∈ K−

1 : ∃f ′ ∈ K−
2 s.t. {f, f ′} ∈ U}.

(5.3)

Now Theorem 5.1 shows that if n−(kerU) > n+(kerU) or n−(kerU) <
n+(kerU), see Definition 2.10, then d+U (j1, j2) > d−U (j1, j2) or d+U (j1, j2) <

d−U (j1, j2) for all j1 and j2, respectively. Furthermore, if there exist j1 and

j2 such that d+U (j1, j2) = d−U (j1, j2), d+U (j1, j2) > d−U (j1, j2) or d+U (j1, j2) <

d−U (j1, j2), then Theorem 5.1 shows that there exists a hyper-maximal semi-
definite subspaces L and M satisfying kerU ⊆ L ⊆ domU and mulU ⊆
M ⊆ ranU which are neutral, nonnegative or nonpositive, respectively; cf.
[4, Theorem 4.4].

If n+(kerU) = n−(kerU), then it is not clear whether there exist hyper-
maximal neutral subspaces contained in the domain and range of U . Though
there always exist hyper-maximal semi-definite subspaces contained in its
domain and range. In fact, as the next statement shows, these subspaces can
be chosen to have more properties, which in what follows will be of great
importance.

Proposition 5.4. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let ji be a fundamental symmetry for {Ki, [·, ·]i}, for i = 1, 2. Then
there exists hyper-maximal semi-definite subspaces L and M of {K1, [·, ·]1}
and {K2, [·, ·]2}, respectively, such that

domU = L[⊥]1 ⊕1 (L ∩ j1L)⊕1 (j1L
[⊥]1 ∩ domU);

ranU = M[⊥]2 ⊕2 (M ∩ j2M)⊕2 (j2M
[⊥]2 ∩ ranU),

where

U(L[⊥]1) = j2M
[⊥]2 ∩ ranU +mulU ;

U(L ∩ j1L) = M ∩ j2M+mulU ;

U(j1L
[⊥]1 ∩ domU) = M[⊥]2 +mulU.

Here L and M are hyper-maximal neutral, nonnegative or nonpositive sub-
spaces of {K1, [·, ·]1} and {K2, [·, ·]2} if d+U (j1, j2) = d−U (j1, j2), d+U (j1, j2) >

d−U (j1, j2) or d+U (j1, j2) < d−U (j1, j2), respectively.

Proof. Using the notation of Theorem 5.1, it clearly suffices to prove the
statement only for Uo. In that case the statement holds by taking L to be
Ld in which case M = Lr. The decompositions are a direct consequence of
Proposition 2.8 (iv). �
Remark 5.5. In particular, if d+U (j1, j2) ̸= d−U (j1, j2), then note that the unitary

relation Ũ defined via gr(Ũ) = gr(U) ∩ ((K1 ∩ (L ∩ j1L)
[⊥]1) × (K2 ∩ (M ∩

j2M)[⊥]2)), see Corollary 3.13, satisfies d+
Ũ
(j1, j2) = d−

Ũ
(j1, j2).
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The hyper-maximal semi-definite subspace L in Proposition 5.4 is shown
to exists as an extension of the subspace Ld as in Theorem 5.1. Not all
hyper-maximal semi-definite subspaces contained in the domain of a unitary
relation can be obtained in this manner. Namely, consider Example 1.1 with
K an unbounded operator and H0 = H, then H × {0} is a hyper-maximal
neutral subspace which is mapped by U onto the hyper-maximal neutral
subspace H× {0}. Since the unitary relation does not have a closed domain,
it follows from Proposition 5.3 that H×{0} is not an extension of any Ld as
in Theorem 5.1.

By means of Proposition 5.4 the following characterizations for isometric
relations to be unitary is obtained. Note that it in particular shows that if an
isometric relation has a decomposition as in Theorem 5.1, then it is a unitary
relation.

Theorem 5.6. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let ji be a fundamental symmetry of {Ki, [·, ·]i}, for i = 1, 2. Then U is

unitary if and only if there exists a decomposition K̃i ⊕i D
+
i ⊕i D

−
i of Ki, for

i = 1, 2, such that

(i) D+
i is a closed uniformly positive subspaces of {Ki, [·, ·]i} for i = 1, 2,

D+
1 ⊆ domU , D+

2 ⊆ ranU and U(D+
1 ) = D+

2 +mulU ;
(ii) D−

i is a closed uniformly negative subspaces of {Ki, [·, ·]i} for i = 1, 2,
D−

1 ⊆ domU , D−
2 ⊆ ranU and U(D−

1 ) = D−
2 +mulU ;

(iii) there exists hyper-maximal neutral subspaces L1 and L2 of {K̃1, [·, ·]1}
and {K̃2, [·, ·]2}, respectively, such that
(a) L1 = U−1(j2L2 ∩ ranU) and L2 = U(j1L1 ∩ domU);
(b) kerU + clos (j1L1 ∩ domU) and mulU + clos (j2L2 ∩ ranU) are

hyper-maximal neutral subspaces of {K̃1, [·, ·]1} and {K̃2, [·, ·]2}, re-
spectively.

Proof. The necessity of the conditions is clear by Theorem 5.1. In particular,
one can take L1 = Ld + kerU , L2 = Lr + mulU , D+

1 = domU+ and D−
1 =

domU−.
To prove the converse observe first that {{f, f ′} ∈ U : f ∈ D+

1 +
D−

1 , f ′ ∈ D+
2 + D−

2 } is a standard unitary operator from the Krĕın space
{D+

1 +D−
1 , [·, ·]1} to the Krĕın space {D+

2 +D−
2 , [·, ·]2}. Hence, Lemma 3.12

(see also Corollary 3.13) shows that to prove the statement, it suffices to show

that Ũ defined via gr(Ũ) = gr(U) ∩ (K̃1 × K̃2) is a unitary relation.
Therefore note first that by (iii)(a)

dom Ũ = L1 + j1L1 ∩ dom Ũ = Ũ−1(j2L2 ∩ ran Ũ) + j1L1 ∩ dom Ũ . (5.4)

Now let f ∈ K1 and f ′ ∈ K2 be such that [f, g]1 = [f ′, g′]2 for all {g, g′} ∈ Ũ .
Then, with PLi the ji-orthogonal projection onto Li in Ki, there exist by

(iii)(a) {h, h′}, {k, k′} ∈ Ũ such that PL1h = PL1f , PL2h
′ = 0, PL1k = 0 and

PL2k
′ = PL2f

′. Hence,

{f, f ′} = {h, h′}+ {k, k′}+ {f − h− k, f ′ − h′ − k′},
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where PL1(f − h− k) = 0 and PL2(f
′ − h′ − k′) = 0. Clearly,

[f − h− k, g]1 = [f ′ − h′ − k′, g′]2, ∀{g, g′} ∈ Ũ .

Since the lefthand side is zero for all g ∈ j1L1∩dom Ũ and the righthand side

is zero for all g′ ∈ j2L2 ∩ ran Ũ , (5.4) implies that f − h − k ∈ (dom Ũ)[⊥]1

and, consequently, f ′ − h′ − k′ ∈ (ran Ũ)[⊥]2 . Since (dom Ũ)[⊥]1 = ker Ũ and

(ran Ũ)[⊥]2 = mul Ũ by Lemma 3.24 (using the assumption (iii)(b)), it follows

that {f, f ′} ∈ Ũ . Consequently, Proposition 3.2 implies that Ũ is unitary. �

Proposition 5.4 gives also naturally rise to a block representation for
unitary relations which is different from the quasi-block representation in
Theorem 4.12; there the ”coordinates” are uniformly definite and here they
are neutral.

Theorem 5.7. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2} with
kerU = {0} = mulU . Then there exists a hyper-maximal semi-definite sub-
space M of {K2, [·, ·]2}, a fundamental symmetry j2 of {K2, [·, ·]2}, a densely
defined closed operator B in {M[⊥]2 , [j2·, ·]2} with ranB = M[⊥]2 , a standard
unitary operator Uh in {M ∩ j2M, [·, ·]2} and a standard unitary operator Ut

from {K1, [·, ·]2} onto {K2, [·, ·]2} such that with respect to the decomposition
M[⊥]2 ⊕2 j2M

[⊥]2 ⊕2 (M ∩ j2M) of K2, see Proposition 2.8 (iv), one has

UU−1
t =

B 0 0
0 j2B

−∗j2 0
0 0 Uh

 .

Conversely, for B, j2 and Uh as above, the righthand side of the above equa-
tion represents a unitary relation in {K2, [·, ·]2} such that kerU = {0} =
mulU .

Proof. The converse part can be proven by a straightforward calculation and
Theorem 5.6. Therefore only the existence of the block representation will
be shown. Hence, let j1 and j2 be fundamental symmetries for {K1, [·, ·]1}
and {K2, [·, ·]2}, and let L and M be hyper-maximal semi-definite subspaces
associated to the unitary relations (for the indicated fundamental symme-
tries) as in Proposition 5.4. In particular, L ⊆ domU , M ⊆ ranU and
U(L ∩ j1L) = M ∩ j2M.

Let U0 and U1 be Hilbert space unitary operators from {L[⊥]1 , [j1·, ·]1}
onto {j2M[⊥]2 , [j2·, ·]2} and from {L ∩ j1L, [j1·, ·]1} onto {M ∩ j2M, [j2·, ·]1},
respectively. Then Ut defined as

Ut(f0 + f1 + f2) = U0(f0) + U1(f1) + j2U0(j1f2)

for f0 ∈ L[⊥]1 , f1 ∈ L ∩ j1L and f2 ∈ j1L
[⊥]1 is a standard unitary operator

from {K1, [·, ·]1} to {K2, [·, ·]2}. Note that, since UU−1
t is isometric and maps

M ∩ j2M onto M ∩ j2M, the restriction of UU−1
t to M ∩ j2M, denote it by

Uh, is an standard unitary operator in M∩ j2M. Furthermore, recall that by
Proposition 5.4 U(L[⊥]1) = j2M

[⊥]2 ∩ ranU and U(j1L
[⊥]1 ∩domU) = M[⊥]2 .
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This yields the existence of operators A and C such that with respect to the
decomposition M[⊥]2 ⊕2 j2M

[⊥]2 ⊕2 (M ∩ j2M) of K2

UU−1
t =

A 0 0
0 j2Cj2 0
0 0 Uh

 ,

where ranA = M[⊥]2 = domC. Moreover, A and C are closed, because
UU−1

t is unitary (see Lemma 3.9) and, hence, closed. Moreover, since UU−1
t

is isometric, it follows that

[f, j2g]2 = [Af, j2Cg]2, ∀f ∈ domA,∀g ∈ M[⊥]2 .

This equation shows that A−1 ⊆ C∗, where the adjoint of C is taken in
{M[⊥]2 , [j2·, ·]2}. Since ranA = M[⊥]2 = domC∗, mulA−1 = kerA = {0}
(because kerU = {0}) and kerC−∗ = (domC)⊥2 = {0}, (3.5) implies that
A−1 = C∗. �

Note that M in Theorem 5.7 can be chosen to be neutral, nonnega-
tive or nonpositive, if and only if there exists a fundamental symmetry j1 of
{K1, [·, ·]1} and j2 of {K2, [·, ·]2} such that d+U (j1, j2) = d−U (j1, j2), d

+(j1, j2) >
d−(j1, j2) or d

+(j1, j2) < d−(j1, j2), respectively.
The assumption kerU = {0} = mulU in Theorem 5.7 can be dropped

by allowing B and its adjoint B∗ to have nontrivial kernels. Note also that the
above theorem gives a one-to-one correspondence between unitary relations
and bounded everywhere defined operators (with kernels). That connection
can also be understood from Theorem 4.14 and Remark 5.12 below.

5.3. Essentially unitary relations

Here Proposition 5.4 is further analyzed in order to obtain conditions for
the closure of an isometric relation to be unitary. Therefore recall that for
a hyper-maximal semi-definite subspace L in the Krĕın space {K, [·, ·]} with
associated fundamental symmetry j, the space K can be decomposed as

K = L[⊥] ⊕ (L ∩ jL)⊕ jL[⊥], (5.5)

see Proposition 2.8 (iv). In this connection PL[⊥] and PjL[⊥] denote the j-
orthogonal projections in K onto L[⊥] and jL[⊥], respectively.

Now observe the following consequence of Proposition 5.4.

Proposition 5.8. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} with associated

fundamental symmetry ji and associated projections P+
i and P−

i , for i = 1, 2.
Then there exists a subspace M of {K2, [·, ·]2} such that

(i) M ⊆ ranU is a hyper-maximal semi-definite subspace of {K2, [·, ·]2};
(ii) U−1(M ∩ j2M) ⊆ kerU + K+

1 or U−1(M ∩ j2M) ⊆ kerU + K−
1 ;

(iii) N := U−1(j2M ∩ ranU) ∩ (kerU + domU ∩ K+
1 + domU ∩ K−

1 ) is such
that

P+
1 U−1(M) = P+

1 kerU + domU ∩ K+
1 = P+

1 N;

P−
1 U−1(M) = P−

1 kerU + domU ∩ K−
1 = P−

1 N.
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Proof. Clearly, M as in Proposition 5.4 satisfies condition (i) and (ii), and,
moreover, U−1(j2M∩ranU) coincides with L in Proposition 5.4. If d+U (j1, j2) =

d−U (j1, j2), then M and N are neutral, kerU ⊆ N, U−1(M) and

N+ U−1(M) = kerU + domU ∩ K+
1 + domU ∩ K−

1 ,

because U−1(j2M∩ ranU)+U−1(M) = domU . The above equality together
with the neutrality ofM andN shows that (iii) holds. If d+U (j1, j2) ̸= d−U (j1, j2),
then the situation can be reduced to the above case, because in that case
N and U−1(M) both contain the same (closed) uniformly definite subspace
L ∩ j1L, see Remark 5.5. �

In Proposition 5.8 M, U−1(j2M ∩ ranU), L̃ and U−1(M) are all either
neutral, nonnegative or nonpositive; they reflect the defect numbers of kerU .
Furthermore, as a consequence of (i) and (iii) M satisfies

M+ U(domU ∩ K+
1 ) = U(domU ∩ K+

1 ) + U(domU ∩ K−
1 );

M+ U(domU ∩ K−
1 ) = U(domU ∩ K+

1 ) + U(domU ∩ K−
1 ).

(5.6)

This observation can be generalized to the following geometrical result.

Proposition 5.9. For every maximal nonnegative or nonpositive subspace M
of {K, [·, ·]} there exists a hyper-maximal semi-definite subspace L of {K, [·, ·]}
such that

L+M = M+M[⊥] = L+M[⊥].

Proof. W.l.o.g. assume thatM is nonnegative and let K+[+]K− be a canonical
decomposition of {K, [·, ·]}. Then by Theorem 4.14 there exists a unitary
relation U in {K, [·, ·]} such that U(domU ∩K+) = M and U(domU ∩K−) =
M[⊥]. Consequently, the statement follows from the discussion preceding this
statement. �

The following statement shows that Proposition 5.8 (ii) and (iii) implies
that U−1(j2M ∩ ranU) is hyper-maximal semi-definite.

Proposition 5.10. Let U be unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

i [+]K−
i be a canonical decomposition of {Ki, [·, ·]i} with associated

fundamental symmetry ji and associated projections P+
i and P−

i , for i = 1, 2.
Moreover, let M be a hyper-maximal semi-definite subspace of {K2, [·, ·]2} such
that

(i) M ⊆ U(domU ∩ K+
1 ) + U(domU ∩ K−

1 );
(ii) U−1(M ∩ j2M) ⊆ kerU + K+

1 or U−1(M ∩ j2M) ⊆ kerU + K−
1 .

Then L := U−1(j2M ∩ ranU) is a hyper-maximal semi-definite subspace of
{K1, [·, ·]1} if and only if

P+
1 kerU+domU∩K+

1 ⊆ P+
1 L and P−

1 kerU+domU∩K−
1 ⊆ P−

1 L. (5.7)

Proof. Necessity of the condition (5.7) is obvious by Corollary 2.9 and (4.2) so
only sufficiency of the condition needs to be proven. Therefore first observe
that M = M[⊥]2 + (M ∩ j2M), where M[⊥]2 is a hyper-maximal neutral
subspace of {K2∩(M∩j2M)[⊥]2 , [·, ·]2}. By assumption (ii)M∩j2M is mapped
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onto the sum of kerU and a closed uniformly definite subspace of {K1, [·, ·]1}
contained in either K+

1 or K−
1 . This shows that w.l.o.g. one can assume that

M is a hyper-maximal neutral subspace and, hence, one needs only to prove
that L is a hyper-maximal neutral subspace if and only if (5.7) holds.

If M ⊆ ranU is hyper-maximal neutral, then ranU = M+ j2M∩ ranU
and, hence, domU = L+ U−1(M). Furthermore, by the assumption (i) and
(5.7)

P±
1 U−1(M) ⊆ P±

1 kerU + domU ∩ K±
1 ⊆ P±

1 L.

The preceding inclusions together with Proposition 4.1 yield that

K±
1 = P±

1 domU = P±
1 (L+ U−1(M)) ⊆ P±

1 L.

This completes the proof, see Proposition 2.5. �

Continuing the investigation of the statements occurring in Proposi-
tion 5.8, observe next that (ii) and (iii) imply that

PM[⊥]2U(domU ∩ K+
1 ) = PM[⊥]2U(domU ∩ K−

1 );

Pj2M[⊥]2U(domU ∩ K+
1 ) = Pj2M[⊥]2U(domU ∩ K−

1 ),
(5.8)

where PM[⊥]2 and Pj2M[⊥]2 are the j2-orthogonal projections onto M[⊥]2 and

jM[⊥]2 in K2 respectively. To see that equalities in (5.8) hold, let f+
1 ∈ domU∩

K+
1 , then by Proposition 5.8 (iii) there exists {f, f ′} ∈ U such that f ′ ∈

j2M ∩ ranU , f ∈ domU ∩ K+
1 + domU ∩ K−

1 and P+
1 f = f+

1 . Since, clearly,
PM[⊥]2 f

′ = 0, this shows that

PM[⊥]2U(domU ∩ K+
1 ) ⊆ PM[⊥]2U(domU ∩ K−

1 ).

The other inclusions in (5.8) can be seen to hold using similar arguments.

The equalities in (5.6) and (5.8) together with Proposition 5.8 (ii) imply
that

PMU(domU ∩ K+
1 ) = M[⊥]2 + P+

2 (M ∩ j2M);

PMU(domU ∩ K−
1 ) = M[⊥]2 + P−

2 (M ∩ j2M).
(5.9)

The preceding observations yield half of the following geometrical statement,
cf. Proposition 2.4.

Proposition 5.11. Let M+ and M− be a nonnegative and nonpositive subspace

of {K, [·, ·]}, respectively, such that M+ ⊆ M
[⊥]
− and M− ⊆ M

[⊥]
+ and let j

be a fundamental symmetry of {K, [·, ·]}. Then M+ and M− are a maximal
nonnegative and a maximal nonpositive subspace of {K, [·, ·]}, respectively, if
and only if there exists a hyper-maximal semi-definite subspace L of {K, [·, ·]}
such that

PLM+ = L and PLM− = L[⊥] or PLM+ = L[⊥] and PLM− = L,

if L is nonnegative or nonpositive, respectively.
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Proof. The necessity is clear by the discussion preceding the statement com-
bined with Theorem 4.14. To prove the converse assume w.l.o.g. that L is
nonnegative. If M+ is not maximal nonnegative, then M+ can be nonnega-
tively extended by an element h ∈ K. In fact, by the assumption PLM+ = L
and (5.5), one can assume that h ∈ L⊥ = jL[⊥]. In particular, there exists
f ∈ L[⊥] such that h = jf . On the other hand, by the assumption PLM+ = L
there also exists g ∈ L[⊥] such that f + jg ∈ M+. Hence, for all a ∈ R

0 ≤ [(f + jg) + ajf, (f + jg) + ajf ] = 2a[jf, f ] + [jg, f ] + [f, jg].

Since a is arbitrary, this implies that f = 0, i.e., M+ is maximal nonnegative.
The maximal nonpositivity of M− can be proven using similar argument. �

Note that there exists a subspace L having the properties as in Proposi-
tion 5.9 which simultaneously has the properties of the subspace L in Propo-
sition 5.11.

Remark 5.12. If L in Proposition 5.11 is neutral, then the statement says that
a nonnegative (nonpositive) subspace of {K, [·, ·]} is maximal nonnegative
(nonpositive) if it is the graph of an everywhere defined bounded operator
with respect to the neutral coordinates L and jL.

The following statement shows that the equalities in (5.8) imply that
the closure of a certain associated subspace is hyper-maximal semi-definite.
For simplicity, the subspace M (in (5.8)) will here be assumed to be hyper-
maximal neutral. Note that following statement generalizes a part of [6,
Corollary 4.12].

Proposition 5.13. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2},
let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1} and let j2 be a funda-

mental symmetry of {K2, [·, ·]2}. Moreover, let M be a hyper-maximal neutral
subspace of {K2, [·, ·]2} such that

PMU(domU ∩ K+
1 ) = PMU(domU ∩ K−

1 )

Then the closure of N := U−1(j2M ∩ ranU) is a hyper-maximal neutral sub-
space of {K1, [·, ·]1} and N satisfies

P+
1 kerU + domU ∩ K+

1 ⊆ P+
1 N and P−

1 kerU + domU ∩ K−
1 ⊆ P−

1 N.

Proof. For every f+ ∈ domU ∩ K+
1 and for every f− ∈ domU ∩ K−

1 , there
exists by the assumption g− ∈ domU ∩ K−

1 and g+ ∈ domU ∩ K+
1 such that

U(f+ + g−), U(f− + g+) ∈ j2M. These arguments show that the asserted
inclusions hold. Consequently, (4.2) implies that

K±
1 = P+

1 kerU + clos (domU ∩ K±
1 ) = clos (P±

1 N).

This shows that clos (N) is hyper-maximal neutral, see Proposition 2.5. �

Next necessary and sufficiency conditions are given for the closure of
isometric relations to be unitary; they are based on Theorem 4.9 and Propo-
sition 5.11.
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Theorem 5.14. Let U be an isometric relation from {K1, [·, ·]1} to {K2, [·, ·]2},
let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1} with associated pro-

jection P+
1 and P−

1 , and let j2 be a fundamental symmetry of {K2, [·, ·]2}.
Then U is unitary if and only if

(i) U is closed;
(ii) kerU = (domU)[⊥]1 ;
(iii) there exists a hyper-maximal semi-definite subspace M of {K2, [·, ·]2}

such that
(a) M ⊆ U(domU ∩ K+

1 ) + U(domU ∩ K−
1 );

(b) M ∩ j2M ⊆ U(domU ∩ K+
1 ) or M ∩ j2M ⊆ U(domU ∩ K−

1 );
(c) N := U−1(j2M ∩ ranU) ∩ (domU ∩ K+

1 + domU ∩ K−
1 ) satisfies

P+
1 N = domU ∩ K+

1 and P−
1 N = domU ∩ K−

1 .

Proof. The necessity of the conditions (i) and (ii) is clear and the neces-
sity of the condition (iii) follows from Proposition 5.8, see also (5.6). To
prove the converse note first that the assumptions imply that (5.9) holds.
Therefore Proposition 5.11 (see also the discussion preceding it) implies that
U(domU∩K+

1 ) and U(domU∩K−
1 ) are maximal nonnegative and nonpositive

subspace and, hence, U(domU ∩ K+
1 ) = U(domU ∩ K−

1 ), see (the proof of)
Proposition 4.4. Consequently, Theorem 4.9 implies that U is unitary. �

Remark 5.15. The previous theorem was proven by showing that (ii) and
(iii) imply that PMU(domK+

1 ) = M and PMU(domK−
1 ) = M[⊥]2 if M is

nonnegative and PMU(domK+
1 ) = M[⊥]2 and PM[⊥]2U(domK−

1 ) = M if
M is nonpositive. Hence Theorem 5.14 is partially a reformulation of [7,
Proposition 3.15].

Since the subspace M in Theorem 5.14 can be taken to be such that it
satisfies the conclusions of Proposition 5.8, condition (iii) in Theorem 5.14
can be replaced by the condition (iii’) below which describes the behavior of
unitary relations in a different manner. Here (iii’) is formulated only for the
case that M in Theorem 5.14 is hyper-maximal neutral.

(iii’) there exist mappings V and W from domU ∩K+
1 onto domU ∩K−

1 such
that L and N defined as

L = {f + V f : f ∈ domU ∩ K+
1 } and N = {f +Wf : f ∈ domU ∩ K+

1 }

are neutral subspaces of {K1, [·, ·]1}, U(L) is a hyper-maximal neutral
subspace of {K2, [·, ·]2} and U(N) is j2-orthogonal to U(L).

In particular, W can be taken to be −V .

5.4. A further representation for unitary relations

As a consequence of the existence of a hyper-maximal semi-definite subspace
in the domain of a unitary relation, the domain has the following ”quasi-von
Neumann” decomposition.
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Proposition 5.16. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2}
and let K+

1 [+]K−
1 be a canonical decomposition of {K1, [·, ·]1} with associ-

ated fundamental symmetry j1. Then there exists a neutral subspace N of
{K1, [·, ·]1} such that

domU = domU+̇j1N

and

domU = kerU [⊕1]
(
(domU ∩ K+

1 [⊕1]domU ∩ K−
1 )+̇N

)
.

Proof. Let j2 be a fixed fundamental decomposition of {K2, [·, ·]2} and denote
by ⊥1,2 the (j1 × j2)-orthogonal complement in K1 × K2. Then define M by

M = j1PK1

(
(domU × ranU) ∩ (gr(U))⊥1,2

)
,

where PK1 is the projection onto K1 × 0 in the indicated Cartesian product
space. Since domU × ranU and gr(U) are closed in the product space it
follows that domU = domU+̇j1M. Next let L be as in Proposition 5.4, i.e.

domU = kerU ⊕1 (L
[⊥]1 ⊖1 kerU)⊕1 (L ∩ j1L)⊕1 (j1L

[⊥]1 ∩ domU).

Then N := M∩ (L[⊥]1 ⊖1 kerU) is neutral, j1N∩domU = {0} and (j1L
[⊥]1 ∩

domU)+j1N = j1(L
[⊥]⊖1kerU). From these properties the statement follows.

�

Note that the domain decomposition presented in Proposition 5.16 also
holds for isometric relations V from {K1, [·, ·]1} to {K2, [·, ·]2} which satisfy

(i) V is closed;
(ii) kerV = (domV )[⊥]1 ;
(iii) there exists a subspace L, kerU ⊆ L ⊆ domU such that L is a hyper-

maximal neutral, nonnegative or nonpositive subspace if k+1 = k−1 , k
+
1 >

k−1 or k+1 < k−1 , respectively.

A subspace N satisfying the conclusions of Proposition 5.16 is minimal,
i.e., there does not exist a subspace of N satisfying the same conclusions.
Moreover, the above proof shows that there exists a subspace N satisfying
the conclusions of Proposition 5.16 which possesses a hyper-maximal semi-
definite extension contained in the domain of U . The decomposition in Propo-
sition 5.16 also provides an alternative proof for some of the equivalences in
Proposition 4.7, because Proposition 5.16 shows that domU has the ”von
Neumann” decomposition

domU = kerU [⊕1](domU ∩ K+
1 )[⊕1](domU ∩ K−

1 ),

i.e. N = {0}, if and only if domU is closed.

The above properties (i)-(iii) are not sufficient for an isometric relation
to be unitary as the following example shows. In particular, there exist iso-
metric relations whose domains and ranges do not differ from the domains
and range of unitary relations; they can only be distinguished by considering
their graphs.



46 Working Papers

Example 5.17. Let {H, (·, ·)} be a Hilbert space and define the indefinite inner
product [·, ·] on H2 by

[{f1, f2}, {g1, g2}] = −i ((f2, g1)− (f1, g2)) , f1, f2, g1, g2 ∈ H.

Moreover, let S be a closed symmetric operator in {H, (·, ·)} with dense do-
main. Then

V ({f1, f2}) = {f1 + Sf2, f2}, f1 ∈ H, f2 ∈ domS}.
is an isometric operator from {H2, [·, ·]} to {H2, [·, ·]}. Clearly domV = H ×
domS = ranV , so that the domain and range are dense in {H2, [·, ·]}. A
direct calculation shows that V is unitary if and only if S is selfadjoint.
In particular, if S does not have equal defect numbers, then V can not be
extended to a unitary relation. However, independent of the nature of S, V
maps the hyper-maximal neutral subspace H× {0} onto the hyper-maximal
neutral subspace H× {0}.

Hence the domain decomposition given in Proposition 5.16 is not spe-
cific enough to characterize unitary relations. However, combining Proposi-
tion 5.16 with Proposition 5.4, a characterizing graph decomposition can be
obtained.

Theorem 5.18. Let U be a unitary relation from {K1, [·, ·]1} to {K2, [·, ·]2} with
associated fundamental symmetries j1 and j2, respectively. Then there exist
a closed uniformly positive and negative subspace D+

i and D−
i of {Ki, [·, ·]i}

and neutral subspaces Ni and Oi of {Ki, [·, ·]i}, for i = 1, 2 such that

domU = kerU ⊕1 D
+
1 ⊕1 D

−
1 ⊕1

(
O1+̇j1O1+̇N1

)
;

ranU = mulU ⊕2 D
+
2 ⊕2 D

−
2 ⊕2

(
O2+̇j2O2+̇N2

)
,

where

(i) U(D+
1 +D−

1 ) = D+
2 +D−

2 +mulU ;
(ii) clos (N1) = N1+̇O1 = clos (O1) and N2+̇O2 = clos (O2);
(iii) U(N1+̇O1) = j2O2 +mulU and U(j1O1) = N2+̇O2 +mulU .

Conversely, if U is an isometric relation which has a decomposition as above
and additionally kerU = (domU)[⊥]1 and mulU = (ranU)[⊥]2 , then U is
unitary.

Proof. Since the converse statement is clear by Theorem 5.6, only the exis-
tence of the decomposition needs to be proven. For convenience of the reader
the proof is split into three steps; in the first two steps it will be shown that
domU and ranU have the indicated decompositions such that (ii) is satisfied
and in the third step it will be shown how the decompositions for the domain
and range can be chosen such that they satisfy (i) and (iii).

Step 1: Let K+
i [+]K−

i be the canonical decomposition for {Ki, [·, ·]i} as-
sociated with the fundamental symmetry ji and let P+

i and P−
i be the asso-

ciated projections, i = 1, 2. Then by Proposition 5.16 there exists a neutral
subspace N1 of {K1, [·, ·]1} such that

domU = (domU ∩ K+
1 ⊕1 domU ∩ K−

1 )+̇N1 (5.10)
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and, moreover, N1 has a hyper-maximal semi-definite extension L, L ⊆
domU , see the discussion following Proposition 5.16. The decomposition
(5.10) and the existence of the hyper-maximal semi-definite extension im-
ply that D+

1 := (domU ∩K+
1 )∩ (N1)

[⊥]1 and D−
1 := (domU ∩K−

1 )∩ (N1)
[⊥]1

are closed uniformly definite subspaces. Hence (5.10) can be rewritten as

domU = D+
1 ⊕1 D

−
1 ⊕1

(
domU ∩ (K+

1 ⊖D+
1 )⊕1 domU ∩ (K−

1 ⊖D−
1 )+̇N1

)
.

Step 2: Define K̃1 = kerU + j1kerU +D+
1 +D−

1 , K̂1 = K1 ∩ K̃
[⊥]1
1 , K̃2 =

U(D+
1 + D−

1 ) + j2mulU and K̂2 = K2 ∩ K̃
[⊥]2
2 . Then {K̃1, [·, ·]1}, {K̂1, [·, ·]1},

{K̃2, [·, ·]2} and {K̂2, [·, ·]2} are Krĕın spaces. Now, define Ũ and Û via

gr(Ũ) = gr(U) ∩ (K̃1 × K̃2) and gr(Û) = gr(U) ∩ (K̂1 × K̂2).

Then since U and Ũ are unitary, and gr(U) = gr(Ũ) + gr(Û), Lemma 3.12

implies that Û is a unitary operator without kernel. The domain of Û has
the decomposition

dom Û = dom Û ∩ K+
1 [⊕1]dom Û ∩ K−

1 +̇N1.

In particular, clos (N1) is hyper-maximal neutral in {K̂1, [·, ·]1} and, hence,
O1 := j1(j1clos (N1) ∩ domU) is such that clos (N1) = N1+̇O1 and O1 +

j1O1 = dom Û ∩ K+
1 [⊕1]dom Û ∩ K−

1 . Therefore

dom Û = O1+̇j1O1+̇N1.

Moreover, from clos (dom Û ∩K±
1 ) = dom Û ∩K±

1 , see Proposition 4.1, it fol-

lows that clos (O1) is also hyper-maximal neutral subspace of {K̂1, [·, ·]1} and
coincides with clos (N1), because closN1 = O1 + N1. Consequently, domU
and, hence, also ranU have the indicated decompositions such that (ii) holds.

Step 3: By Proposition 5.4 (and Remark 5.5) there exists a hyper-

maximal neutral subspace L̂ ⊆ dom Û of {K1, [·, ·]1} such that M̂ = Û(j1L̂ ∩
dom Û) is a hyper-maximal neutral subspace of {K̂2, [·, ·]2} and Û(L̂) =

j2M̂ ∩ ran Û . Note that by Proposition 5.4 there exists also hyper-maximal

semi-definite subspace L̃ and M̃ for Ũ having the same properties. Conse-

quently, L := L̂+ L̃ and M := M̂+ M̃ satisfy the criteria in Proposition 5.4
for U .

By means of this observation it is evident, using steps 1 and 2, the

following domain and range decomposition of Û can be obtained:

dom Û = N1+̇O1+̇j1O1 and ran Û = D+
2 ⊕2 D

−
2 ⊕2

(
N2+̇O2+̇j2O2

)
,

where (because M is hyper-maximal neutral in {K̂2, [·, ·]2}) there exists a

neutral subspace Õ2 of {K2, [·, ·]2} such that D+
2 ⊕2 D

−
2 = Õ2 + j2Õ2 and

L = N1+̇O1 and j1L ∩ dom Û = j1O1;

M = Õ2 ⊕2 (N2+̇O2) and j2M ∩ ran Û = j2Õ2 ⊕2 j2O2.

This completes the proof. �
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