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1 INTRODUCTION 

A natural concept in financial time series is the notion of multiscale features. That 

is, an observed time series may contain several structures, each occurring on a 

different time scale. Wavelet techniques possess an inherent ability to decompose 

this kind of time series into several sub-series which may be associated with a 

particular time scale. Processes at these different time-scales, which otherwise 

could not be distinguished, can be separated using wavelet methods and then 

subsequently analyzed with ordinary time series methods. Wavelet methods 

present a lens to the researcher, which can be used to zoom in on the details and 

draw an overall picture of a time series in the same time. In a way one could say 

that with wavelet methods we are able to see both the forest and the trees. Gençay 

et al. (2002a) argue that wavelet methods provide insight into the dynamics of 

economic/financial time series beyond that of standard time series methodologies. 

Also wavelets work naturally in the area of non-stationary time series, unlike 

Fourier methods which are crippled by the necessity of stationarity. 

There are several examples of wavelet methods which have a lot of potential in 

economics and finance. The maximal overlap discrete wavelet transform 

(MODWT) (Percival & Walden 2000) is one, which is a modification of the 

ordinary discrete wavelet transform. This transform loses orthogonality but 

acquires attributes suitable for economic research like smoothness and possibility 

to analyze non-dyadic processes (processes that are not multiples of two). There 

are many applications of the MODWT which are surveyed more closely in the 

following chapters. Central to this thesis are the estimators of wavelet variance, 

wavelet correlation and wavelet cross-correlation. Another potential method is 

wavelet coherence analysis (Grinsted et al. 2004), which allows correlation 

analysis in the state space. A third group of methods are wavelet networks and 

their applications of forecasting an economic or financial time series. This thesis 

focuses on the three examples mentioned above and analyzes their possibilities in 

detail. 

Traditionally financial analysis has almost exclusively used the time domain in 

econometric modeling. Although wavelet literature has rapidly expanded in other 

disciplines, the potential for using wavelets in economics has been long 

overlooked. Some pioneering work has been made, but these papers have not 

been widely cited and have in fact, been largely ignored. The connection to 

Fourier analysis may have diminished the interest in wavelet analysis, because 

Fourier spectral analysis largely failed in the area of economics research. The 

problem of Fourier analysis is that the time information is lost completely. The 

assumption of "natural" periods and stationarity that are inherent in the Fourier 
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methods are also problematic. The variation in frequencies and "non-natural" 

periods are an inherent part of an economic time series. Therefore the Fourier 

methods do not work here.  But the analysis of these kinds of processes is the 

strength of wavelet analysis; the key is its ability to separate the dynamics in a 

time series over a variety of different time horizons. 

In recent years the interest for wavelet methods has increased in economics and 

finance. This recent interest has focused on multiple research areas in economics 

and finance like exploratory analysis, density estimation, analysis of local 

inhomogeneities, time scale decomposition of relationships and forecasting 

(Crowley 2005). Behind all these possible applications is the capability of 

wavelets to decompose processes on different time scales, but still preserve time 

localization. In some sense, wavelet analysis picks up the best of both worlds, 

introducing an intelligent compromise between time and frequency analysis. It 

provides an efficient way to localize changes across time scales while maintaining 

the entropy conservation. This locality property and the ability to stationarize data 

make wavelets a suitable tool for analyzing economic and financial stochastic 

nonstationary processes. Therefore, these new methods bring fresh thinking to 

financial and economic analysis. By decomposing a time series on different 

scales, one may expect to obtain a better understanding of the data generating 

process as well as dynamic market mechanisms behind the time series. 

Investigation methods applied to a financial time series over the last decades can 

now be implemented to multiple time series presenting different scales 

(frequencies) of the original time series. Therefore efficient discretization of the 

time-frequency space allows isolation of many interesting structures and features 

of economic and financial time series which are not visible in the ordinary time-

space analysis or in the ordinary Fourier analysis. 

The contribution of this thesis is to present new applications in economics and 

finance where wavelets demonstrate significant potential. In the following 

chapters, five different applications of the wavelet methods are presented. These 

five applications aim to extend wavelet methods to new research areas in finance. 

Some of them are novel applications (chapters 3 and 5), while some of them are 

extensions of previous research (chapters 2, 4 and 6). The next chapter studies the 

overall linkages of major equity markets using wavelet correlation and wavelet 

cross-correlation. Markets consist of agents working in different time horizons. 

Therefore, it would be natural that the dynamics of the interrelations between 

markets consist of scales that possibly behave differently. Indications of this kind 

of structure have been verified by previous studies (see for example Schleicher 

2002). The third chapter uses wavelet coherence and wavelet correlation methods 

to analyze contagion, during the last 25 years. The contagion refers to 
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phenomenon where interrelations between markets strengthen after some crisis. 

The contagion phenomenon is inherently transient in nature. Therefore, wavelets 

have just the right characteristics to analyze its existence. The fourth chapter 

studies the linkages between exchange rates. The sample consists of European 

exchange rates and the focus is on causality between the series on different time 

scales. This scale-dependent causality is of great value to the participants in those 

markets since markets accumulate of investors working on many different time 

horizons (like institutional investors and day traders). The fifth chapter applies 

wavelet methods in analyzing the moments of exchange rate distributions implied 

by exchange rate options. This novel approach introduces wavelets to a totally 

new and specific area of financial research. The sixth chapter utilizes wavelets to 

financial forecasting. A wavelet network method is compared to a basic linear 

forecast method and a random walk model. 

Overall these chapters show that many issues previously dealt in economic and 

financial time series analysis may gain new insight with wavelet analysis by 

separating processes on different time scales and repeating the traditional analysis 

on these separate scales. The characteristics of wavelet methods fit perfectly to 

the features of financial time series. Economic and financial processes constitute 

inherently from multiple processes on different time scales. When economic and 

financial time series are decomposed to their wavelet components, they are 

concurrently decomposed to their natural building blocks. 

1.1 Historical survey 

Although this thesis is about wavelet analysis, a thorough presentation of Fourier 

analysis is provided as well. There are two reasons for this. First of all, the 

Fourier methods are an alternative (and a competitor) for the wavelet methods, so 

comparing these methods is natural. Secondly, although the wavelet methods are 

different, they are based on Fourier analysis (Mallat 1999). This chapter begins 

with a historical survey of Fourier methods, continues with a historical survey of 

wavelet methods and concludes with a thorough literature review of wavelet 

methods in financial analysis and the presentation of contribution. 

1.1.1 Fourier theory 

Usually the origins of Fourier theory are attributed to Joseph Fourier, who 

presented a paper to the Paris Academy in 1807, where he argued that an arbitrary 

2π -periodic function can be represented as an infinite series of sines and cosines. 

(Jaffard, Meyer & Ryan 2001) 
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 ( ) ( )0
1

cos sin
k k

k

f x a a kx b kx
∞

=

= + +∑  

The seeds of Fourier theory were planted over 50 years earlier by d’Alembert, D. 

Bernoulli, Euler and Lagrange (Dym & McKean 1972). d’Alembert (1747) 

studied the oscillations of a violin string which can be obtained from a differential 

equation of the form 

 
2 2

2 2
,

u u

t x

∂ ∂
=

∂ ∂
 

where ( ),u u t x=  presents the displacement of the string, as a function of the 

time t and place x. The solution to the differential equation above is 

 ( ) ( ) ( )
1 1

,
2 2

u t x f x t f x t= + + − . 

Euler proposed in 1748 that the solution could be presented as a series, where 

 ( ) ( )
1

ˆ sin
n

f x f n n xπ
∞

=

=∑ , 

such that 

 ( ) ( )
1

ˆ, cos sin
n

u t x f n n t n xπ π
∞

=

= ⋅∑ . 

The formula for calculating the coefficients, 

 ( ) ( )
1

0

ˆ 2 sinf n f x n xdxπ= ∫ , 

was introduced by Euler in year 1777 (Dym & McKean 1972). 

In his paper Théorie analytique de la chaleur (published 1822), discussing the 

problems of heat flow 

 
2

2

1

2

u u

t x

∂ ∂
=

∂ ∂
 

and presented to the Académie des Sciences in 1811, Fourier tried to prove that 

any piecewise smooth function f can be expanded into a trigonometric sum. Paul 
Du Bois-Reymond constructed in 1873 a continuous, 2π -periodic function of the 
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real variable x whose Fourier series diverged at a given point. The whole of 19th 

century went into the study of the challenging questions of the convergence of the 

Fourier series, attracting the greatest mathematicians of that time such as Poisson, 

Dirichlet and Riemann. (Jaffard et al. 2001) 

Lebesgue, in his dissertation "Intégrale, longueur, aire" in 1902 presented that the 

proper setting of Fourier series turned out to be the class of “Lebesgue 
measurable” functions of period 2π , say, with 

 ( )
1

22

0

f f x dx≡ < ∞∫ . 

What Fourier had found was a new functional space of square-integrable 
functions, denoted [ ]2 0,2L π . The result that bins all together is the theorem of 

Riesz-Fischer (Viaclovsky 2003): For square-Lebesgue-integrable functions, the 

Fourier coefficients 

 ( ) ( )
2

2

0

ˆ ,inx
f n f x e dx n

π
π−= ∈∫ �  

provide a one to one map of the function space onto the space of sequences ( )f̂ n

, ( )..., 1,0,1,2,...n = −  with 

 ( )
2 2

ˆ ˆ
n

f f n
∞

=−∞

≡ < ∞∑ . 

This map preserves geometry ˆf f=  and the associated Fourier series 

 ( ) ( ) 2ˆ inx

n

f x f n e
π

∞

=−∞

= ∑  

converges in the sense that 

 ( ) ( )
2

2

0

ˆlim 0ikx

n
k n

f x f k e dx

π
π

→∞
≤

− =∑∫ . 

A parallel development was carried out for the Fourier integral (or the Fourier 

transform) 

 ( ) ( ) 2ˆ i x
f f x e dx

π ωω
∞

−

−∞

= ∫  
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for nonperiodic functions f, decaying sufficiently rapidly at ±∞  (Dym & McKean 

1972). This progress ended in the theorem of Plancherel in 1910 (Weisstein 

2006): If f is Lebesgue measurable and if 

 ( )
22

f f x dx

∞

−∞

≡ < ∞∫  

then f̂ f=  and f itself may be recovered from f̂  via the inverse Fourier 

integral (or transform) 

 ( ) ( ) 2ˆ .i x
f x f e dx

π ωω
∞

−∞

= ∫  

After all one can say that the significance of Fourier theory in different 

applications has been huge. The 20th century was a very active time in applying 

Fourier theory to different applications. For example the Fast Fourier transform 

(FFT) introduced by Cooley and Tukey (1965), has been said to be the most 

important numerical algorithm of our lifetime. 

1.1.2 Wavelet theory 

Although solid progress in the field was first made in the beginning of the 1980’s, 

the seeds of wavelet theory were planted already in the beginning of 20th century 

by Alfred Haar. In 1909 he found an orthogonal system of functions defined on 

[ ]0,1 , that form a series converging uniformly to a continuous function f on. What 

Haar found was the simplest basis of the family of wavelet bases. Formation of 
the Haar basis begins with the function h such that ( ) 1h x = for [ )1

20,x ∈ , 

( ) 1h x = −  for [ )1
2 ,1x ∈  and ( ) 0h x =  for [ )0,1x ∉ . The basis functions are then 

formed according to the rule 

 ( ) ( )22 2 ,j j

nh x h x k= −  

where 2 1j
n k= + ≥ , 0j ≥  and 0 2 j

k≤ < . Adding the function ( )0 1h x =  on 

[ )0,1 , the sequence 0 1 2, , ,..., ,...nh h h h  is an orthonormal basis for [ ]2 0,1L  (Jaffard 

et al. 2001). ( ) ( ) ( ) ( )0 0, ,n n nS f x f h h x f h h x= + +… , where ,⋅ ⋅  is the 

ordinary inner product of the functions, are then approximations of a continuous 
function by step functions whose values are the mean values of ( )f x  in the 

appropriate intervals. 
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The simplest case of the Haar wavelet basis is problematic. There is a lack of 

coherence because we are approximating a continuous function with 

discontinuous functions. Estimating a function f, that is , 1,2,3,n
C n = … on the 

interval [ ]0,1 , with the Haar basis does not work. 

Faber and Schauder (1914) investigated this problem in the early 20th century 

(see Jaffard et al. 2001 for discussion). Their improved basis consists of 
continuous polygonal lines, i.e. “triangles”. They set ( )0 x x∆ =  and ( )1 1x−∆ = . 

The remaining functions are defined as 

 ( ) ( )2 , 2 , 0, 0 2j j j

n
x x k n k j k∆ = ∆ − = + ≥ ≤ ≤ , 

where 

 ( ) ( )
[ ]

1
2

1
2

2 , 0

2 1 , 1

0, 0,1

x x

x x x

x

≤ ≤


∆ = − ≤ ≤
 ∉

 

Then the sequence 1 0 1, , , ,n−∆ ∆ ∆ ∆… … is a Schauder basis for the Banach space 

E of continuous functions on [ ]0,1  so that every continuous function on [ ]0,1  

may be written as 

 ( ) ( )
1

,
n n

n

f x a bx xα
∞

=

= + + ∆∑  

with uniform convergence and unique coefficients. The Schauder basis is superior 

to the Fourier basis for studying local regularity properties. For example, the 

Schauder basis can be used to study the multifractal structure of the Brownian 

motion. (Jaffard et al. 2001) 

With the Fourier basis it is difficult to localize the energy of a function (where 

energy can be defined as an integral of square function). The spatial distribution 

of the function’s energy remains “hidden”. In the 1930s Littlewood and Paley 

(1937) discovered a way to manipulate the Fourier series so that energy 

localization can be revealed. They formed dyadic blocks to decompose the series 

and then applied Fourier series to those blocks. The connection to wavelets was 

made by Antoni Zygmund and his group at the University of Chicago (see 

Altmann (1996) for discussion). Their work is based on a sequence of operators 
,

j
j∆ ∈�  that constitute a bank of band-pass filters, oriented on frequency 

intervals covering approximately one octave. A band-pass filter is a filter that 
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passes through a certain interval of frequencies. Dyadic wavelets analyze the 

function in octave intervals. (Altmann 1996) 

In the year 1927 Philip Franklin, using the usual Gram-Schmidt procedure, 

created a new orthonormal wavelet basis from the Schauder basis (Franklin 
1927). This sequence ( )nf  is called the Franklin basis and satisfies 

 ( ) ( )
1 1

0 0

0 for 1.n nf x dx xf x dx n= = ≥∫ ∫  

The advantage of the Franklin basis over the Haar and the Schauder basis is that it 
may be used to decompose any function f in [ ]2 0,1L . The Franklin basis works in 

both regular and irregular situations. However the problem with the Franklin basis 

is its complex algorithmic structure; Franklin wavelets are not derived from a 

fixed wavelet function by integer translations and dyadic (multiples of two) 

dilations. (Jaffard et al. 2001) 

In the 1930s Lusin introduced Hardy spaces, which can be identified as closed 
subspaces of ( )p

L �  and today they are important today in signal processing. 

Guido Weiss and Ronald Coifman were the first to interpret Lusin’s theory in 

terms of atoms and atomic decomposition, which is one of the cornerstones of 

wavelet theory. Atoms are the simplest elements of the function space and the 

objective is to find the atoms and the “assembly rules” that allow one to 

reconstruct all the elements of the function space using these atoms. 

Marcinkiewicz showed in 1938 that the simplest atomic decomposition for the 
spaces [ ]0,1 , 1p

L p< < ∞ , is given by the  Haar system. (see Altmann (1996) for 

discussion) 

One approach to atomic decompositions is given by Calderón’s identity. It is 

based on the function ψ  belonging to ( )2 n
L � . Its Fourier transform ( )ψ̂ ω  is 

subject to the condition that 

 ( )
2

0

ˆ 1
dt

t
t

ψ ω
∞

=∫  

for almost all nω ∈� . Let t
Q  denote the operator defined as the convolution with 

t
ψ , where ( ) ( )n x

t t
x tψ ψ−= . Similarly define 

tQ
∗  as convolution with t

ψ� , where 

( )n x
t t

tψ ψ−= −�  and ψ  is conjugate of ψ . Then the Calderón’s identity is a 

decomposition of the identity operator, written symbolically as (Jaffard et al. 

2001) 
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0

t t

dt
I Q Q

t

∞

∗= ∫ . 

Grossman and Morlet rediscovered this identity in 1980, 20 years after the work 

of Calderón. However they had a different interpretation for the identity which 

they relate to the coherent states of quantum mechanics (Jaffard et al. 2001). They 

came up with the notion of analyzing wavelets 

 ( ) ( ) 2
, , 0,n n

a b

x b
x a a b

a
ψ ψ− − 

= > ∈ 
 

� , 

that work as an orthonormal basis for the function space. Grossman and Morlet 

were also the first ones to define the wavelet coefficients as the inner product of a 

function and the analyzing wavelet (following the notation of Jaffard et al. 

(2001)) 

 ( ) ( ) ( ) ( ),,
a b

W a b f x x dxψ= ∫  

with the synthesis function 

 ( ) ( ) ( ) ( ), 1
0

, .
n

a b n

da
f x W a b x db

a
ψ

∞

+
= ∫ ∫

�

 

Wavelets can be defined in multiple ways. The first definition of a wavelet comes 

from Grossman and Morlet and is quite broad. 

A wavelet is a function ψ  in  ( )2
L �  whose Fourier transform ( )ψ̂ ω  satisfies the 

condition ( )
2

0

ˆ 1
dt

t
t

ψ ω
∞

=∫  almost everywhere. 

The second definition of a wavelet is adapted to the Littlewood-Paley-Stein 

theory. A wavelet is a function ψ  in ( )2 n
L �  whose Fourier transform ( )ψ̂ ω  

satisfies the condition ( )
2

ˆ 2 1jψ ω
∞ −

−∞
=∑  almost everywhere. If ψ  is a wavelet 

in this sense, then log 2ψ  satisfies the Grossmann-Morlet condition (Jaffard et 

al. 2001). 

The third definition relates to the work of Haar and Strömberg. A wavelet is a 

function ψ  in ( )2
L �  such that ( )22 2 , ,j j

x k j kψ − ∈� , is an orthonormal basis 

for ( )2
L � . It can be shown that such a wavelet satisfies the second condition. 
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In the beginning many different theories threaded together to form the wavelet 

theory. The work of Stéphane Mallat and Yves Meyer in the 1980s gave the 

wavelet theory a new start and a journey towards mainstream science. In 1985 

Mallat discovered similarities between the following objects (Mallat 1989): 

1. the quadrature mirror filters, which were invented by Croisier, Esteban and 

Galand for the digital telephone; 

2. the pyramid algorithms of Burt and Adelson, which are used in the context of 

numerical image processing; 

3. the orthonormal wavelet bases discovered by Strömberg and Meyer. 

Mallat succeeded in unifying different aspects of wavelet theory when he came up 

with the concept of a "multiresolution analysis". This analysis also gives an 

elegant way of constructing wavelets.  

Using Mallat's discovery, Ingrid Daubechies (1988) continued Haar's work. She 

constructed a family of orthonormal basis of the form ( )22 2 , ,j j

r
x k j kψ − ∈� , 

with the following properties: 
– The support of r

ψ  is the interval [ ]0,2 1 ,r r+ ∈� . 

–  ( ) 0,  for 0n

rx x dx n rψ
∞

−∞

= ≤ ≤∫ . 

–  rψ  has rγ  continuous derivatives, where the constant γ  is about 1/5. 

When 0r = , this reduces to the Haar system. The Daubechies wavelets are very 

suitable for applied work because they have a preassigned degree of smoothness 

and compact support. They are more efficient in signal compression than the Haar 

wavelet. Synthesis using Daubechies’s wavelets also gives better results than the 

Haar wavelet. The problem of the Haar wavelet is that a regular function is 

approximated by functions which have strong discontinuities. This problem is 

prevented by the smoothness of the Daubechies wavelets. 

Due to the history behind the wavelet theory, applications of wavelets emerged in 

economics and finance much later than in engineering. Most of the theory of 

wavelets was done in the context of deterministic functions, not stochastic 

processes, which are central in economics and finance. The statistical theory for 

wavelets emerged in the mid 1990s and only today wavelets are on the verge of 

entering mainstream econometrics (Schleicher 2002). 
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1.2 Wavelets in finance 

Wavelets have achieved an impressive popularity in natural sciences, especially 

in earth sciences (see for example Labat (2005) and Labat et al. (2005)). Wavelet 

methods have been applied in engineering for nearly two decades now, but still 

the first applications of wavelets in economics and finance emerged only ten 

years ago, despite its' suitability for this discipline. In the following, the literature 

review of wavelets in finance is presented. This review is separated into three 

different sections. The first section focuses on the decomposition applications of 

wavelet methods. The second section limits the applications to interdependence 

studies with wavelets. The last section is a collection of studies with wavelets that 

do not fit into either of the two earlier sections. 

1.2.1 Wavelet as a decomposition tool 

One of the fundamental advantages of wavelet analysis is the capability to 

decompose time series into different components. This aspect has also been 

widely applied in recent research. Capobianco (2004) applies wavelet methods to 

the multiresolution analysis of high frequency Nikkei stock index data. He applies 

the matching pursuit algorithm of Mallat and Zhang (1993) and argues that it suits 

excellently to financial data. Capobianco shows how the wavelet matching pursuit 

algorithm can be used to uncover hidden periodic components. Crowley and Lee 

(2005) analyze the frequency components of European business cycles with 

wavelet multiresolution analysis. They use a real GDP as a proxy for the business 

activity of European countries. The maximal overlap discrete wavelet transform is 

used for the analysis. They find significant differences between the countries, 

where the degree of integration varies significantly. Other wavelet related 

findings are that most of the energy in these economic time series can be found in 

longer term fluctuations. Also, they find indications that recessions are a result of 

a simultaneous dip in growth cycles at all frequencies. Gençay et al. (2001a) 

investigate the scaling properties of foreign exchange rates using wavelet 

methods. They use the maximal overlap discrete wavelet transform estimator of 

the wavelet variance to decompose variance of the process and find that foreign 

exchange rate volatilities are described by different scaling laws on different 

horizons. Similar wavelet-multiscale studies are also in Gençay et al. (2001b), 

Gençay et al. (2003), Gençay & Selçuk (2004), Gençay et al. (2005) and Gençay 

& Fan (2009).  

Gençay et al. (2001b) use wavelets to construct a method for seasonality 

extraction from a time series. Their method emphasizes many advantages of 
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wavelet methods. It is simple, free of model selection parameters, translationally 

invariant, is associated with a zero-phase filter and is circular. Ordinary discrete 

transform filters are not zero-phase. Gençay et al. however use the maximal 

overlap discrete wavelet transform, which has zero-phase filters. Gençay et al. 

(2005) use somewhat similar ideas to propose a new approach for estimating the 

systematic risk of an asset. They find that the estimations of CAPM might be 

flawed because of the multiscale nature of risk and return. Gencay et al. (2003) 

decompose a given time series on a scale-by-scale basis. On each scale, the 

wavelet variance of the market return and the wavelet covariance between the 

market return and a portfolio are calculated to obtain an estimate of a portfolio’s 

beta. This reveals that the estimations of the CAPM are more relevant in the 

medium and long run than on to the short time horizons. Gencay et al. (2004) 

propose a simple yet powerful method to analyze the relationship between a stock 

market return and volatility on multiple time scales using wavelet decomposition. 

The results show that the leverage effect is weak at high frequencies but becomes 

prominent at lower frequencies. Also the positive correlation between the current 

volatility and future returns becomes dominant on the timescales of one day and 

higher, providing evidence that risk and return are positively correlated. 

Vuorenmaa (2005, 2006) analyzes stock market volatility using the maximal 

overlap discrete wavelet transform. He finds that the global scaling laws and long 

memory of stock’s volatility may not be time-invariant. 

1.2.2 Wavelets and interdependence between variables 

Wavelets have been widely used to study interdependence of economic and 

financial time series. The studies presented in the following have also 

decomposition aspects but their main aspect is in the interdependence of 

processes. In & Kim (2006c, 2007), In et al. (2008) and Kim & In (2005, 2006, 

2007) have conducted many studies in finance using the wavelet variance, 

wavelet correlation and cross-correlation. Kim & In (2005) study the relationship 

between stock markets and inflation using the MODWT estimator of the wavelet 

correlation. They conclude that there is a positive relationship between stock 

returns and inflation on a scale of one month and on a scale of 128 months, and a 

negative relationship between these scales. Furthermore they stress how the 

wavelet based scale analysis is of utmost importance in the economics studies 

since their results solve many puzzles around the Fisher hypothesis previously 

noted in literature. In et al. (2008) study the performance of US mutual funds 

using wavelet multiscaling methods and the Jensen’s alpha. The results reveal that 

none of the funds are dominant over all time-scales. In & Kim (2006c) study the 

relationship between stock and futures markets with the MODWT based estimator 
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of wavelet cross-correlation. There is a feedback relationship between the stock 

and the futures markets on every scale. The results also reveal that correlation 

increases as time scale increases. In & Kim (2007) examine how well the Fama-

French factor model works on different time scales. They conclude that the SMB 

(small capital business minus big capital business) and the HML (high book-to-

market minus low book-to-market) share much of the information with alternative 

investment opportunities in the long run but not in the short run. A similar study 

is Kim & In (2007) examining the relationship between stock prices and bond 

yields in the G7 countries. The key results include indications that the correlation 

between changes in stock prices and bond yields can differ from one country to 

another and can also depend on the time scale. Therefore the importance of scale-

dimension is verified again. Kim & In (2006) find that correlation between 

industry returns and inflation does not vary along with the scale. Furthermore 

they find indications that industry returns can be used as a hedge against inflation, 

depending on the particular industry. 

Gençay et al. (2001a) also include a study which analyzes the dependencies 

between foreign exchange markets. Findings include an increase of correlation 

from intra-day scale towards the daily timescale and the stabilization of 

correlation for longer time scales. Dalkir (2004) studies the causality relationship 

between money and output on different timescales using wavelets. He finds scale 

dependent changes in the direction of causality between money and income and 

so emphasizes the importance of scale-dimension in causality studies. Fernandez 

(2005) studies the return spillovers in major stock markets on different time 

scales. Her conclusions are mainly that G7 countries significantly affect global 

markets and the reverse reaction is much weaker. Lee (2004) conducts somewhat 

similar study with the discrete wavelet transform based multiresolution analysis. 

He finds indications of volatility and return spillovers from the developed markets 

to the emerging markets on multiple scales. In the relationships between 

economic variables, Gallegati (2008) studies the relationship between stock 

market returns and economic activity. He applies the maximum overlap discrete 

wavelet transform to the Dow Jones Industrial Average stock price index and to 

the industrial production index for the US. Use of wavelet variance, wavelet 

correlation and cross-correlations are applied to analyze the association as well as 

the lead/lag relationship between stock prices and industrial production on 

different time scales. His results show that stock market returns lead economic 

activity at lower frequencies. This lead also increases along with the scale. 

The work of Crowley and Lee (2005) was already mentioned in the previous 

section. They also study interdependencies inside the euro zone using wavelet 

methods. The results reveal significant differences between European countries in 
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the degree of integration. Some countries like Germany, France and Belgium 

have strong correlations with the euro zone aggregate. On the other hand Finland, 

Ireland, Sweden and the UK have much lower correlation with the euro zone 

aggregate. Shrestha & Tan (2005) empirically analyze the long-run and short-run 

relationships among real interest rates in G-7 countries. A wavelet transform 

based analysis reveals the existence of both short-run and long-run relationships. 

They do not find evidence for strict interest rate parity. Gallegati & Gallegati 

(2005) study the industrial production index of G-7 countries using multi-scaling 

approach based on the MODWT estimator of wavelet variance and correlation. 

Lee (2004) investigates the international transmission mechanism of stock market 

movements via wavelet analysis. Using a daily data of stock indices, he finds a 

strong evidence for price as well as volatility spillover effects from the developed 

stock market to the emerging market, but not vice versa. 

1.2.3 Other topics with wavelets in finance 

Decomposition and interdependence applications have two most extensively 

studied areas of wavelets in finance. Wavelets, however, can be applied in many 

kinds of situation in financial research. Gencay et al. (2001b) propose a simple 

wavelet multiscale method for extracting intraday seasonalities from a high 

frequency data. These seasonalities cause distortions in the estimation of volatility 

models and are also a dominant source for the underlying misspecifications of 

these volatility models. Their methodology is simple and efficient in preventing 

the estimation errors mentioned above. Gencay & Fan (2009) develop a wavelet 

approach to test the presence of a unit root in a stochastic process and applying it 

to financial time series. Their conclusions are similar to Gencay et al. (2001b). 

Ramsey and Zhang (1997) use wavelets or more generally waveforms to analyze 

foreign exchange data. Their method is based on the matching pursuit algorithm 

introduced by Mallat and Zhang (1993). The results reveal that waveform 

dictionaries are most efficient with non-stationary data. Since economic variables 

tend to fall into this category, again proof for the importance of wavelet methods 

in economics and finance is found. Jensen (2000) applies wavelet methods 

cunningly to develop an alternative maximum likelihood estimator of the 

differencing parameter d of fractionally integrated processes. He shows how the 

wavelet transform of these kinds of processes have a sparse covariance matrix 

that can be approximated at high precision with a diagonal matrix. Therefore the 

calculation of the likelihood function is of an order smaller than calculations with 

the exact MLE methods. Furthermore he demonstrates how the wavelet-MLE 

method is superior compared to other semi parameter estimation methods. Tkacz 
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(2000) applies the method of Jensen (1999) to interest rates in the U.S. and 

Canada and find that rates are mean-reverting in the very long run, with the 

fractional order of integration increasing with the term to maturity.  

Conway and Frame (2000) use wavelets for spectral analysis of New Zealand 

output gaps. They use wavelets to compare different spectral estimation methods 

and find substantial differences in their low frequency components. Therefore 

they question the reliability of low frequency results of previous spectral 

estimation studies. Murtagh et al. (2004) extend the applications of wavelet 

methods to forecasting. They apply the maximal overlap discrete wavelet 

transform to decompose the time series and then forecast these different scale 

crystals separately. The results indicate that the multiresolution approaches 

outperform the traditional approaches in modeling and forecasting. Renaud et al. 

(2003) investigate very similar ideas. They also divide original time series to 

multiresolution crystals and then forecast these crystals separately. These 

forecasts are then combined to achieve an aggregate forecast for the original time 

series. In simulation studies the method works very well and competes with up-

to-date methods. 

Neuman and Greiber (2004) use wavelets as one of the applied filters to study the 

importance of money for inflation in the euro area. They use wavelets to study the 

relation between money and inflation in the frequency domain. The results show 

that the relation between money and inflation appears to rest on relatively long-

lasting cycles of monetary growth. Short to medium-term fluctuations of money 

growth with cycles of up to about 8 years were found to be insignificant for 

inflation. Atkins and Sun (2003) use wavelets to uncover the Fisher effect 

between nominal interest rates and inflation. They eliminate long memory using 

the discrete wavelet transform and then estimate the standard Fisher equation 

regression in the wavelet domain. This method is then applied to study the Fisher 

effect to conclude that it cannot be identified on a short time scale. The degree of 

fit of the regression increases towards longer time scales. 

Whitcher & Jensen (2000) propose a nonstationary class of stochastic volatility 

models that feature time-varying parameters and use them to analyze the long-

memory behavior of a time series. In their estimation of the long-memory 

parameter they use a log linear relationship between the local variance of 

maximum overlap discrete wavelet transform’s coefficients and their scaling 

parameter to produce a semi parametric OLS estimator. Nekhili et al. (2002) 

compare the empirical distributions of exchange rates with well-known 

continuous-time processes at different frequencies. Using wavelets they find that 

there is not a distribution that suits both the low and high frequency data of 
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exchange rates. Leong & Huang (2006) propose a new way to detect spurious 

regression using wavelet covariance and correlation. They achieve an efficient 

and simple method which is able to detect the spurious relationship in a bivariate 

time series more directly than ordinary methods. Antoniou & Vorlow (2003) 

demonstrate how a wavelet semi-parametric approach can provide useful insight 

on the structure and behavior of stock index prices, returns and volatility. 

1.3 Framework and contribution 

1.3.1 Framework 

This section presents the contribution of this thesis in detail. The aim of this thesis 

is to extend the applications of wavelet methods in finance. The next chapter 

studies correlation of the returns of major world stock indices. The non-decimated 

discrete wavelet transform is implemented to quantify international volatility 

linkages between markets. This transform decomposes volatility on a scale by 

scale basis and gives information of correlation at certain time scales. The 

following chapter succeeds the previous chapter although the focus is somewhat 

different. A thorough examination of contagion among the major world markets 

during the last 25 years is carried out. The analysis uses a novel way to study 

contagion with the help of wavelet methods. The comparison is made between 

correlations at different time scales using wavelet coherence and the MODWT 

estimator of wavelet correlation. The fourth chapter extends the interrelation 

studies to European exchange rates. Lead-lag relations of major European 

currencies are studied using wavelet cross-correlation. The estimators of wavelet 

cross-correlation are constructed using the maximal overlap discrete wavelet 

transform. The fifth chapter provides a novel wavelet analysis on the cross-

dynamics of exchange rate expectations. Over-the-counter currency options on 

the euro, the Japanese yen, and the British pound vis-à-vis the U.S. dollar are used 

to extract the expected probability density functions of future exchange rates and 

recent wavelet cross-correlation techniques are applied to analyze linkages in 

these expectations. The last chapter examines the predictability of return and 

volatility series with different time scales and examines the benefit of using a 

non-linear predictor, namely a wavelet network, in financial framework. The time 

series used is a daily currency rate between the Japanese yen and the US dollar, 

which is forecasted two weeks ahead using only present and previous values of 

the time series and its low-pass filtered transformations. 
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1.3.2 Contribution and results 

The results of the following chapters introduce many new results and open up 

new frontiers. Wavelet methods play an important role in many of these new 

results. In some of the results wavelets play a vital part in detecting them. Two 

main aspects are behind the effectiveness of wavelets in finance. One is the 

intelligent compromise between the time dimension and the frequency dimension 

that helps wavelets to avoid the obstacles that have plagued spatial or frequency 

analysis. Another is the multiscale structure that is a natural part of financial 

processes. Investors work on many different timescales. And with wavelets we 

can separate these different time scales. 

The knowledge of time scale dynamics between financial markets is important to 

the participants of the market in their investment planning. Investors should take 

into account also their investment horizon when they make risk management and 

portfolio allocation decisions based on correlation structure between markets. 

Although correlation between returns and volatility are extensively studied 

subjects in the literature, there is very little research of timescale dynamics of 

correlation. Some time scale research has been made with intraday dynamics, but 

usually the longest timescale in these studies is the daily time scale. With wavelet 

methods we have an easy way to study this new dimension. The results of the 

next chapter, which focuses on the correlations of stock indices, show that 

linkages between stock index returns have rich time scale dependant structure. 

The correlations are weakest at the shortest scales and strengthen with increasing 

scale. Thus diversification in portfolio management should be most efficient on a 

short time scale. Even more strongly this scale-dependency is seen with 

volatilities. Therefore one can argue that this rich structure in the dynamics 

between the studied indices needs wavelet methods to be revealed. 

The third chapter applies wavelets to study contagion. Clear signs of contagion 

among the major markets are found. Contagion exists also around crises, where 

its existence has previously been under debate. The results show that short time 

scale correlation increases during these major crises. At the same time long time 

scale correlations remain approximately at the same level, indicating contagion. 

The inclusion of a multiresolution analysis, i.e. different time scales, proves out to 

be very important. Maybe even vital as correlations change quickly as a function 

of scale and many changes are seen only on certain time scales. Overall the 

results indicate that contagion has been a major factor between markets many 

times in the last 25 years. This has not changed since almost the strongest signs of 

contagion can be seen during the ongoing financial crisis. Also an overall increase 
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of interdependence is found. As a result of these two aspects, markets have 

become very highly correlated in the 20th century. 

The fourth chapter shows how wavelet cross-correlation allows very fine analysis 

of lead-lag relations between financial time series. The maximal overlap discrete 

wavelet transform based estimator of cross-correlation gives good insight to time-

scale dependant dynamics of exchange rates. The results indicate that Euro and 

the Swiss franc lead the British pound on larger scales. On a one month and 

longer time scales the lag of the Pound is obvious. Including scale-dimension, a 

more complete picture of the interrelations can be drawn. The importance of this 

dimension cannot be stressed enough, because market participants naturally have 

different time horizons in their investment plans. This way, the wavelet methods 

are just the right solution for them because they can pick up the time-scale from 

the wavelet analysis that interests them most and make decisions according to this 

time-scale.  

The most specific application is in chapter five, where option implied exchange 

rate expectations are studied using wavelets. Significant lead-lag relationships 

between the expected probability densities of major exchange rates are found 

regardless of time scales. At higher frequencies, the expected volatility of the 

JPY/USD exchange rate is found to affect the expected volatility of the 

EUR/USD and GBP/USD exchange rates. However, at lower frequencies, there is 

also a significant feedback effect from the GBP/USD volatility expectations to the 

JPY/USD volatility expectations. The higher-order moments of option-implied 

exchange rate distributions indicate that the market expectations of the JPY/USD 

exchange rate are unrelated to the developments of the European currencies while 

moments of the expected EUR/USD and GBP/USD densities are strongly linked 

with each other. This analysis suggest that the dynamic structure of the relations 

between exchange rate expectations varies over different time scales. In general, 

empirical findings suggest that the dynamic structure of exchange rate 

expectations may vary considerably over different time-scales. Therefore, it is a 

situation again where important information would have been missed without 

wavelet based multiresolution analysis. 

The last chapter introduces a somewhat different application of wavelet methods. 

A wavelet network is used to forecast financial time series. The results, however, 

are not so triumphant. On the contrary some criticism is presented over the 

practicality of wavelets in forecasting. At least for time series used, there is not 

any nonlinear structure in the forecast that the wavelet network could capture. 

The fit to the training data is always better with the wavelet network, but the fit to 

the testing data is always better with the linear model. This suggests that the 
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wavelet network only adapts to the noise of the training data and this makes the 

testing data forecast worse. Forecasts of both the wavelet network model and the 

linear model are somewhat better than the random walk model, suggesting that 

there is predictability in the series. However the improvements are quite modest 

so in this sense conclusions are still quite close to the conclusions of Meese and 

Rogoff (1983). The predictability does not improve on longer forecasting 

horizons. On the contrary there is a larger difference between the studied models 

and the random walk model when we are dealing with shorter forecast horizons. 

This is inconsistent with the recent results that forecasts improve when time 

horizon increases (Chinn & Meese 1995) and somewhat supports the findings of 

Carriero et al. (2009). Using even longer forecast horizon might change the 

picture. 

Excluding the last chapter the results of these separate studies show clearly the 

importance of scale-dimension in economic and financial research. Throughout 

these chapters there are instances, where wavelet analysis has the key role in the 

contribution of the study. Financial processes form when multiple agents working 

on different time horizons participate in the markets. With wavelets we can at 

least approximately decompose this process into sub-processes presenting 

contributions of different agents. Therefore we are decomposing the processes to 

their natural components. Thus, we achieve better understanding of the dynamics 

of the financial and economics processes. 
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2 CORRELATION STRUCTURE OF EQUITY 
MARKETS* 

Linkages of major world stock indices are studied. Wavelet methods are used to 

form a scale dependent correlation of returns and cross-correlation of volatility, 

because these are the most important statistics for investors. The results indicate 

that the linkages between the indices vary along with time scale. The correlations 

between returns and volatilities are weakest at the shortest scales and increase 

with time horizon. The cross-correlation structure between volatilities is different 

at shorter time scales than on longer time scales suggesting nonlinear linkages 

between the markets. 

2.1 Introduction 

Linkages between equity markets have been widely studied. These linkages are 

important to investors. Knowledge of return and volatility linkages between 

markets give an investor tools for efficient diversification and portfolio 

management as well as risk management. In this chapter, the time-scale 

dependant correlation of returns and cross-correlation of volatilities between 

major world indices is analyzed. Analysis is made using wavelet multiresolution 

techniques. This gives us decomposition on a scale by scale basis and therefore 

allows us to make time scale dependent analysis of major stock market linkages.  

In the following only the previous research important to this work is discussed. 

The research of international equity market linkages and integration is a much 

broader subject. For a good survey of the research area, see Kearney and Lucey 

(2004) 

The research of correlation and cross-correlation between major world equity 

markets has long traditions in financial research. Lin et al. (1994) study the 

correlation of the volatility of New York and Tokyo markets. They find that 

information revealed during the trading hours of one market has a global impact 

on the returns of the other market. Hamao et al. (1990) end up to similar 

conclusions in the study of New York, London and Tokyo markets. Lin et al. 

argue, however, that the studied markets are more efficient than suggested by the 

results of Hamao et al. Ramchand & Susmel (1997) examine the relation between 

                                                 
 
*  An article based on this chapter was presented at the 2008 International Conference on 

Applied Business & Economics and was published in the Proceedings of the ICABE 2008. 
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correlation and variance in conditional time and state varying frameworks using 

switching ARCH techniques. They find that correlations between the U.S. and 

other world markets are on average 2 to 3.5 times higher when the U.S. market is 

in a high variance state as compared to a low variance regime. Andersen et al. 

(2001) study daily equity return volatility and correlation obtained from high-

frequency intraday transaction prices on individual stocks in the Dow Jones 

Industrial Average. For correlations between stock return volatility they found 

significant co-movements, reducing the benefits of portfolio diversification when 

the market is most volatile.  

Longin & Solnik (2001) question the previous studies between correlation and 

volatility of international equity markets. They argue that correlation is not related 

to market volatility per se but to the market trend and that correlation between 

markets increase in bear markets. Differences in these conclusions might be a 

result of different types of data. For example Wongsman (2006) argues that many 

types of linkages might be missed if too low frequency data is used. Ball & 

Torous (2000) examine correlations across a number of international stock market 

indices using filtering methods to extract stochastic correlation from returns data. 

Their results indicate that the estimated correlation structure is dynamically 

changing over time. Their findings also include that stochastic correlation tends to 

increase in response to higher volatility. Similar conclusions were also made 

earlier by Longin and Solnik (1995) and Bekaert and Harvey (1995). Kearney 

(2000) studies the volatility of monthly data on stock market returns, interest 

rates, exchange rates, inflation and industrial production for Britain, France, 

Germany, Japan and the US. His data spans from July 1973 to December 1994. 

Results demonstrate that world equity market volatility is caused mostly by 

volatility in Japanese/US markets and transmitted to European markets. He also 

found that low inflation tends to be associated with high stock market volatility.  

The volatility linkages of Far-East markets are also widely studied. Hu et al. 

(1997), Wei et al. (1995), Ng (2000) and Gallo & Otranto (2008) find a rich 

structure between the linkages of Far-East markets. These papers suggest that 

linkages are much more complex than merely the flow from the US to other 

markets. Similar conclusions are also made by Miyakoshi (2003). Cifarelli and 

Paladino (2005) investigate the high frequency behavior of the US, British and 

German stock markets using symmetric and asymmetric GARCH models. Their 

main conclusion is that the volatility transmission across countries is mostly 

accounted for by stock market exuberance. Baele (2005) studies the magnitude 

and time-varying nature of volatility spillovers from the aggregate European and 

US markets to 13 local European equity markets. Evidence is found in both 

markets for increasing spillover intensity throughout the 1980s and 1990s. 
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Furthermore, evidence is also found of contagion between the US market and 

local European equity markets during periods of high world market volatility are 

found. Morana and Belratti (2008) study the comovements in international stock 

markets. They form monthly realized moments for stock market returns for the 

US, the UK, Germany and Japan to assess the linkages between these markets. 

Results include progressive integration of the four stock markets, leading to 

increasing comovements in prices, returns, volatilities and correlations. 

Koulakiotis et al. (2009) study spillover effects inside Europe. They divide the 

euro area to three different regions and study the transmissions of volatility inside 

these regions. They find evidence for the same kind of complex linkages as found 

by the other studies in different market regions. They conclude that it is not 

always the case of the largest market in one region being the driving factor. 

The analysis of this paper extends the previous work of correlation studies by 

decomposing correlation and cross-correlation on different time scales. Previous 

research has mainly studied temporal correlation and possibly its time variations. 

The innovation of this study is the addition of a new dimension to the research. 

Instead of time changes, focus is on the changes in scale-dimension (frequency-

dimension). This is achieved using wavelet correlation and wavelet cross-

correlation. Wavelet correlation is a recent method in financial time series 

analysis. Gallegati & Gallegati (2005) apply the wavelet correlation to the 

analysis of the industrial production indices of G-7 countries. Kim & In (2005) 

analyze the relationship between stock returns and inflation using wavelet 

correlation. Results indicate that there is a positive relationship between stock 

returns on the shortest and longest time scales, while a negative relationship is 

shown on the intermediate scales. In & Kim (2006b) study the correlation 

between the stock and futures markets with wavelet correlation methods. They 

find that the wavelet correlation between two markets varies over different 

investment horizons but remains very high. In & Brown (2007) use similar 

wavelet correlation analysis in international swap markets. Again they conclude 

that correlation between swap markets varies over time but remains very high, 

especially between the dollar and the euro. Furthermore they note that 

correlations with the yen market are lower implying that the yen market remains 

relatively less integrated with other major swap markets. Additional studies with 

wavelet correlation are Razdan (2004) on the study of strongly correlated 

financial time series, Simonsen (2003) on the study of the Nordic electricity spot 

market and Conlon et al. (2008) on the study of hedge funds. These studies show 

the potential of wavelet correlation and wavelet cross-correlation within financial 

research and which are extended in this thesis. 
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2.2 Wavelet correlation 

The analyzed return series is calculated as a difference of the logarithmic price 

series. This study applies the generalized autoregressive conditional 

heteroscedasticity (GARCH) model to calculate the conditional volatility series. 

Conditional volatility of a time series implies explicit dependence on a past 

sequence of observations.  GARCH model is a technique that can be used to 

model the serial dependence of volatility. The following model is used: 

 
2 2 2

1 2 1 3 1,

t t

t t t

y C

A A A

ε

σ σ ε− −

= +

= + +
 (1) 

where ty  is the time series and 2
tσ  the conditional variance of the innovations tε . 

So a constant time series is assumed, where volatility depends on the previous 

value of volatility and the square of the previous innovation. The model above is 

called the constant mean GARCH(1,1) model. 

2.2.1 Maximal overlap discrete wavelet transform 

The Maximal Overlap Discrete Wavelet Transform (MODWT) (Percival & 

Walden 2000) is similar to the Discrete Wavelet Transform (DWT) in that high-

pass and low-pass filters are applied to the input signal at each level. However, in 

the MODWT, the output signal is not subsampled (not decimated). Instead, the 

filters are upsampled at each level. 

Suppose we are given a signal [ ]s n  of length N where 2J
N =  for some integer J. 

Let [ ]1h n  and [ ]1g n  be a low-pass filter and a high-pass filter defined by an 

orthogonal wavelet. At the first level of MODWT, the input signal [ ]s n  is 

convolved with [ ]1h n  to obtain approximation coefficients [ ]1a n , and with 

[ ]1g n  to obtain detail coefficients [ ]1d n : 

 [ ] [ ] [ ] [ ] [ ]1 1 1
k

a n h n s n h n k s k= ∗ = −∑  (2) 

 [ ] [ ] [ ] [ ] [ ]1 1 1 .
k

d n g n s n g n k s k= ∗ = −∑  (3) 

Without subsampling, [ ]1a n  and [ ]1d n  are of length N instead of  2N  as in the 

DWT. At the next level of the MODWT, [ ]1a n  is filtered using the same scheme, 

but with modified filters [ ]2h n  and [ ]2g n  obtained by dyadic upsampling [ ]1h n  
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and [ ]1g n . This process is continued recursively. For 01,2, , 1j J= −… , where 

0J J≤ , define 

 [ ] [ ] [ ] [ ] [ ]1 1 1j j j j j

k

a n h n a n h n k a k+ + += ∗ = −∑  (4) 

 [ ] [ ] [ ] [ ] [ ]1 1 1j j j j j

k

d n g n a n g n k a k+ + += ∗ = −∑
'
 (5) 

where [ ] [ ]( )1j jh n U h n+ =  and [ ] [ ]( )1j jg n U g n+ = . Here U is the upsampling 

operator that inserts a zero between every adjacent pair of elements of the time 

series. The output of the MODWT is then the detail coefficients 
[ ] [ ] [ ] [ ]

01 2 3, , , ,
J

d n d n d n d n…  and the approximation coefficients [ ]
0J

a n . 

2.2.2 MODWT estimator for the wavelet correlation 

In this section, an estimator for wavelet correlation is constructed using the 

MODWT. This estimator was introduced by Percival (1995), Whitcher (1998) 

and Whitcher et al. (2000). An estimator for wavelet cross-correlation is a natural 

extension of the estimator of wavelet correlation and has similar properties. 

The MODWT coefficients indicate changes on a particular scale. Thus, applying 

the MODWT to a stochastic time series produces a scale-by-scale decomposition. 

The basic idea of wavelet variance is to substitute the notion of variability over 

certain scales for the global measure of variability estimated by sample variance 

(Percival & Walden 2000). Same applies to wavelet covariance. The wavelet 

covariance decomposes sample covariance into different time scales. In other 

words, wavelet covariance on a particular time scale indicates the contribution of 

covariance between two stochastic variables from that scale. The wavelet 
covariance at scale 12 j

jλ −≡  can be expressed as (Gencay et al. 2002a) 

 ( )
1

, ,
1

1
cov

j

N
X Y

XY j j t j t

t L

d d
N

λ
−

= −

≡ ∑�
'

 (6) 

where ,
l

j td  are the MODWT wavelet coefficients of variables l on a scale 
j

λ . 

1j jN N L= − +�  is the number of coefficients unaffected by the boundary, and 

( ) ( )2 1 1 1j

j
L L= − − +  is the length of the scale 

j
λ  wavelet filter. 

An estimator of the wavelet covariance can be constructed by simply including 

the MODWT wavelet coefficients affected by the boundary and renormalizing. 
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This covariance is, however, to some degree biased. Because covariance is 

dependent on the magnitude of the variation of time series. It is natural to 

introduce the concept of wavelet correlation. 

The wavelet correlation is simply made up of the wavelet covariance for { },
t t

X Y  

and the wavelet variance for { }tX  and { }tY . The MODWT estimator of the 

wavelet correlation can be expressed as 

 ( )
( )

( ) ( )

cov
XY j

XY j

X j Y j

λ
ρ λ

ν λ ν λ
≡ , (7) 

where ( )
21

,1

1
, ,

j

N l

l j j tt L
d l X Y

N
ν λ

−

= −
 ≡ = ∑�  is the wavelet variance of stochastic 

process (Percival, 1995). 

Confidence intervals 

Calculation of confidence intervals is based on Whitcher et al. (1999, 2000). The 

random interval 

 ( )
( )

( )
( )1 11 1

tanh , tanh
3 3

XY j XY j

j j

p p
h h

N N
ρ λ ρ λ

− −    Φ − Φ −       − +      − −        

 (8) 

captures the true wavelet correlation and provides an approximate ( )100 1 2 %p−  

confidence interval. The function ( ) ( )1tanhh p ρ−≡  defines the Fisher’s z-

transformation. 
j

N  is the number of wavelet coefficients associated with a 

certain scale computed via the DWT, not the MODWT. This is because the 

Fisher’s z-transformation assumes uncorrelated observations and the DWT is 

known to approximately decorrelate a wide range of power-law processes. 

2.3 Empirical analysis 

2.3.1 Empirical Data 

The sample data consists of daily returns and conditional volatilities of major 

world stock indices. The indices included are DAX 30 (Germany), FTSE 100 

(Great Britain), S&P 500 Composite (US) and Nikkei 225 (Japan). The sample 

period spans from May 10, 1988 to January 31, 2007, including 4891 values. The 
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conditional volatilities are calculated using the GARCH model in equation (1). 

The volatility and return series are presented in Figure 1. Summary statistics for 

the series are in tables 1 and 2. The mean of the return series are almost the same 

for SP500, DAX30 and FTSE100 while the mean of Nikkei is slightly negative. 

The standard deviation of Nikkei and DAX30 are somewhat larger than SP500 

and FTSE100. Nikkei and DAX30 have been more volatile than SP500 and 

FTSE100 in the past, although the standard deviation for these volatility series 

has also been larger. 

 

Table 1. Descriptive statistics for the return data of the studied indices. 

Mean, median and standard deviation are presented as 

percentages. 

RETURNS SP500 NIKKEI DAX30 FTSE100 

Mean (%) 0.035 % -0.010 % 0.030 % 0.025 % 

Median (%) 0.021 % 0.000 % 0.035 % 0.008 % 

Standard Deviation (%) 0.964 % 1.377 % 1.376 % 0.979 % 

Kurtosis 4.412 3.890 6.236 3.373 

Skewness -0.146 0.152 -0.433 -0.129 

Minimum -0.071 -0.072 -0.137 -0.059 

Maximum 0.056 0.124 0.076 0.059 

Count 4891 4891 4891 4891 

 

Table 2. Descriptive statistics for the conditional volatility data of the 

studied indices. Mean, median and standard deviation are 

presented as percentages. 

VOLATILITY SP500 NIKKEI DAX30 FTSE100 

Mean (%) 0.0091 0.0132 0.0127 0.0091 

Median (%) 0.0081 0.0124 0.0109 0.0081 

Standard Deviation (%) 0.0034 0.0049 0.0055 0.0035 

Kurtosis 2.0711 2.2037 4.9024 5.9183 

Skewness 1.3838 1.1695 2.0459 2.1411 

Minimum 0.0046 0.0053 0.0065 0.0051 

Maximum 0.0236 0.0444 0.0460 0.0300 

Count 4891 4891 4891 4891 
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Figure 1. Return and conditional volatility series for studied indices. The 

sample period spans from May 10, 1988 to January 31, 2007, 

spanning 4891 values. 
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The MODWT estimator for wavelet correlation is calculated from the return 

series and the estimator of wavelet cross-correlation from the volatility series. 

Multiresolution analysis with nine scales is performed. The first scale represents 

1-2 day averages and the ninth scale represents 256-512 day averages. 95% 

confidence intervals are used to analyze statistical significance. After 

experimenting with a few different wavelet filters, the Daubechies least 

asymmetric wavelet filter of level 8 (LA8) was utilized in the MODWT. This 

filter is favored mostly in literature (Percival & Walden, 2000). The 

decomposition low-pass and high-pass filters of LA8 are presented in figure 2. 

 

 

Figure 2. Daubechies least asymmetric wavelet (High-pass) and scaling (Low-

pass) filters of level 8. High-pass filter is used to extract detail 

information from time series and low-pass filter to extract low-level 

approximation. In the next phase a modified high-pass filter is used 

to extract details of another time scale. 

2.3.2 Empirical results 

Figure 3 demonstrates the wavelet correlations for the returns of the four index 

series. The correlations increase from shorter time scales to longer time scales. 

Previous research has argued that correlations are stronger on the intra-day time 

scales and become weaker when moving towards the daily time-scale (for an 

example see Wongsman 2006). Now the wavelet correlations indicate that 
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correlations increase from the daily time scale onwards. Thus the daily timescale 

appears to have the lowest correlations on the scale dimension. 

 

 

 

 

Figure 3. Wavelet correlation of returns between DAX30, FTSE100, S&P500 

and Nikkei. Corresponding indices are shown above every sub-

figure. Time scale spans from one day to one year in dyadic steps.  

 

For the S&P 500 the increase of correlation from a daily time scale to longer time 

scales slows down or stops around a time scale of one week. Thereafter the 
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correlation stays approximately at the same level all the way to a time scale of 

one year. The correlation between Nikkei and the other indices peaks around a 

time scale of one month. From one month onwards the correlation stays 

approximately at the same level or even decreases a little between Nikkei and 

DAX30. The correlation starts to increase again on a time scale of 128-256 days 

and is significantly stronger on a time scale of one year. Overall the correlations 

with Nikkei are the smallest among the studied correlations, regardless of the time 

horizon. It is often argued in the literature that especially the US market affects 

Japan but not vice versa. Lin et al. (1995) however argue that there is a bi-

directional linkage between the US and Tokyo markets on an intra-day timescale. 

This linkage weakens on longer timescales as can be seen in Figure 3. As 

expected, the correlations between DAX30 and FTSE100 are strong on every 

scale. 

Table 3 represents four different time scales in detail. There is a ranking in order 

of increasing correlation for the time scales of day, week, month and year. The 

ranking is made according to portfolio diversification as the correlations of 

returns are central factors in efficient portfolio diversification. The correlation 

between DAX30 and FTSE100 is strong on every time scale so they take the last 

places in the diversification ranking. One clear aspect of Table 5 is that Nikkei 

listed stocks should be included in portfolios regardless of the time scale studied.  

The top three for every time horizon consists of Nikkei and some other index. On 

the time scales of a day and a week, the most diversified portfolios are formed by 

combining the SP500 and Nikkei listed stocks. If the investment horizon is longer 

(the time scales of a month and a year), the best results are obtained by using the 

European stocks (DAX30, FTSE100) and the Nikkei listed stocks. It is also 

preferable to use the DAX30 listed stocks in portfolio forming, especially if the 

investment horizon is longer (time scale of one year). These results support the 

work of Morano & Beltratti (2008). They find that overall integration between 

markets has increased, expect for Japan. In their study Nikkei has also 

significantly lower correlations with other markets. 
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Table 3.  Correlation diversification ranking on four different time scales. 

Time scales used are a day(scale 1, 1-2 days), a week(scale 3, 4-8 

days), a month(scale 5, 16-32 days) and a year(scale 9, 256-512 

days). Ranking is formed on the basis of portfolio diversification 

efficiency. Correlations are in the parentheses. 5% significance 

level is marked with *. 

Rank Day Week Month Year 

1 
SP500 - NIKKEI 

(-0,071*) 
SP500 - NIKKEI 

(0,294*) 
FTSE100 - NIKKEI 

(0,334*) 
DAX30 - NIKKEI 

(0,480*) 

2 
DAX30 - NIKKEI 

(0,114*) 
DAX30 - NIKKEI 

(0,334*) 
DAX30 - NIKKEI 

(0,420*) 
SP500 - NIKKEI 

(0,521*) 

3 
FTSE100 - NIKKEI 

(0,135*) 
FTSE100 - NIKKEI 

(0,369*) 
SP500 - NIKKEI 

(0,449*) 
FTSE100 - NIKKEI 

(0,602*) 

4 
FTSE100 - SP500 

(0,139*) 
FTSE100 - SP500 

(0,609*) 
FTSE100 - SP500 

(0,681*) 
DAX30 - SP500 

(0,630*) 

5 
DAX30 - SP500 

(0,218*) 
DAX30 - SP500 

(0,612*) 
DAX30 - SP500 

(0,689*) 
DAX30 - FTSE100 

(0,665*) 

6 
DAX30 - FTSE100 

(0,567*) 
DAX30 - FTSE100 

(0,701*) 
DAX30 - FTSE100 

(0,714*) 
FTSE100 - SP500 

(0,834*) 

 

The other topic of this study is the scale-based examination of the cross-

correlation of volatilities of stock indices. The purpose is to acquire more 

information about linkages between the major equity markets and thus, clarifying 

the understanding of dynamic structures between them. The MODWT based 

wavelet cross correlation functions are used as an estimator. An example of these 

functions is presented in figure 4 with the wavelet cross-correlation functions 

between DAX30 and SP500.  
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Figure 4. Example of wavelet cross-correlations on four different time scales 

(1-2, 4-8, 16-32 and 256-512 days). Indices studied are DAX30 and 

SP500. The skew to the left means leading DAX30 and the skew to 

the right means leading SP500. On the horizontal line are lags in 

days and on the vertical line are correlations. 

 

Four different time scales are studied, namely a day, a week, a month and a year.  

Like with the returns, there is a trend of strengthening contemporaneous 

correlation when the time horizon gets longer. From the figure can be seen, that 

the cross correlation on the time scale of a day skews to the right. This means that 

the volatility of SP500 is leading the volatility of DAX30. When the volatility of 

SP500 increases (decreases), the volatility of DAX30 increases (decreases) 1-2 

days later. The same kind of conclusion, in the other direction, can be made on 

the time scale of a month. Now the leading index is DAX30. When dealing with 

one month long averages, changes in the volatility of DAX30 are followed by 

similar changes in the volatility of SP500. The whole cross-correlation analysis 

data between every index and on every time scale are available upon request from 

the author. 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-1

-0.5

0

0.5

1
DAX30 - SP500, DAY

-50 -40 -30 -20 -10 0 10 20 30 40 50
-1

-0.5

0

0.5

1
DAX30 - SP500, WEEK

-50 -40 -30 -20 -10 0 10 20 30 40 50
-1

-0.5

0

0.5

1
DAX30 - SP500, MONTH

-50 -40 -30 -20 -10 0 10 20 30 40 50
-1

-0.5

0

0.5

1
DAX30 - SP500, YEAR



 Acta Wasaensia     33 

  

Cross-correlation functions of volatilities can be used to analyze volatility 

spillovers between different markets. The calculated wavelet cross-correlation 

functions were used for the subjective analysis of volatility spillovers similar to 

the previous paragraph. These results are presented in figure 5. 

 

            
 

           

Figure 5. Volatility spillover flow charts for four different time scales. Flows 

have been visually estimated using the wavelet cross-correlation 

functions. From the upper-left corner the time scales are a day(1-2 

days), a week(4-8 days), a month(16-32 days) and a year(256-512 

days). Black arrows were statistically significant at a 5% level, while 

grey arrows were not. Big arrows describe a very strong volatility 

spillover. 

 

There are four simple diagrams presenting the same time scales for a day, a week, 

a month and a year. On the time scales of a day and a week, there is a clear flow 

of volatility from SP500 to other indices. It is stronger on the shortest time scale, 

but still clear on the time scale of a week. Things are different when we study the 

time scale of a month. There is a flow of volatility from the European indices, 

especially DAX30, to SP500 and Nikkei. This result is an interesting result and 

one that has not been documented before in the literature. This result however 

could be an outcome of the chosen indices. DAX30 differs from other indices in 

the amount of companies included in the index. In the DAX30 there are 30 of the 

largest German companies and in the SP500 there are 500 companies. Therefore 
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there is a substantial difference between these two indices. On the contrary to the 

return analysis and results of Morana & Beltratti (2008) (and somewhat also for 

the study of Hamao et al. (1990)), there is also a spillover from Nikkei to SP500 

on the monthly timescale. The timescale of a year is again similar to the shorter 

time scales. The volatility of SP500 is affecting the volatility of other indices with 

a lag. One different aspect on the longest time scale is that Nikkei is also affecting 

other indices, which contradicts the results of some previous research and support 

for example conclusions of Lin et al. (1995). These correlations were, however, 

statistically significant only at a 10% level. 

2.4 Conclusion 

In this chapter, the linkages between major world stock indices are studied. The 

methodology is based on wavelet correlation (and cross-correlation), which 

decomposes correlation of a time series on a scale by scale basis using the non-

decimated discrete wavelet transform. The wavelet methods give us 

multiresolution analysis for correlation. Therefore we can study correlation's 

dependence on a time scale. This is important because different investors have 

different investment horizons and wavelet analysis can be used to improve 

decision making in the practical situations of risk management, portfolio 

allocation and asset pricing. 

There is a clear trend that the correlation increases, when the time horizon gets 

longer. The previous research argues that correlations decrease when we move 

from the intraday time scales to the daily timescale (Wongsman 2006). The 

results of this study show how the correlations increase from the daily time scale 

to longer time scales. Thus along the scale dimension the correlations appear to be 

the smallest on a daily time scale. The correlations between Nikkei and other 

indices are the smallest on every scale. Morana & Beltratti (2008) find similar 

results on a time scale of one month and now this result is extended to other 

timescales. Therefore, from the standpoint of portfolio diversification, Nikkei 

listed stocks should always be included in the portfolio. The difference is that on 

shorter time scales, Nikkei listed stocks should accompany stocks from SP500, 

while on longer time scales, European stocks should be used. DAX30 has smaller 

correlations with SP500 and Nikkei than FTSE100 and is a better choice in 

investment strategies including European stocks.  

The cross-correlation analysis of volatilities on a scale by scale basis is used to 

analyze volatility spillover effects. There again, dependence on a time scale was 

observed. On shorter time scales there was a volatility spillover from SP500 to 
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other indices. Things change when we move to the time scale of one month. 

Volatility spillover from the European indices, especially DAX30, to SP500 and 

Nikkei was observed. On the longest time scale things are again similar to the 

shorter time scales, where the changes of volatility of SP500 lead changes in the 

other indices. Different aspect compared to the short time horizons is the 

observation of a weak volatility spillover from Nikkei to other indices. The results 

follow the previous literature. Morana & Beltratti (2008) observe the flow from 

the US to other markets and the separate nature of the Japanese market. Also on 

certain scales there is support for the results of Lin et al. (1994) for the influence 

of the Nikkei market to other markets. The strong spillover from the DAX30 

index to other indices is something new which has not been documented before. 

Correlation between returns and volatilities are extensively studied subjects in the 

literature. Above analysis includes the multiresolution analysis to the big picture. 

Decomposing correlation and cross-correlation functions on a scale by scale basis 

allows the study of their time scale dependence. As the results indicate, the 

correlation between returns and the cross-correlation between volatilities are 

dependent on the time scale examined. Investors also should take into account 

their investment horizon when they make risk management and portfolio 

allocation decisions based on the correlation structure between markets. The 

correlation structure diverges when the investment horizon spans over many years 

in contrast to over a few days. 
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3 CONTAGION AMONG MAJOR EQUITY 
MARKETS* 

In this chapter, an analysis of contagion among the major world markets during 

the last 25 years is carried out. The analysis uses a novel way to study contagion 

with the help of wavelet methods. Clear signs of contagion among the major 

markets are found. The results show that short time scale correlation increases 

during a major crisis. At the same time long time scale correlations remain 

approximately at the same level indicating contagion. Also the overall increase of 

interdependence is found. 

3.1 Introduction 

The debate around a phenomenon called contagion has been active in recent 

years. Forbes & Rigobon (2002) define contagion as an increase of correlation 

between markets after some crisis. This is a narrow definition which is not 

universally accepted as a definition of contagion. A more broad definition argues 

that contagion occurs whenever a shock to one country is transmitted to another 

country, even if there are no significant changes in cross-market relationships 

(Forbes & Rigobon 2002). Some researchers argue that contagion cannot be 

defined based on changes in cross-market linkages. Instead, they argue that the 

analysis of contagion should be based on the analysis of shock propagation from 

one country to another and that only certain types of transmission mechanisms 

constitute contagion However, the definition of Forbes and Rigobon has been the 

most popular in recent papers discussing contagion. This definition is also 

adopted in this study with a slightly different perspective. Contagion is defined as 

a temporary increase of short time-scale correlation. By examining how the 

structure of correlation along the scale-dimension changes after some crisis this 

study aims to avoid the heteroscedasticity problem that has plagued contagion 

research based on correlation coefficients. Using wavelets as a tool, linkages 

between markets can be studied on different time scales. If this structure along the 

scale dimension changes in periods of turmoil, it should be an indication of 

contagion. 

                                                 
 
*  An article based on this chapter received the best paper award at the 2009 Northern Finance 

Association meeting. The article was accepted for publication in the International Journal of 
Managerial Finance. 
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A significant increase of interest over contagion phenomenon occurred after the 

1987 stock market crash (See for example Claessens et. al (2000) for a good 

survey of the contagion literature before the new millennium). King and 

Wadhwani (1990) focus on the major stock markets and find an increase in stock 

market correlations after the 1987 stock market crash, i.e. contagion. Lee and Kim 

(1993) add developing countries to the study and also find evidence of contagion. 

The overall consensus during the nineties was that contagion exists. Forbes and 

Rigobon (2002) argue that previous studies found contagion, because they did not 

correct the correlation measure for heteroscedasticity. Using a heteroscedasticity 

corrected correlation measure they find that contagion does not exist. Following 

the guidelines of Forbes & Rigobon, many other studies end up to similar 

conclusions.  For example Collins and Biekpe (2003) study the integration of 

African countries in the world financial markets and find very little evidence of 

contagion. Lee et al. (2007) find that the South-East Asia tsunami did not trigger 

contagion in the international stock markets (although they find some signs of 

contagion in the foreign exchange markets). Recently the conclusions of Forbes & 

Rigobon (2002) have been criticized. Corsetti et al. (2005) argue that the findings 

of Forbes and Rigobon are a result of an assumed model. They note that the 

model assumes unrealistic restrictions on the variance of country-specific shocks. 

Bartram and Wang (2005) note that the bias Forbes and Rigobon document 

follows directly from the assumptions of their analysis (see also Pesaran and Pick 

2007). Many other corrections for the model of Forbes and Rigobon have been 

proposed. Hon et al. (2007) use a GARCH-model to deal with the 

heteroscedasticity (see also Jokiipii & Lucey 2007).  

Rodriguez (2007) uses a copula approach to investigate contagion and find that 

the dependence structure of stock markets is different when studying tail 

dependence compared to overall dependence. The tail dependence exhibit strong 

changes during the Asian and Mexican crises and is a clear sign of contagion. 

Taking this recent criticism into account, the overall consensus has changed from 

a "no contagion"- to an "at least some contagion"-conclusion or in some cases to 

very strong signs of contagion (see for example Yang and Bessler 2008, Dungey 

et al. 2007). 

The correlation coefficient has been widely used as a measure of interdependence 

in financial research. It is also widely used in contagion studies. Correlation 

literature was already surveyed in the previous chapter. Seminal papers in the 

research area are Lin et al. (1994) on the study of correlation of the volatility of 

New York and Tokyo markets and Longin & Solnik (2001) on the study 

correlation and trend. Other studies are Ramchand & Susmel (1997), Andersen et 
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al. (2001), Ball & Torous (2000), Kearney (2000), Cifarelli and Paladino (2005), 

Baele (2003) and Morana and Belratti (2008). 

In this study, contagion is examined using wavelet correlation and wavelet 

coherence methods. Wavelet correlation methods are achieving an increasing 

popularity in financial time series analysis. A survey of wavelet correlation 

methods was made in the two previous chapters. Wavelet coherence is similar to 

wavelet correlation. It is calculated using the continuous wavelet transform 

instead of the discrete wavelet transform. A wavelet coherence estimator was 

introduced by Grinsted et al. (2004), Torrence & Webster (1999) and Torrence & 

Compo (1998). Wavelet coherence appears to be applied only once in financial 

and economic research. Rua and Nunes (2009) analyze the comovements of stock 

market returns using a similar wavelet coherence method as in this chapter. Their 

focus is however somewhat different. They examine the overall dependence of 

the developed markets on an aggregate level and also separated to different 

sectors. One of the main conclusions of their paper is that on the side of analyzing 

time-varying properties of the comovements, it is also of utmost importance to 

analyze the frequency-varying properties of the comovements. 

This study aims to overtake the debate around the correlation measure being a 

biased measure of contagion by studying correlation on different time scales. In 

addition, making conclusions about correlation as a function of time, conclusions 

as a function of time scale (frequency) are made. If a short time scale correlation 

changes (increases), while a long time-scale correlation remains approximately 

the same, we have contagion. That is the main assumption in the following study. 

This approach avoids the problems of the heteroscedasticity bias of Forbes & 

Rigobon (2002), because volatility should affect both short and long time scale 

correlations. The empirical study is divided into two different parts. The first 

study uses wavelet coherence of the continuous wavelet transform similar to Rua 

and Nunes (2009). This study includes the main contribution of this study. The 

second study uses the estimator of wavelet correlation calculated with the 

maximal overlap discrete wavelet transform. The purpose of the second study is 

to analyze the findings of the wavelet coherence study in more detail. 

3.1 Wavelet coherence and rolling correlation 

3.2.1 Rolling wavelet correlation 

The Maximal Overlap Discrete Wavelet Transform (MODWT) (Percival & 

Walden 2000) is similar to the Discrete Wavelet Transform (DWT) in that the 
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high-pass and low-pass filters are applied to the input signal on each level. 

However, in the MODWT, the output signal is never subsampled (not decimated). 

Instead, the filters are upsampled on each level. The theory behind the MODWT 

based wavelet correlation was introduced in the previous chapter. The study of 

this chapter uses a slight modification of the wavelet correlation. Using a simple 

rolling window approach, the estimator is used to calculate a time series of 

correlation values. 

As was introduced in the previous chapter, the output of the MODWT are the 
detail coefficients [ ] [ ] [ ] [ ]

01 2 3, , , ,
J

d n d n d n d n…  and the approximation 

coefficients [ ]
0J

a n . These coefficients are acquired from the convolution 

equations 

 [ ] [ ] [ ] [ ] [ ]1 1 1j j j j j

k

a n h n a n h n k a k+ + += ∗ = −∑  (9) 

 [ ] [ ] [ ] [ ] [ ]1 1 1 .j j j j j

k

d n g n a n g n k a k+ + += ∗ = −∑  (10) 

These equations are applied to the rolling window and this window is rolled 

forward one day at a time. The equations 

 ( )
( )

( ) ( )
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XY j

XY j

X j Y j

λ
ρ λ

ν λ ν λ
≡  (11) 

and 

 ( )
( )

( )
( )1 11 1

tanh , tanh
3 3

XY j XY j

j j

p p
h h

N N
ρ λ ρ λ

− −    Φ − Φ −       − +      − −        

 (12) 

are then used to calculate the wavelet correlation and confidence intervals for 

every window. This method gives us an estimation of correlation both in time- 

and scale-space. 

3.2.2 Wavelet coherence 

The second method used to study the presence of contagion effects is the wavelet 

coherence method introduced by Torrence & Compo (1998) and Grinsted et al 

(2004). Instead of the discrete wavelet transform, the estimator for 

interdependence is now based on the continuous wavelet transform. A wavelet 

( )tψ  is a function of time that obeys the admissibility condition 
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∞ Ψ
= < ∞∫  (13) 

where ( )fΨ  is the Fourier transform of ( )tψ . The continuous wavelet transform 

is defined as 
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is the translated and dilated version of the original wavelet function. The wavelet 

coherence of two time series is defined as 
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where S is a smoothing operator, s is a wavelet scale, ( )X

n
W s  is the continuous 

wavelet transform of the time series X, ( )Y

nW s  is the continuous wavelet 

transform of the time series Y and ( )XY X Y

n n nW s W W
∗=  is a cross wavelet transform 

of the two time series X and Y (Grinsted et al. 2004 and Torrence & Webster 

1999). The best wavelet for feature extraction purposes is the Morlet wavelet, 

since it provides a good balance between time- and frequency localization. Also 

for the Morlet wavelet the Fourier period is almost equal to the wavelet scale used 

(Grinsted et al. 2004). The smoothing operator is defined to be similar to the 

wavelet used. It is written as 

 ( ) ( )( )( ) ,
scale time n

S W S S W s=  (16) 

where ( ) ( )
2

22

1

t

s

time S n
S W W s c

− 
= ∗ 
 

 and ( ) ( ) ( )( )2 0.6
scale S n n

S W W s c s= ∗ Π  (see 

Torrence & Webster 1999 for more details). 1c  and 2c  are normalization 

constants and Π  is a rectangle function. The factor of 0.6 is empirically 

determined and follows Torrence & Compo (1998). The statistical significance 

levels of the wavelet coherence are determined using Monte Carlo methods. The 

guidelines of Grinsted et al. (2004) are followed, where the reader is advised to 

look for more detailed information. 
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3.3 Empirical analysis 

3.3.1 Empirical data 

The empirical data consists of four major stock indices. Included are DAX 30 

(Germany), FTSE 100 (Great Britain), S&P 500 Composite (the US) and Nikkei 

225 (Japan). The sample period starts from January 2, 1984 and ends at January 8, 

2009, including 6529 daily closing prices for the studied indices. The estimator of 

wavelet correlation is calculated from the series using the MODWT. The 

dependence of the indices is also examined using wavelet coherence analysis. 

Based on the descriptive analysis of interdependence structure, contagion is tested 

using two different wavelet time scales, namely 2-4 days and 8-16 days (chosen 

time scales are explained later). A test statistic for the differences between 

correlations before and after an incident (defined later) is calculated. Figure 6 

presents a time series of examined indices. In the figure are also marked most of 

the incidents that potentially might have had global influence on financial markets 

during the last 25 years. Abbreviations used in the figures are explained in table 4 

Table 4. A description of abbreviations used in the text and figures 

presented in chronological order. 

BM The Black Monday - The major collapse of the US stock market on October 19, 1987 
GW The gulf war - August 2, 1990, when Saddam Hussein attacked Kuwait 
MX The Mexican peso crisis. The date chosen is December 19, 1994 (Forbes and Rigobon, 2002) 
EA The East Asian financial crisis. The date chosen is July 15, 1997. 
RU The Russian financial crisis. The date chosen is August 13, 1998. 
IT+ The peak of SP500 index during the Dot-Com bubble. The date is March 24, 2000. 
WTC The suicide attacks of al-Qaeda upon the United States on September 11, 2001. 
IT- The lowest point of SP500 after the Dot-Com bubble burst. The date is October 2, 2002. 
GF+ The peak of SP500 during the last bull market before the global financial crisis of 2007-2009. 
GFc The crash of the global stock markets during the global financial crisis of 2007-2009. 
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Figure 6.  Prices of four major world indices. The sample period is from 

January 2, 1984 to January 8, 2009. Abbreviations used in the 

figures are explained in table 4. 
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3.3.2 Empirical results 

Forbes & Rigobon (2002) argue that the method of using an ordinary comparison 

of correlation coefficients during the periods of turmoil and stable is biased 

because of the heteroscedasticity present in the data. Their arguments where 

questioned for example by Bartram & Wang (2005) and Corsetti et al. (2005). 

They question the assumptions made on the variance of the county-specific noise. 

The debate continues. Forbes & Rigobon define contagion simply as an increase 

of the correlation coefficient as a result of some financial crisis. With the 

introduction of multiresolution analysis, these issues can be separated on different 

time scales. If there is an increase in correlation on shorter time scales, longer 

time scales remaining approximately the same, will this result in contagion? This 

is the main assumption of this paper. Such a change in the correlation structure 

around some financial crisis indicates just contagion. This should be a quite 

plausible assumption, because correlations are compared together and in principle 

volatility should not play a role here. Conclusions are made by analyzing the 

correlation dynamics along the scale dimension. If the significance of short 

timescale correlations in the overall correlation structure increase, there is 

contagion. If this kind of concentration on short timescale correlation is not seen, 

there is no contagion. 

Wavelet coherence maps are used as a descriptive tool to analyze correlation 

structure. In the last section at the end of this chapter are the wavelet coherence 

figures between the major markets. The structure of the figures is as follows: The 

shortest time scale in the figures is one week. From the time scale of one week to 

the time scale of 25 days, the sample period has been divided into three different 

figures. This has been done for the sake of clarity. Presented below these three 

figures are the time scales from 26 to 700 days for the whole sample period. The 

wavelet coherence figures give us good tools for a descriptive analysis of 

contagion.  If the signal of contagion is the increase of short time-scale 

correlation, the figures give many indications of contagion. The area, where short 

time scale correlation increases, varies between different crises. Sometimes there 

is an increase of correlation already on a seven day time scale, sometimes the 

increase is around two week - one month time scale. Also the breaking point 

between a changing short time-scale correlation and an approximately constant 

long time-scale correlation varies from around 100 and 200 days. Below is a short 

list of results from the wavelet coherence maps. 
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– An overall increase of correlation during the last 25 years. The increase is 

slightly weaker with Nikkei but still clearly visible. On the other hand the 

European indices and SP500 have experienced a very strong increase of 

correlation.  

– The black Monday causes clear contagion effects. The increase of short 

timescale correlation is strongest with FTSE and SP500 but other indices 

show also clear contagion effects. 

– Around the Gulf war there is also signs of contagion. The signs are however 

not as clear as with the Black Monday. 

– Probably the strongest signs of contagion can be seen around the ongoing 

global financial crisis. 

– Around the East-Asian financial crisis and the Russian financial crisis there 

are some signs of contagion. The signs are, however, quite weak. 

– With the gradually increasing correlation during the last 25 years and the 

contagion effects of the ongoing financial crisis, markets are very strongly 

correlated at the moment. Especially SP500, FTSE and DAX are highly 

correlated at every timescale at the moment. 

 

Previous studies have concentrated mainly on the study of ordinary correlation 

analysis and on its different modifications of it. The wavelet coherence figures 

show clearly that this is not enough. The time scale has to be included in the 

study. Otherwise signs of contagion could be missed because we are studying the 

wrong time scale. 

A study of short time-scale correlation using a discrete version of the wavelet 

transform is used to accompany wavelet coherence analysis for purposes of 

comparison. A multiresolution analysis with the focus on two short time scales is 

performed. The first scale represents 2-4 day averages and the second scale 

represents 16-32 day averages. The time-scale of 2-4 days was chosen as the 

shortest time scale to avoid the bias of different closing times. The longer time 

scale was chosen to be 16-32, because it includes one month on its scale making 

comparison with earlier studies easier. 95% confidence intervals are used to 

analyze the statistical significance. After experimenting with a few different 

wavelet filters, the Haar filter was utilized in the MODWT. Being the simplest of 

all wavelet filters, it mostly avoids the boundary problems of filtering and still 

achieves a quite a good band-pass performance. 

Figures 7 and 8 present a rolling wavelet correlation series for two different time 

scales. Timescales used are 2-4 days and 16-32 days. These figures provide 

support for the findings of the wavelet coherence figures. There are clear signs 
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that correlations increase after the 1987 stock market crash, at the beginning of 

the Gulf War and at the beginning of the global financial crisis of 2008. There is 

also an increase of correlation at the end of 90's. This increase cannot be 

attributed to one specific crisis so easily. The increase begins around the East 

Asian crisis and is strongest during the Russian crisis. Also the figures show that 

during the tranquil periods and bull markets, correlations tend to decrease. These 

all conclusion apply to both time scales being studied. 

 

 
Figure 7. Rolling wavelet correlations using 200 day rolling window. On the 

horizontal line are the studied dates of major incidents. On the left are 
the correlations of 2-4 day wavelet averages. On the right are the 16-
32 day wavelet averages. 
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Figure 8. Continues from previous page. Rolling wavelet correlations using 

200 day rolling window. 

 

As an elementary test for contagion, a t-test is applied to evaluate if there is a 

significant increase in correlation coefficients after an incident. The correlation 

coefficient is calculated using a 250 day time window before and after the 

incident. This was a compromise. A shorter window would not have had enough 

independent data points to study longer time scales. On the other hand a longer 

time scale would not have isolated the immediate surroundings of the incident and 

the effects of many incidents would have mixed up in the correlation coefficient. 
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If 1ρ  is the correlation coefficient before the incident and 2ρ  the correlation 

coefficient after the incident, the test hypotheses are 

 0 1 2

1 1 2

:

:

H

H

ρ ρ

ρ ρ

>

=
 (17) 

The estimated correlation coefficients are shown in table 5. The table presents 

two different time scales. A time scale of 2-4 days and a time scale of 8-16 days. 

The smallest scale of 1-2 days was not chosen, because it is affected by the 

different closing times of the studied markets. It would have been useful to 

include longer time scales for the contagion test. The degrees of freedom of the 

test decrease quickly with the scale. The time scale of 8-16 days was the last scale 

with reasonably solid results. The focus in this study is the comparison of these 

two timescales around an incident. 

The results indicate that there have been contagion effects between the major 

markets at least three times; during the 1987 financial crisis, at the beginning of 

the Gulf War and now during the global financial crisis. In these cases there is a 

significant increase of correlation between every index studied. The increase is 

often significant even at a one percent level, giving support to the results of 

wavelet coherence analysis. One exception is SP500 and Nikkei during the 1987 

crisis. There is no significant increase in the correlation on a longer time scale. 

Another exception is SP500 and FTSE during the present crisis. At least with the 

sample period that ends to January 8, 2009, there is no significant increase in the 

correlation for both time scales. Somewhat weaker signs of contagion are seen 

after the Gulf War. Indications of contagion are also present with the East Asian 

crisis and the burst of the dot-com bubble on a shorter time-scale. These 

significant increases of the correlation are absent on a longer time scale. 

Therefore it can be alleged that the time scale studied is essential when making 

conclusions about contagion. In the light of these results we can conclude that 

contagion does exist and, especially during the ongoing global market crisis, its' 

presence is clear through all the examined markets. 
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Table 5. The results of t-tests comparing equality of correlation 

coefficients. The correlation coefficients were calculated using 

250 day sample periods before and after some significant date. 

5% and 1% significance levels are marked with * and **. 5% 

significance level was taken as a limit of contagion  

 2-4 days (df 87) 8-16 days (df 8) 

 
Corr. 

before 
Corr. 
after 

Test 
statistic 

Contagion 
Corr. 

before 
Corr. 
after 

Test 
statistic 

Contagion 

October 17, 1987 (BM)         

SP500-Nikkei 0.266 0.507 2.209* Yes 0.391 0.596 0.978 No 

SP500-FTSE 0.268 0.704 4.631** Yes 0.289 0.832 3.199** Yes 

SP500-DAX 0.266 0.613 3.403** Yes 0.128 0.675 2.463* Yes 

Nikkei-FTSE 0.186 0.633 4.312** Yes 0.044 0.710 3.007** Yes 

Nikkei-DAX 0.129 0.602 4.373** Yes 0.087 0.696 2.755** Yes 

FTSE-DAX 0.008 0.677 6.293** Yes -0.271 0.819 5.106** Yes 

August 2, 1990 (GW)         

SP500-Nikkei 0.161 0.426 2.258* Yes 0.319 0.581 1.189 No 

SP500-FTSE 0.454 0.602 1.591 No 0.613 0.698 0.532 No 

SP500-DAX 0.347 0.561 2.096* Yes 0.433 0.675 1.268 No 

Nikkei-FTSE 0.172 0.516 3.064** Yes 0.380 0.591 0.992 No 

Nikkei-DAX 0.103 0.546 3.925** Yes 0.088 0.766 3.284** Yes 

FTSE-DAX 0.463 0.620 1.720* Yes 0.525 0.733 1.253 No 

December 19, 1994 (MX)         

SP500-Nikkei 0.224 0.229 0.042 No 0.469 0.066 -1-576 No 

SP500-FTSE 0.499 0.554 0.584 No 0.545 0.660 0.654 No 

SP500-DAX 0.421 0.587 0.366 No 0.261 0.366 0.419 No 

Nikkei-FTSE 0.278 0.231 -0.385 No 0.189 0.355 0.642 No 

Nikkei-DAX 0.194 0.293 0.811 No -0.103 0.451 2.098* Yes 

FTSE-DAX 0.589 0.656 0.814 No 0.594 0.460 -0.668 No 

July 15, 1997 (EA)         

SP500-Nikkei 0.156 0.301 1.179 No 0.298 0.440 0.587 No 

SP500-FTSE 0.566 0.715 1.965* Yes 0.682 0.833 1.299 No 

SP500-DAX 0.531 0.702 2.155* Yes 0.693 0.847 1.398 No 

Nikkei-FTSE 0.095 0.420 2.713** Yes 0.072 0.449 1.464 No 

Nikkei-DAX 0.207 0.385 1.510 No 0.200 0.388 0.735 No 

FTSE-DAX 0.583 0.780 2.929** Yes 0.633 0.842 1.711 No 

August 13, 1998 (RU)         

SP500-Nikkei 0.263 0.352 0.758 No 0.352 0.550 0.893 No 

SP500-FTSE 0.707 0.605 -1.386 No 0.808 0.763 -0.420 No 

SP500-DAX 0.673 0.628 -0.594 No 0.789 0.762 -0.235 No 

Nikkei-FTSE 0.345 0.449 0.952 No 0.358 0.487 0.562 No 

Nikkei-DAX 0.361 0.396 0.309 No 0.300 0.573 1.223 No 

FTSE-DAX 0.725 0.780 0.980 No 0.794 0.790 -0.037 No 

March 24, 2000 (IT)         

SP500-Nikkei 0.186 0.407 1.877* Yes 0.496 0.462 -0.160 No 

SP500-FTSE 0.564 0.655 1.124 No 0.701 0.830 1.137 No 

SP500-DAX 0.518 0.719 2.565** Yes 0.529 0.845 2.316* Yes 

Nikkei-FTSE 0.376 0.295 -0.706 No 0.386 0.307 -0.320 No 

Nikkei-DAX 0.389 0.346 -0.381 No 0.487 0.357 -0.565 No 

FTSE-DAX 0.631 0.761 1.983* Yes 0.504 0.827 2.229* Yes 

September 11, 2001 (WTC)         

SP500-Nikkei 0.393 0.352 -0.367 No 0.518 0.612 0.495 No 

SP500-FTSE 0.654 0.655 0.021 No 0.821 0.898 1.072 No 

SP500-DAX 0.748 0.741 -0.133 No 0.895 0.860 -0.549 No 

Nikkei-FTSE 0.358 0.394 0.325 No 0.374 0.636 1.278 No 

Nikkei-DAX 0.340 0.458 1.092 No 0.446 0.738 1.658 No 

FTSE-DAX 0.815 0.834 0.474 No 0.864 0.875 0.162 No 

July 15, 2007 (GF)         

SP500-Nikkei 0.356 0.605 2.530** Yes 0.633 0.883 2.297* Yes 

SP500-FTSE 0.738 0.777 0.711 No 0.852 0.886 0.486 No 

SP500-DAX 0.652 0.873 4.387** Yes 0.798 0.958 2.951** Yes 

Nikkei-FTSE 0.538 0.702 2.079* Yes 0.751 0.907 1.899* Yes 

Nikkei-DAX 0.531 0.707 2.226* Yes 0.689 0.893 2.111* Yes 

FTSE-DAX 0.844 0.912 2.357** Yes 0.881 0.967 2.377* Yes 
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3.4 Conclusion 

This chapter studies the presence of contagion between major world markets. 

Contagion has been a widely studied subject for two decades. Papers after the 

1987 stock markets crash provided evidence of contagion between markets (King 

and Wadhwani 1990, Lee and Kim 1993). Somewhat later many papers examined 

the presence of contagion in developing markets. There the results were mainly 

similar and provided evidence of contagion (see for example Calvo and Reinhart 

1996). Forbes and Rigobon (2002) end up in a different conclusion. They argue 

that the heteroscedasticity of the return series causes a bias to the correlation and 

therefore contagion mostly does not exist. These conclusions are criticized at least 

by Corsetti et al (2005) and Bartram & Wang (2005). They note that the results of 

Forbes and Rigobon are caused by the assumed model. These days, the consensus 

of contagion lies somewhere in the "some contagion" -zone. 

This chapter extends the contagion literature by adding time scale dimension to 

the picture. Different time scales are analyzed using the continuous wavelet 

transform based wavelet coherence and the discrete wavelet transform based 

wavelet correlation. The results show how the correlations change as a function of 

the scale. As Rua and Nunes (2009) note, much more thorough analysis of 

interrelations can be achieved using the wavelet methods. This applies also to 

contagion study. The correlation structure changes that are found with wavelet 

methods might be missed with ordinary correlation analysis, since the correlation 

in time possibly changes only on a certain time scale. 

The definition of contagion follows Forbes and Rigobon (2002). If there is an 

increase in correlation after some crisis point, we have contagion. In this paper 

contagion is defined to be a change in the short time scale correlations, long time-

scale correlations remaining the same. Using this definition, clear signs of 

contagion are found. Correlations on shorter time scales increase significantly 

while longer time scales remain approximately the same. This is most clearly seen 

with the 1987 stock market crash, the Gulf War and the ongoing global financial 

crisis. Some signs of contagion are seen with other crisis, especially in the 

wavelet coherence analysis. However, these changes are not significant at 5% 

level. The results also show how the short time-scale correlations decrease during 

tranquil periods (bull markets) giving support to the conclusions of Longin and 

Solnik (2001). Also long time-scale correlations indicate an overall increase of 

interdependence during the time period studied. This increase in interdependence 

(Forbes & Rigobon, 2002) plus contagion during the ongoing crisis makes the 

markets very highly correlated on every scale at the moment. 
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The inclusion of a multiresolution analysis, i.e. different time scales, proves out to 

be very important. As a matter of fact, they are almost vital as correlations change 

quickly as a function of scale. Therefore, many changes are seen only during 

certain time scales. The results show that contagion has been a major factor 

between major markets few times in the last 25 years. Contagion phenomenon is 

not disappearing since almost the strongest signs of contagion can be seen during 

the ongoing financial crisis. 

3.5 Wavelet coherence diagrams 

The following pages present the wavelet coherence maps for the studied indices. 

These figures were separated from the main text to maintain readability. On every 

page there are four figures. Three upmost figures represent time scales for 7 to 25 

days. These scales were separated to three figures to make the figures more 

informative. The last figure on every page presents time scales from 25 to 600 

days for the whole sample period. The information title is seen above every 

figure. 
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4 CROSS-CORRELATION BETWEEN MAJOR 
EUROPEAN EXCHANGE RATES 

This chapter examines the lead-lag relations of the major European currencies 

using wavelet cross-correlation. The estimators of wavelet cross-correlation are 

constructed using the maximal overlap discrete wavelet transform. The results 

indicate that the euro and the Swiss franc lead the British pound on larger scales. 

On a one month and longer time scales the lag of the Pound is obvious. Overall 

wavelet cross-correlation reveals a rich dynamical structure between the exchange 

rates. 

4.1 Introduction 

There are many kinds of investors participating in markets. There are investors 

with a short time investment strategy and there are institutional investors whose 

investment time scale might be years. This heterogeneous structure should be 

implemented in the study of market relations. Wavelet methods can handle this 

kind of structure for time series analysis. Wavelet techniques possess a natural 

ability to decompose a time series into several sub-series which may be associated 

with particular time scales. Therefore, wavelet multiresolution analysis (MRA) 

makes it possible to analyze these sub-processes separately. 

Lead-lag relations in the financial time series analysis are widely studied. Knif et 

al. (1995) analyze lead-lag relations between the Swedish and Finnish stock 

markets using the methods of univariate spectral analysis and cross-spectral 

analysis. They find that differences between the return spectra of the two markets 

are significant and that Swedish market leads about ten days for the period 1977-

1985 and five days for the period 1986-1989. Lead-lag relations between options-

market and the related spot market have attracted a significant attention. Boyle et 

al. (1999) for example show that the S&P 500 index option market leads the cash 

index. In their paper they develop a model that relates the bias in implied 

volatility to the lead-lag structure between the two markets. Their results also 

show that implied volatility is statistically significantly biased due the lead-lag 

relationship.  

Linkages between major exchange rates have also been extensively studied. The 

overall dynamics of the foreign exchange market are analyzed for example in 

Mahajan and Wagner (1999), Cai et al. (2008), Gadea et al. (2004), MacDonald & 

Marsh (2004), Tabak & Cajueiro (2006) and Ramsey & Zhang (1997). As 

mentioned, these articles study overall dynamics. Some papers that specifically 
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concentrate on the linkages between exchange rates are presented below. Hong 

(2001) proposes a new test for volatility spillovers and applies this method to 

exchange rates. The series which are scrutinized are weekly exchange rates of the 

Deutsche mark and the Japanese yen against the US dollar from the first week of 

1976 to the last week of 1995. The results mainly indicate that there is not much 

causality in mean and variance between these exchange rates. There is however 

some indication that a change in the Deutsche mark volatility Granger causes a 

change in Japanese yen volatility. Matsushita et. al. (2007) study how closely the 

British pound follows the euro. They find differences in the dynamics of these 

two currencies and conclude that these two currencies should be considered as 

different. Aroskar et al. (2004) study the effect of the 1992 European financial 

market crisis on foreign exchange markets. Using cointegration methods they 

identify a long-term relationship between European currencies expect for the 

British pound which acts somewhat separately from the others. The results also 

include the Deutsche mark dominance against other currencies, especially during 

longer time scales. They also find that this dominance almost vanishes during the 

crisis. Brooks and Hinch (1999) study the lead/lag relationships between Sterling-

denominated exchange rates and find that "bigger" currencies lead "smaller" 

currencies. They also note that the interrelations change significantly with time. 

Krylova et al. (2009) focus on the linkages of major exchange rates by studying 

the cross-dynamics of volatility term structure slopes implied by foreign exchange 

options. Their findings provide interesting new insights to the interrelations of 

exchange rates. For example foreign exchange options indicate that the euro is the 

dominant currency. The implied volatility term structure of the euro affects all the 

other volatility term structures while the term structure of the euro appears to be 

virtually unaffected by other currencies. Nikkinen et al. (2006) also use options to 

study linkages in expected future volatilities among major European currencies. 

The results indicate that the market expectations of future exchange rate 

volatilities are closely linked. The leading role of the euro against the pound and 

the franc is observed again. Wu includes time-scales to the study of linkages 

between USD/DEM and USD/JPY exchange rates. In this study intrinsic mode 

functions and the Hilbert transform are used to characterize the behaviors of 

pricing transmissions. The results indicate that the correlations are stronger in the 

daily time scale than in longer time scales. The correlations also weakened during 

the observation period of 1986-1993. 

Wavelet analysis has been applied to exchange rate analysis several times. 

Gençay, Selçuk and Whitcher (2002b) apply a wavelet multiscaling approach to 

financial time series. They study the properties of foreign exchange volatility 

using a five-minute data. Composing the variance of a time series on different 

scales they find that volatilities follow different scaling laws on different 
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horizons, the break point being one day. Their short investigation of wavelet 

cross-correlation between volatilities indicated that the association between two 

volatilities is stronger at lower frequencies. Similar studies with results that 

indicate importance of a scale-based analysis of exchange rates are for example 

Nekhili et al. (2002) exploring exchange rate returns on different time horizons, 

Lee (2004) in the study of spillover effects between the different geographical 

location of markets and Gençay & Selçuk (2004) studying volatility-return 

dynamics. The research above, which is extended in this chapter, clearly shows 

the importance of time scale based analysis in exchange rate analysis. 

The purpose of this chapter is to examine the lead-lag relations of major European 

exchange rates using the wavelet cross-correlation methods. Although exchange 

rates are widely studied, time-scale based analyses are rare. The research of 

exchange rates has mainly focused on the study of temporal interrelations in time. 

With the introduction of wavelet methods, these interrelations can be studied in 

more detail. Understanding the dynamic behavior of exchange rates is considered 

important because it has important practical implications on the implementation 

of the investment and risk management strategies. Wavelet methods improve the 

understanding of this dynamic behavior. With the discrete wavelet transform it is 

possible to analyze different scale structures or ‘processes’ forming the original 

time series. Lead-lag relations that could not be distinguished in the usual cross-

correlation analysis can be analyzed. Given that the foreign exchange market is 

by far the largest financial market in the world, understanding the dynamic 

behavior of exchange rates is considered essential. Results of this paper directly 

attack the understanding of this dynamic behavior. The focus in this research is 

the dynamic behavior of foreign exchange markets inside Europe. 

4.2 Wavelet cross-covariance and cross-correlation 

The estimators of wavelet cross-correlation and cross-covariance are based on the 

maximal overlap discrete wavelet transform (MODWT) which was introduced in 

the second chapter. The MODWT is a variation of the orthonormal discrete 

wavelet transform (DWT). It is computed similarly to the ordinary DWT but 

without subsampling. Estimators calculated using the MODWT are considered 

more preferable because they are asymptotically more efficient than the estimator 

based on the DWT (Percival, 1995). Furthermore, the ordinary DWT is not 

suitable for cross analyses, because its lack of translational invariance disrupts the 

lag-resolution of the wavelet cross-covariance and cross-correlation (Percival & 

Walden, 2002). The derivation naturally follows closely to the derivation of 

wavelet covariance and wavelet correlation estimators. 
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Let { } { }1 1,0 1, 1, , Lh h h −= …  and { } { }1 1,0 1, 1, , Lg g g −= …  denote the MODWT wavelet 

filter and scaling filter coefficients from a Daubechies compactly supported 

wavelet family (Daubechies, 1992). Let 
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be the discrete Fourier transform (DFT) of { }1h  and define 
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and the scaling filter for scale 2 Jλ  as the inverse DFT of 
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The vector of MODWT coefficients , 1, ,
j

j J=W … , defining a jth order partial 

MODWT of time series  { }ix , is defined to be the inverse DFT of ,j k k
H X  where 

{ }k
X  is the DFT of { }i

x . These coefficients are associated with the changes of 

scale 
j

λ . The vector of MODWT scaling coefficients J
V  is defined similarly by 

the inverse DFT of 
,J k k

G X  and is associated with averages of scale 2 Jλ  and 

higher. The wavelet cross-covariance decomposes the cross-covariance between 

two stochastic processes on a scale-by-scale basis and the wavelet cross-

correlation similarly decomposes the cross-correlation between processes. In the 

following, the MODWT coefficients are used to construct estimators of wavelet 

cross-covariance and cross-correlation. 

Let { } { }1 0 1, , , ,tx x x x−= … …  and { } { }1 0 1, , , ,ty y y y−= … …  be stochastic processes 

whose xd th and 
y

d th order backward differences are stationary Gaussian 

processes. The wavelet cross-covariance for scale 12 j

j
λ −=  and lag τ  is defined 

to be 

 ( ) ( ) ( ){ }, , ,cov ,x y

xy j j t j tτ τγ λ += W W  (21) 

where ( ){ },
x

j tW  and ( ){ },
y

j t τ+W  are the scale 
j

λ  MODWT coefficients for { }tx  and 

{ }ty τ+ , respectively. The MODWT coefficients have a mean of zero, when the 
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order of the wavelet filter is { }2 max ,x yL d d≥ ⋅ , and therefore, 

( ) ( ) ( ){ }, , ,E , .x y

xy j j t j tτ τγ λ += W W  When calculating an estimate for the wavelet cross-

covariance, the boundary effects of wavelet filtering have to be considered. 
Assuming 0 1, , Nx x −…  and 0 1, , Ny y −…  as realizations of portions of the processes 

{ }t
x  and { }t

y , define , ,j t j t
=W W  for those indices t where 

,j t
W  is unaffected by 

the boundary of realizations. We define a biased estimator ( ),xy jτγ λ  of the 

wavelet cross-covariance as in Whitcher et al. (1999). The MODWT based 

estimator is defined as 
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We can further define the wavelet cross-correlation for scale 
j

λ  and lag τ  as 
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 (23) 

where ( )x j
ν λ  and ( )y j

ν λ  are the wavelet variances of stochastic processes 

introduced by Percival (1995). Because of the definition of the correlation 

coefficient, ( ),1 1
xy jτρ λ− ≤ ≤  for all , jτ . The wavelet cross-correlation is 

similar to its Fourier counterpart – the magnitude squared coherence – but it is 

related to bands of frequencies (scales). The wavelet cross-correlation provides 

lead-lag relationships between two processes on a scale by scale basis. Since it is 
simply made up of the wavelet cross-covariance for { },t tx y  and wavelet 

variances for { }tx  and { }ty , an unbiased estimator of the wavelet correlation 

based on the MODWT is given by 

 ( )
( )

( ) ( )
,

, .
xy j

xy j

x j y j

τ

τ

γ λ
ρ λ

ν λ ν λ
=  (24) 



62      Acta Wasaensia 

To calculate the confidence intervals of wavelet cross-correlation, we use the 

results of Whitcher et al. (1999, 2000). To ensure that the confidence intervals are 
between the interval [ ]1,1− , Fisher’s z-transformation 

 ( ) 11 1
log tanh

2 1
h

ρ
ρ ρ

ρ
− +

= = − 
 (25) 

is used. For the estimated correlation coefficient ρ , based on n independent 

samples, ( ) ( )( )ˆ3n h hρ ρ− −  has approximately a ( )0,1N  distribution. An 

approximate ( )100 1 2 %p−  confidence interval for ( )xy jρ λ  based on the 

MODWT is 

 ( )
( )

( )
( )1 11 1

tanh , tanh
3 3

xy j xy j

j j

p p
h h

N L N L
ρ λ ρ λ

− −    Φ − Φ −       − +      ′ ′− − − −        

 (26) 

where ( ) ( )2 1 2 j

jL L
− ′ = − −   is the number of DWT coefficients associated with 

scale 
j

λ . We use the number of wavelet coefficients as if ( )j
ρ λ  had been 

computed using the DWT because, under the assumptions of Fisher’s z-

transformation, the denominator should consist of the number of independent 

samples used in the construction of the correlation coefficient (Whitcher et al. 

2000). The DWT is known to approximately decorrelate a wide range of time 

series and thus provides a reasonable measure of the scale-dependent sample size. 

This property does not hold for the number of MODWT coefficients because of 

its lack of downsampling. 

4.3 Empirical analysis 

4.3.1 Empirical data 

The data consists of daily returns of exchange rates between major European 

currencies and the US dollar. The European currencies used are the British pound, 

the euro and the Swiss franc. The sample period is between 12.15.1998 – 

10.18.2005 and includes 2500 observations. The time period starts from the 

introduction of the euro and includes enough observations so that wavelet cross 

correlations of at least four month averages (scale 7 in the MODWT) can be 

analyzed with reasonable confidence intervals. The data was acquired from 

www.oanda.com.  
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Table 6 presents the descriptive statistics for the three series. For every series, the 

skewness and mean are slightly negative suggesting average negative returns. The 

skewness of USD-GBP is slightly less negative and standard deviation somewhat 

smaller than others. However, the skewness does not statistically significantly 

vary from zero in any instance. The excess kurtosis compared to the normal 

distribution is quite significant for all cases. 

 

Table 6. Descriptive statistics for the return data of three euro exchange 

rates. The sample period starts December 15, 1998 and ends 

October 18, 2005. 

Descriptive statistics USD-EUR USD-CHF USD-GBP 

Mean (%) -0.00023 -0.00053 -0.00065 

Standard deviation (%) 0.24 0.25 0.19 

excess kurtosis 1.88 2.06 2.09 

t-value (kurtosis = 3) 19,17 21,09 21,36 

Skewness -0.055 -0.088 -0.019 

t-value (skewness = 0) -1.19 -1.79 -0.38 

Range 0.020 0.022 0.017 

Minimum -0.010 -0.012 -0.009 

Maximum 0.010 0.011 0.008 

Count 2500 2500 2500 

 

Figures 8-10 present the MODWT wavelet coefficients of the first eight scales for 

the three series. Figure 8 presents coefficients for the USD-EUR series, figure 9 

for the USD-CHF series and figure 10 for the USD-GBP return series. A 

somewhat coarse look of the coefficient series is caused by the wavelet filter. 

After a visual comparison, the Coiflet(6) wavelet filter was chosen for the 

analysis, being the best compromise between filters (not too long, not too short) 

and because it is the most symmetric of all wavelet filters. Shorter wavelet filters 

are not as good band-pass filters and longer wavelet filters suffer from the 

boundary effects. Coiflet(6) has a sharp spike in the middle which causes this 

coarse look for the coefficient series. The comparison was done between the 

Haar, Daubechies(4), Coiflet(6) and Least Asymmetric(8) filters. 
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Figure 9. Wavelet coefficients for first eight scales of the USD-EUR return 

series. The time period is 12.15.1998 – 10.18.2005 using a daily 

sample frequency 
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Figure 10. Wavelet coefficients for the first eight scales of the USD-CHF return 

series. The time period is 12.15.1998 – 10.18.2005 using daily 

sample frequency. 
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Figure 11. Wavelet coefficients for the first eight scales of the USD-GBP return 

series. The time period is 12.15.1998 – 10.18.2005 using a daily 

sample frequency 

4.3.2 Empirical results 

Figures 12-17 present the cross-correlation diagram of the MODWT wavelet 

coefficients on eight levels. The scales are associated with periods from 1-2 to 

128-256 days in dyadic steps. Some experiments were made on scale 9, which is 

associated with periods of 256-512 days. This scale is interesting because a one 
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independent data points for this scale and there were no significant correlations. 

The dotted lines around the cross-correlation function are 95% confidence 

intervals. 

Figures 12-13 present cross-correlations between the euro and the Swiss franc. 

The first scale, associated with the periods of 1-2 days, shows a very strong 

positive contemporaneous correlation associated with negative correlations on 

both sides of the positive correlation. The negative correlations are probably 

artifacts caused by strong contemporaneous correlation and the form of the 

wavelet filter Coiflet(6). The significant negative correlation around the lag of -26 

days and the positive correlation around the lag of 43 days are interesting details.  

 

 

 

Figure 12. Cross-correlation between the wavelet coefficients of levels 1-4 for 

the Euro and the Swiss franc. Diagrams present lags from -70 days to 

+70 days. 

 

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



68      Acta Wasaensia 

The next six scales have only a strong positive contemporaneous correlation with 

artificial ‘side-lobes’. Otherwise there are no significant correlations at any other 

lags. The graphs are also quite symmetric, so between the euro and Swiss franc 

there seems to be no significant flow of information on the first seven scales. The 

last scale, associated with the periods of 128-256 days, shows minor asymmetry. 

The strongest positive correlation is on lag 2, which means a two day lead for the 

Swiss Franc against the euro. The asymmetry is also present in the last significant 

positive correlations, which are on lags 37 and -28. 

 

 

 

Figure 13. Cross-correlation between the wavelet coefficients of levels 5-8 for 

the Euro and the Swiss franc. Diagrams present lags from -70 days to 

+70 days. 
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significant correlations on the lags of -30 – (-25) the strongest being the negative 

correlation on the lag of -29 days. Another significant negative correlation is on 

the lag of 42 days. Preceding scales are somewhat similar. On scale six, which is 

associated with the periods of 32-64 days, there are significant negative 

correlations between the lags of 26-48 with a maximum around 30 days, i.e. one 

month.  

 

 

 

Figure 14. Cross-correlation between the wavelet coefficients of levels 1-4 for 

the Euro and the British pound. Diagrams present lags from -70 days 

to +70 days. 
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This asymmetry means that when we are dealing with long time averages (one 

month and longer), the present values of the Euro are positively correlated with 

the future values of the pound. 

 

 

 

Figure 15. Cross-correlation between the wavelet coefficients of levels 5-8 for 

the Euro and the British Pound. Diagrams present lags from -70 days 

to +70 days. 
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Figure 16. Cross-correlation between the wavelet coefficients of levels 1-4 for 

the Swiss Franc and the British Pound. Diagrams present lags from -

70 days to +70 days. 
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Figure 17. Cross-correlation between the wavelet coefficients of levels 5-8 for 

the Swiss Franc and the British Pound. Diagrams present lags from -

70 days to +70 days. 
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Figure 18. Cross-correlation functions between the wavelet coefficients of 

levels 6 and 7 for the euro and the British pound. The pictures at the 

top contain level 6; the lower pictures contain level 7. The first half 

is on the left, the second half is on the right. Diagrams present lags 

from -70 days to +70 days. 
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exchange rates on different time scales. 
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The euro and Swiss franc had very symmetric cross-correlation functions on all 

scales with a very strong positive contemporaneous correlation. This suggests that 

the euro and the Swiss franc move closely together without any significant lead-

lag dynamics. This result is similar to the conclusions of Nikkinen et al. (2006). 

Krylova et al. (2009) find an evidence of nonlinear relationship between the 

Swiss Franc and the euro. There are some very weak findings that support this 

observation as the lead/lag -relations between the euro and the franc change 

direction when we move from shorter time scales to longer time scales. 

Between the euro and the pound there appears to be much more variation between 

scales. The contemporaneous correlation is much weaker than in the euro-franc 

case. There are few other significant correlations on the first two scales. Notable 

was also the significant negative correlation around 30 days on the scale six. This 

correlation was probably caused by some extraordinary phenomenon, because it 

was not present in the second half of the series. These results support the findings 

of Matsushita et al. (2007) who argue that the pound and euro behave differently 

and should not be considered as the same currency. The asymmetry towards the 

euro on larger scales suggests the leading role of the euro against the pound which 

is similar to the results of Krylova et al. (2009) and Nikkinen et al. (2006). 

Cross-correlation functions for the franc-pound case are quite similar to that of 

the euro-pound case. This follows on from the fact that the franc is closely 

connected to the euro with a strong contemporaneous correlation. The features 

found in the euro-pound case, like the asymmetry, are slightly even stronger. 

The only other study that considers the interrelations of exchange rates on 

different time scales is Wu (2007) and this study only examines the USD/DEM 

and USD/JPY exchange rates. However there is one clear difference between the 

results of Wu and the results found using the wavelet cross-correlation methods. 

Wu argues that the correlations between exchange rates are stronger on a daily 

time scale than on longer time scales. However the wavelet cross-correlation 

diagrams suggest just the opposite and almost without exceptions the correlations 

become stronger when the time scale increases.  

Overall the maximal overlap discrete wavelet transform based estimator of cross-

correlation gives good insight to the time scale dependant dynamics of exchange 

rates. Including time-scales a more complete picture of the interrelations can be 

drawn. Participants in the markets naturally have different time horizons in their 

investment plans. Therefore, the wavelet methods are just the right tool for this 

purpose because this way they can extract from the wavelet analysis the time-

scale that interests them most and make decisions according to this time-scale. 
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5 CROSS DYNAMICS OF EXCHANGE RATE 
EXPECTATIONS* 

This chapter provides a novel wavelet analysis on the cross-dynamics of 

exchange rate expectations. Over-the-counter currency options on the euro, the 

Japanese yen, and the British pound vis-à-vis the U.S. dollar are used to extract 

expected probability density functions of future exchange rates and apply recent 

wavelet cross-correlation techniques are applied to analyze linkages in market 

expectations. Significant lead-lag relationships between the expected probability 

densities of major exchange rates are found regardless of time scales. At higher 

frequencies, the USD/JPY exchange rate is found to affect the expected 

distributions of the EUR/USD and GBP/USD exchange rates. However, at lower 

frequencies, there are also significant feedback effects from the EUR/USD 

density functions to the USD/JPY densities. These findings suggest that the 

dynamic structure of the relations between exchange rate expectations varies over 

different time scales. 

5.1 Introduction 

The crisis of the European exchange rate mechanism in 1992 and the Asian 

currency crisis in the autumn of 1997 demonstrate that uncertainty in one 

exchange rate may spread to other exchange rates and cause a chain reaction of 

contagion throughout the foreign exchange markets (see e.g., Baur, 2003; 

Kallberg et al., 2005). These events, together with recent empirical evidence (see 

e.g., Kearney and Patton, 2000; Krylova et al., 2005; Nikkinen et al., 2006; Pérez-

Rodríguez, 2006, Inagaki, 2007), suggest that market expectations and 

uncertainty about exchange rate movements are affected not only by country 

specific economic fundamentals and monetary policy but also by common 

uncertainty factors.   

In this chapter, focus is on the linkages in exchange rate expectations. Although it 

is not directly observable, market participants’ exchange rate expectations may be 

inferred from the prices of currency options. Provided that market participants are 

rational, market prices of currency options should incorporate all the available 

                                                 
 
*  An article based on this chapter is co-authored with Jussi Nikkinen, Seppo Pynnönen and 

Sami Vähämaa. The article was presented at the 2009 Southern Finance Association meeting, 
the 2008 Eastern Finance Association meeting, the 2007 Midwest Finance Association and the 
2007 Southwestern Finance Association meeting. 
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information about market’s assessment of future exchange rate developments. 

Data on over-the-counter currency option on the euro, the British pound, and the 

Japanese yen vis-à-vis the U.S. dollar are used to extract expected probability 

density functions of future exchange rates.  Furthermore, wavelet techniques are 

utilized again to examine the cross-correlation structures of the option-implied 

probability densities among the major exchange rates over different time scales. 

By focusing on linkages in expected exchange rate distributions over different 

time scales, this chapter provides novel insights into the dynamics of foreign 

exchange markets.  

Over the past few years, several studies have applied wavelet techniques to 

analyze financial time-series. Gencay et al. (2001) and Nekhili et al. (2002) use 

wavelets to examine the scaling properties of exchange rate returns and volatility, 

while Karuppiah and Los (2005) analyze the dynamic structure of Asian spot 

exchange rates over the Asian currency crisis in 1997. Fernandez (2006, 2008) 

adopts wavelet-based variances to analyze the effects of the Asian currency crisis, 

the September 11 terrorist attacks, and the second Gulf war on stock market 

volatility. Kim and In (2005) use wavelet correlations to examine the 

relationships between stock returns and inflation, and Kim and In (2007) between 

stock prices and bond yields. In and Kim (2006) focus on the lead-lag 

relationships between stock and futures markets, while Elder and Serletis (2008) 

apply wavelets to analyze the dynamics of energy futures prices.  

This chapter extends the existing literature by providing a wavelet cross-

correlation analysis of the behavior of exchange rate expectations. This is the first 

attempt to directly address the cross-dynamics of exchange rate expectations, as 

measured by option-implied probability density functions of future exchange 

rates. Given that the foreign exchange market is by far the largest financial market 

in the world, understanding the dynamic behavior of market participants’ 

exchange rate expectations may be considered a high priority task. The analysis 

presented in this chapter may also have important practical implications, as 

linkages in expectations across exchange rates have a direct impact on the 

formulation and implementation of investment and risk management strategies. 

Moreover, from the viewpoint of monetary policy authorities, it is important to 

consider to what extent the expectations of future exchange rates are affected by 

common uncertainty factors and spillover effects which are beyond the control of 

local monetary policy. Finally, by focusing on the linkages in option-implied 

probability distributions of future exchange rates, this chapter may also offer 

useful insights into the behavior of option markets.  
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Empirical findings demonstrate that market expectations of the three major 

exchange rates are closely linked. Regardless of time-scales, significant lead-lag 

relationships between the expected probability densities of exchange rates are 

found. However, findings also suggest that the dynamic structure of exchange rate 

expectations may vary considerably over different time-scales. In terms of short-

run cross-dynamics of volatility expectations, the Japanese yen seems to have a 

leading role among the exchange rate triplet. On a longer scale, however, 

significant feedback effects from the GBP/USD volatility expectations to the 

JPY/USD volatility are found. The wavelet cross-correlations of the higher-order 

moments of option-implied exchange rate distributions indicate that the 

expectations of the JPY/USD exchange rate are virtually unrelated to the 

developments of the European currencies, while the higher-order moments of the 

EUR/USD and GBP/USD densities appear strongly linked with each other. 

The remainder of this chapter is organized as follows. Section 2 describes the data 

on OTC currency options. Section 3 presents the methodology used to extract 

implied probability density functions from option prices. Section 4 discusses the 

wavelet cross-correlation technique applied in this paper. Section 5 reports the 

empirical findings on the cross-dynamics of exchange rate expectations. Finally, 

Section 6 provides concluding remarks. 

5.2 OTC currency option data 

Over-the-counter (OTC) currency options are used to extract the expected 

probability density functions of future exchange rates. The data consist of daily 

one-month implied volatility quotes for at-the-money forward options, 25-delta 

strangles, and 25-delta risk reversals on the EUR/USD, GBP/USD, and JPY/USD 

exchange rates.  According to the Bank for International Settlements (2007), these 

three exchange rates together account for about 52 % of trading in the foreign 

exchange markets with a combined average daily turnover of about 1.6 trillion 

U.S. dollars, and are thereby decidedly the three most actively traded exchange 

rates. The currency options data set used in the analysis extends from October 1, 

2001 through December 31, 2007, for a total of 1610 trading days.  

At-the-money forward options are the most actively traded instruments in the 

OTC currency options markets. They are European-style currency options for 

which the strike price equals, or is very close to, the forward exchange rate with 

the same maturity as the option. OTC currency options are typically quoted in 

implied volatilities with respect to deltas rather than strike prices.  For the at-the-
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money forward options, the delta is, by definition, equal to 0.5, and hence these 

instruments are also commonly referred to as 50-delta options.  

Strangles and risk reversals are standardized OTC contracts, which are both 

combinations of out-of-the-money call and put options. A 25-delta strangle 

consists of a simultaneous purchase of a 25-delta call option and a 25-delta put 

option. The implied volatility quote for a strangle is the spread of the implied 

volatility of the 25-delta call and put options, or the strangle volatility, over the 

implied volatility of an at-the-money forward option. Non-zero volatility quote 

for a strangle reflects market participants’ expectations about the likelihood of 

large future exchange rate movements. A 25-delta risk reversal combines a long 

position in a 25-delta call option with a short position in a 25-delta put option. 

The volatility quote for the risk reversal is the implied volatility differential 

between the 25-delta call and put options. Risk reversal quotes are nonzero if the 

market expectations about future exchange rate movements are asymmetrically 

distributed. Hence, the volatility quotations for strangles and risk reversals 

provide information regarding the distributional shape of exchange rate 

expectations.   

There are several advantages in using OTC currency option data, rather than data 

on exchange-traded options, to estimate implied probability densities of future 

exchange rates. First, OTC currency options have superior liquidity in comparison 

to exchange-traded options. A recent survey by the Bank for International 

Settlements (2007) shows that the notional amount of outstanding exchange-

traded currency options is less than 1 % of the amount of OTC options. Moreover, 

the OTC currency options market has been growing considerably over recent 

years, with about 95 % increase in the average daily turnover during the sample 

period. Second, OTC options have a constant time to maturity, whereas the 

maturity of exchange-traded options varies from day to day. As a consequence, 

estimation problems caused by the time-to-maturity effects of option prices may 

be avoided by using OTC data. Third, as OTC options are quoted in terms of 

deltas, they have a fixed distance between the strike price of the option and the 

current forward rate. Exchange-traded options, in contrast, have fixed strike 

prices, and thus the exact moneyness of these contracts varies from day to day. 

Finally, as documented by Christoffersen and Mazzotta (2005), data on OTC 

currency options is of superior quality for volatility forecasting purposes. 
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5.3 Probability density functions implied by option 
prices 

Let ct denote the time t value of a call option written on exchange rate St, with a 

single expiration date T, and a contractual terminal payoff function 

[ ]max ,0
T

S K− , where K is the strike price of the option. The theoretical value of 

the call option at time t is equal to the discounted expected value of the terminal 

payoff function: 

 ( )( ) max ,0r T t P

t t T
c e E S K

− −= −  
�

'
 (27) 

where r is the risk-free interest rate and P

tE
�

 denotes the conditional expectations 

operator under the risk-neutral probability measure P� . Since the expected rate of 

return for all assets is, by definition, equal to the risk-free interest rate under P� , 

the expectation of the option’s terminal payoff can be discounted at the risk-free 

rate. Given the risk-neutral probability density function of the underlying 
exchange rate price at the maturity of the option, ( )Tf S , the time t value of the 

call option can be equivalently expressed as: 

 ( ) ( )( ) max ,0 .r T t

t T T T
c e S K f S dS

∞

− −

−∞

= −∫  (28) 

Because the price of the option is a function of the risk-neutral probability density 

of the underlying exchange rate price at the maturity of the option, a set of 

observed option prices with the same maturity but with different strike prices 

implicitly contain information about market participants’ expectations regarding 

the distribution of the underlying exchange rate at the maturity of the option.  

Several methods for extracting the expected probability density function from 

option prices have been proposed in literature. Extensive reviews of these 

alternative methods are provided e.g. in Bahra (1997), Jackwerth (1999), and 

Bliss and Panigirtzoglou (2002). In general, the techniques for estimating implied 

density functions may be broadly classified to parametric and nonparametric 

methods. Whereas the parametric methods postulate a certain parametric form for 

the terminal underlying asset price distribution, the nonparametric methods utilize 

some flexible functions to fit the observed option prices as well as possible, and 

then apply the results derived by Breeden and Litzenberger (1978) to extract the 

implied probability density.  
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Empirical comparisons of alternative methods for estimating implied probability 

density functions are provided in Campa, Chang and Reider (1998), Bliss and 

Panigirtzoglou (2002), and Andersson and Lomakka (2005). Although Campa et 

al. (1998) show that different methodological approaches lead to virtually similar 

implied distributions, the findings reported in Bliss and Panigirtzoglou (2002) and 

Andersson and Lomakka (2005) indicate that the nonparametric volatility 

smoothing methods initially suggested by Shimko (1993) produce more accurate 

estimates of implied probability density functions.  

The implied probability densities from the OTC currency option data are 

estimated with the nonparametric volatility-smoothing method proposed by Malz 

(1997). If the option pricing function can be expressed as a continuous function of 

the strike price, the Breeden-Litzenberger (1978) result can be utilized to extract 

the implied probability density. As shown by Breeden and Litzenberger (1978), 

the discounted risk-neutral probability density function of the underlying asset 

price is given by the second partial derivative of Equation (10) with respect to the 

strike price of the option: 

 
2

2

( , , )
( ) .r

T

c K T t
f S e

K

τ− ∂
=

∂
 (29) 

Unfortunately, only a discrete set of option prices can be observed in the market, 

and thus Equation (3), per se, is only of limited use. The apparent solution is to 
approximate ( , , )c K T t  by interpolating a smooth function through the discrete set 

of observable prices. As discussed above, OTC option data used contains implied 

volatility quotations for at-the-money (50-delta) options and two option 

combinations consisting of out-of-the-money (25-delta) call and put options. 

Given the three quotations, we can infer the implied volatilities for 25-delta, 50-

delta, and 75-delta options, which then in turn can be used to interpolate implied 

volatilities as a function of option deltas. Malz (1997) shows that the implied 

volatility/delta space can be approximated by fitting a spline function with 

parabolic endpoints to the three data points: 

 ( )( ) ( ) ( )
2

0.50 0.25 0.75 0.75 0.25 0.500.5 2 2 0.5 8 8 16 ,δσ σ δ σ σ δ σ σ σ= − − − + − + −  (30) 

where δσ  denotes the implied volatility for an option with delta equal to δ. 

Equation (4) provides a continuous function of implied volatilities in terms of 

option deltas. By utilizing the Garman-Kohlhagen (1983) version of the Black-

Scholes (1973) option pricing model, the continuous implied volatility function is 

converted numerically from the implied volatility/delta space into the option 

price/strike price space to obtain a continuous option pricing function. Then 
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finally, the Breeden-Litzenberger result given by Equation (3) is applied to 

calculate the implied probability density function of the underlying exchange rate. 

Table 7 reports descriptive statistics for the moments of the estimated option-

implied probability density functions of the EUR/USD, GBP/USD, and JPY/USD 

exchange rates over the period of October 1, 2001 through to December 31, 2007. 

 

Table 7. The table reports descriptive statistics for the moments of the 

estimated option-implied probability density functions of the 

EUR/USD, GBP/USD, and JPY/USD exchange rates over the 

period of October 1, 2001 through to December 31, 2007. 

  Mean Median St.Dev. Min Max 
Implied volatility:           
EUR/USD 0.094 0.095 0.018 0.050 0.136 
GBP/USD 0.084 0.084 0.013 0.050 0.121 
JPY/USD 0.099 0.097 0.016 0.064 0.179 
            
Implied skewness:           
EUR/USD 0.052 0.050 0.083 -0.175 0.282 
GBP/USD 0.011 0.014 0.086 -0.300 0.228 
JPY/USD 0.191 0.172 0.145 -0.243 0.656 
            
Implied kurtosis:           
EUR/USD 3.106 3.100 0.032 3.048 3.206 
GBP/USD 3.109 3.102 0.032 3.057 3.230 
JPY/USD 3.164 3.166 0.146 2.499 3.905 

 

The table shows that the implied volatility for the JPY/USD exchange rate is, on 

average, around 10 %, while the EUR/USD and GBP/USD rates exhibit 

somewhat lower volatility with mean estimates of 9.4 % and 8.4 %, respectively. 

Implied volatility estimates, however, have varied considerably over the sample 

period, ranging from 5.0 % for the EUR/USD and GBP/USD exchange rates to 

17.9 % for the USD/JPY rate. Furthermore, the table demonstrates that the 

implied probability densities for the EUR/USD, GBP/USD, and JPY/USD rates 

tend to be positively skewed. This positive skewness indicates that, during the 

sample period, market participants have on average attached higher probabilities 

for sharp U.S. dollar depreciations against the euro, the British pound and the 

Japanese yen than for dollar appreciations. However, the range of implied 

skewness estimates is relatively large, and thereby suggests that asymmetries in 
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exchange rate expectations may vary considerably over time. Finally, the kurtosis 

estimates show that the option-implied probability distributions are slightly fat-

tailed for all three exchange rates. 

5.5 Wavelet cross-correlations between option-implied 
probability densities 

The wavelet cross-correlations between the moments of the option-implied 

probability densities of the EUR/USD, GBP/USD and JPY/USD exchange rates 

are presented in Tables 8-10. The cross-correlations for the time-scales of 4–8 and 

64–128 trading days are reported.  The shorter time-scale (i.e., higher frequency) 

may be interpreted to reflect changes in the short-run market expectations, while 

the longer time-scale (lower frequency) should reflect the expectations related to 

general trends.  

Table 8 reports the wavelet cross-correlations of option-implied exchange rate 

volatilities. As can be noted from the table, the cross-correlations are positive and 

statistically highly significant at lag zero, except between the EUR/USD and 

JPY/USD volatilities on a longer scale. These significant cross-correlations at lag 

zero suggest that the market expectations about future volatilities are 

contemporaneously closely linked among the three major exchange rates. The 

strongest contemporaneous relationship is observed between the EUR/USD and 

GBP/USD volatilities on a longer time-scale, which indicates a particularly close 

linkage of general trends in the volatility expectations of the European currencies. 

The statistically significant cross-correlations between the EUR/USD and 

GBP/USD implied volatilities stretch from lag –3 to lag +3 on a short scale, and 

from lag –30 to lag +20 on a long scale. The longer scale cross-correlation 

function of the EUR/USD-GBP/USD volatilities is distinctly asymmetric, with 

the largest correlations occurring at negative lags (–4 to –2). Moreover, also on a 

shorter scale, the correlation coefficients are also slightly higher for negative than 

for positive lags. These asymmetries in the cross-correlation functions indicate 

that movements in the EUR/USD volatility expectations are leading movements 

in the GBP/USD expectations. The longer scale estimates reported in Table 8 

suggest that changes in the EUR/USD implied volatility are followed by similar 

changes in the GBP/USD volatility with a lag of approximately 2–4 trading days. 
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Table 8. The table reports wavelet cross-correlations between option-

implied volatilities of the EUR/USD, GBP/USD, and JPY/USD 

exchange rates over short (4-8 days) and long (64-128 days) 

time-scales, respectively. ***, **, and * denote significance at 

the 0.01, 0.05, and 0.10 levels, respectively. 

  EUR/USD↔GBP/USD EUR/USD↔JPY/USD GBP/USD↔JPY/USD  

Lag Short scale Long scale Short scale Long scale Short scale Long scale 

-50 -0.003   0.196   0.031   0.065   0.017   0.110   

-45 -0.025   0.299   0.074   0.128   0.028   0.194   

-40 -0.055   0.399   -0.038   0.186   -0.030   0.276   

-35 0.080   0.494   0.069   0.241   0.058   0.354   

-30 0.000   0.582 ** -0.070   0.291   -0.084   0.424   

-25 -0.014   0.661 ** -0.073   0.335   -0.053   0.486   

-20 0.067   0.728 *** -0.030   0.373   -0.040   0.537 * 

-18 0.061   0.751 *** -0.012   0.386   -0.045   0.554 * 

-16 0.033   0.771 *** 0.003   0.398   -0.023   0.569 * 

-14 0.013   0.789 *** 0.023   0.408   0.025   0.582 ** 

-12 0.013   0.804 *** 0.037   0.417   0.064   0.592 ** 

-10 0.006   0.816 *** 0.028   0.424   0.067   0.600 ** 

-8 -0.039   0.825 *** -0.033   0.429   0.017   0.606 ** 

-6 -0.049   0.831 *** -0.103   0.432   -0.044   0.609 ** 

-5 0.009   0.833 *** -0.091   0.433   -0.035   0.609 ** 

-4 0.121   0.834 *** -0.028   0.434   0.017   0.609 ** 

-3 0.305 *** 0.834 *** 0.104   0.434   0.130 * 0.608 ** 

-2 0.498 *** 0.834 *** 0.258 *** 0.433   0.262 *** 0.606 ** 

-1 0.645 *** 0.832 *** 0.394 *** 0.432   0.379 *** 0.604 ** 

0 0.698 *** 0.829 *** 0.470 *** 0.430   0.448 *** 0.601 ** 

1 0.603 *** 0.824 *** 0.435 *** 0.427   0.419 *** 0.596 ** 

2 0.427 *** 0.818 *** 0.335 *** 0.424   0.334 *** 0.592 ** 

3 0.230 *** 0.812 *** 0.207 *** 0.420   0.222 *** 0.586 ** 

4 0.064   0.804 *** 0.093   0.415   0.115   0.580 ** 

5 -0.016   0.796 *** 0.037   0.410   0.056   0.573 * 

6 -0.039   0.787 *** 0.018   0.405   0.029   0.565 * 

8 0.002   0.766 *** 0.033   0.392   0.027   0.548 * 

10 0.006   0.743 *** 0.020   0.378   0.022   0.528 * 

12 -0.045   0.716 *** -0.009   0.361   0.007   0.506 * 

14 -0.072   0.686 ** -0.002   0.343   0.006   0.481   

16 -0.057   0.655 ** 0.013   0.324   0.025   0.455   

18 -0.039   0.620 ** -0.024   0.303   0.044   0.427   

20 -0.036   0.584 ** -0.091   0.281   0.029   0.397   

25 0.014   0.485   0.007   0.223   -0.035   0.316   

30 -0.031   0.377   -0.039   0.163   -0.055   0.230   

35 -0.003   0.263   -0.030   0.099   0.023   0.142   

40 -0.041   0.146   -0.067   0.036   -0.150 ** 0.053   

45 0.024   0.030   -0.030   -0.026   -0.041   -0.032   

50 0.005   -0.083   -0.001   -0.084   -0.002   -0.111   

 

As can be seen from Table 8, the wavelet cross-correlations between the implied 

volatilities of the EUR/USD and JPY/USD exchange rates are significantly 

positive on a short time-scale from lag –2 to lag +3. Again, the cross-correlation 

function is slightly asymmetric, now towards positive lags. This asymmetry 
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towards positive lags indicates that movements in market expectations about the 

future JPY/USD volatility are leading the volatility expectations of the EUR/USD 

rate. On a longer scale, however, all the cross-correlations between the EUR/USD 

and JPY/USD volatilities appear statistically insignificant. 

Interestingly, the cross-correlations between the GBP/USD and JPY/USD implied 

volatilities seem to behave somewhat differently on two time-scales. On a shorter 

scale, there is a slight asymmetry in the cross-correlation function towards 

positive lags, suggesting that changes in the expected JPY/USD volatilities are 

leading the GBP/USD volatility expectations. In contrast, on a longer scale of 64–

128 days, the asymmetry in the cross-correlation function is much stronger and 

now towards negative lags. This correlation structure shows that on a longer time-

scale changes in market expectations of the GBP/USD volatility are followed by 

changes in the JPY/USD volatility with an approximate lag of 2–8 trading days. 

Thus, Table 8 provides slight evidence for the lead of the yen in terms of short-

run market expectations, and somewhat stronger evidence for the lead of the 

pound in terms of expectations related to general trends.  

Another interesting feature in Table 8 is that the higher frequency cross-

correlation between the GBP/USD and JPY/USD volatilities appears negative and 

statistically significant at lag +40. This negative coefficient would suggest that 

movements in the JPY/USD volatility expectations lead to reversed movements in 

the GBP/USD expectations with a lag of 40 trading days. 

The wavelet-based lead-lag relations in volatility expectations are summarized in 

Figure 19. The figure shows that the EUR/USD volatility expectations affect the 

expectations about the future GBP/USD volatility both on short and long time-

scales. Moreover, the Japanese yen seems to have a leading role in terms of short-

run market expectations, as the implied volatilities of the EUR/USD and 

GBP/USD exchange rates are strongly affected by the expected JPY/USD 

volatility on a short time-scale. On a longer scale, however, we find significant 

feedback effects from the GBP/USD volatility expectations to the JPY/USD 

volatility. 
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Figure 19. Wavelet cross-correlations of implied volatility coefficients. The 

solid and dashed lines represent statistically significant causality 

from exchange rate i to exchange rate j over short (4-8 days) and 

long (64-128) time-scales, respectively. 

 

 

 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
EUR/USD 

 
JPY/USD 

 
GBP/USD 



86      Acta Wasaensia 

 

Table 9. The table reports wavelet cross-correlations between option-

implied skewness coefficients of the EUR/USD, GBP/USD, and 

JPY/USD probability densities over short (4-8 days) and long 

(64-128 days) time-scales, respectively. ***, **, and * denote 

significance at the 0.01, 0.05, and 0.10 levels, respectively. 

  EUR/USD↔GBP/USD EUR/USD↔JPY/USD GBP/USD↔JPY/USD  

Lag Short scale Long scale Short scale Long scale Short scale Long scale 

-50 0.032   0.141   0.023   0.033   0.028   -0.094   

-45 -0.065   0.231   -0.068   0.005   -0.051   -0.138   

-40 -0.049   0.326   0.022   -0.022   -0.010   -0.175   

-35 0.025   0.422   -0.086   -0.045   -0.089   -0.205   

-30 -0.047   0.515 * -0.036   -0.065   -0.039   -0.227   

-25 0.006   0.601 ** 0.028   -0.080   0.028   -0.240   

-20 -0.080   0.679 ** 0.059   -0.093   0.002   -0.245   

-18 -0.067   0.707 *** 0.082   -0.097   0.006   -0.244   

-16 -0.039   0.733 *** 0.015   -0.101   -0.011   -0.242   

-14 -0.028   0.756 *** -0.070   -0.104   -0.035   -0.239   

-12 -0.022   0.776 *** -0.101   -0.107   -0.045   -0.234   

-10 -0.014   0.792 *** -0.093   -0.109   -0.053   -0.228   

-8 -0.006   0.805 *** -0.062   -0.111   -0.065   -0.221   

-6 0.052   0.813 *** 0.002   -0.113   -0.047   -0.213   

-5 0.137 * 0.815 *** 0.045   -0.115   -0.022   -0.209   

-4 0.270 *** 0.816 *** 0.086   -0.116   0.006   -0.204   

-3 0.449 *** 0.816 *** 0.125   -0.117   0.038   -0.200   

-2 0.614 *** 0.814 *** 0.153 * -0.119   0.069   -0.195   

-1 0.722 *** 0.811 *** 0.162 ** -0.120   0.094   -0.190   

0 0.728 *** 0.805 *** 0.152 ** -0.122   0.113   -0.185   

1 0.609 *** 0.798 *** 0.120 * -0.124   0.115   -0.180   

2 0.425 *** 0.790 *** 0.083   -0.126   0.104   -0.175   

3 0.221 *** 0.780 *** 0.055   -0.128   0.086   -0.170   

4 0.047   0.769 *** 0.041   -0.130   0.067   -0.165   

5 -0.064   0.757 *** 0.042   -0.132   0.055   -0.160   

6 -0.130 * 0.744 *** 0.042   -0.134   0.050   -0.155   

8 -0.159 ** 0.715 *** 0.013   -0.139   0.046   -0.145   

10 -0.116 * 0.682 ** -0.033   -0.144   0.039   -0.135   

12 -0.071   0.648 ** -0.028   -0.149   0.044   -0.125   

14 -0.079   0.611 ** 0.013   -0.154   0.050   -0.116   

16 -0.098   0.573 * 0.004   -0.159   0.018   -0.106   

18 -0.070   0.534 * -0.057   -0.163   -0.043   -0.097   

20 -0.024   0.494   -0.086   -0.168   -0.077   -0.087   

25 -0.022   0.391   0.026   -0.178   -0.025   -0.064   

30 -0.088   0.290   0.003   -0.186   0.011   -0.042   

35 -0.086   0.192   -0.103   -0.194   -0.083   -0.023   

40 0.033   0.100   0.062   -0.200   0.067   -0.007   

45 -0.013   0.016   -0.009   -0.205   -0.031   0.006   

50 0.051   -0.054   0.002   -0.210   0.019   0.013   

 

Table 9 presents the wavelet cross-correlations of option-implied asymmetries in 

exchange rate expectations. The observed lead-lag relationships in asymmetries of 
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expectations are summarized in Figure 20. The higher frequency cross-

correlations between the EUR/USD and GBP/USD expectations display an 

interesting pattern. The correlations are significantly positive from lag –5 to lag 

+3. This asymmetry in the cross-correlation function would indicate that the 

asymmetries in the expected EUR/USD distributions lead to asymmetries in the 

GBP/USD distributions with a short lag. However, as can be noted from Table 9, 

the cross-correlations on the other hand are significantly negative from lag +6 to 

lag +10, thereby suggesting that asymmetries in market expectations may move 

into opposite directions. These negative cross-correlations at positive lags imply 

that increasing asymmetries in the GBP/USD expectations lead to decreasing 

asymmetries in the EUR/USD expectations with a lag of approximately 6–10 

trading days. 

Skewness expectations on longer scale cross-correlations between the EUR/USD 

and GBP/USD are positive and statistically significant from lag –30 to lag +18. 

The cross-correlation function is distinctly asymmetric, with the largest 

correlations occurring at lags from –6 to –2. Therefore, in terms of general trends, 

estimates suggest that increasing asymmetries in the expected EUR/USD 

distributions lead to increasing asymmetries in the GBP/USD distributions with 

an approximate lag of about one week.  

Asymmetries in market expectations about the JPY/USD exchange rate seem to 

be almost unrelated to the asymmetries of the European currencies. On a shorter 

time-scale, the cross-correlations between the EUR/USD and JPY/USD 

expectations are statistically significant between lags –2 and +1. Again, the cross-

correlation function is asymmetric towards negative lags, and thereby suggests 

that asymmetries in the expected EUR/USD distributions affect the asymmetries 

in the JPY/USD distributions with a short lag. As can be noted from Table 9, the 

longer scale cross-correlations between the EUR/USD and JPY/USD expectations 

and all the cross-correlations between the GBP/USD and JPY/USD expectations 

appear statistically insignificant 

 



88      Acta Wasaensia 

 

Figure 20. Wavelet cross-correlations of implied skewness coefficients. The 

solid and dashed lines represent statistically significant causality 

from exchange rate i to exchange rate j over short (4-8 days) and 

long (64-128) time-scales, respectively. 
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Table 10. The table reports wavelet cross-correlations between option-

implied kurtosis coefficients of the EUR/USD, GBP/USD, and 

JPY/USD probability densities over short (4-8 days) and long 

(64-128 days) time-scales, respectively. ***, **, and * denote 

significance at the 0.01, 0.05, and 0.10 levels, respectively. 

  EUR/USD↔GBP/USD EUR/USD↔JPY/USD GBP/USD↔JPY/USD  

Lag Short scale Long scale Short scale Long scale Short scale Long scale 

-50 -0.069   0.343   0.012   -0.035   0.002   0.275   

-45 -0.057   0.439   0.000   -0.021   -0.032   0.294   

-40 0.004   0.529 * -0.010   0.009   0.069   0.309   

-35 0.108   0.611 ** 0.046   0.049   -0.044   0.319   

-30 0.077   0.680 ** -0.017   0.090   0.034   0.325   

-25 0.058   0.733 *** 0.001   0.130   0.011   0.327   

-20 -0.040   0.769 *** -0.029   0.159   -0.033   0.326   

-18 -0.080   0.778 *** 0.012   0.167   -0.011   0.325   

-16 -0.086   0.783 *** 0.059   0.173   0.027   0.323   

-14 -0.039   0.786 *** 0.059   0.176   0.054   0.320   

-12 0.038   0.785 *** -0.006   0.176   0.027   0.317   

-10 0.070   0.781 *** -0.044   0.172   -0.034   0.313   

-8 0.040   0.773 *** -0.019   0.166   -0.044   0.308   

-6 0.031   0.762 *** -0.008   0.159   0.009   0.302   

-5 0.067   0.755 *** -0.009   0.155   0.037   0.299   

-4 0.135 * 0.747 *** -0.008   0.150   0.052   0.296   

-3 0.260 *** 0.738 *** 0.007   0.144   0.061   0.292   

-2 0.387 *** 0.729 *** 0.038   0.138   0.056   0.288   

-1 0.497 *** 0.718 *** 0.063   0.132   0.052   0.284   

0 0.551 *** 0.706 *** 0.077   0.126   0.063   0.279   

1 0.493 *** 0.694 ** 0.065   0.119   0.059   0.274   

2 0.386 *** 0.681 ** 0.040   0.112   0.061   0.268   

3 0.241 *** 0.666 ** 0.015   0.105   0.061   0.262   

4 0.102   0.651 ** -0.002   0.098   0.041   0.255   

5 0.018   0.636 ** -0.002   0.090   0.041   0.249   

6 -0.043   0.619 ** -0.006   0.082   0.030   0.242   

8 -0.053   0.584 ** -0.039   0.065   -0.020   0.227   

10 -0.020   0.547 * -0.067   0.047   -0.106   0.213   

12 0.001   0.507 * -0.014   0.030   -0.108   0.198   

14 -0.006   0.466   0.051   0.013   -0.009   0.182   

16 -0.038   0.423   0.041   -0.005   0.046   0.167   

18 -0.068   0.379   -0.011   -0.024   0.004   0.152   

20 -0.089   0.333   -0.025   -0.041   -0.015   0.137   

25 -0.046   0.216   0.027   -0.083   -0.029   0.102   

30 -0.007   0.097   -0.066   -0.123   -0.045   0.070   

35 -0.032   -0.021   0.023   -0.148   0.047   0.042   

40 0.061   -0.133   0.025   -0.156   -0.048   0.012   

45 -0.141   -0.235   -0.040   -0.147   0.023   -0.020   

50 -0.054   -0.323   0.020   -0.118   0.057   -0.050   

 

The wavelet cross-correlations of option-implied kurtosis estimates are reported 

in Table 10, and the significant lead-lag relations summarized in Figure 21. 

Consistent with previous findings on implied volatility and skewness, the cross-

correlations of kurtosis coefficients also provide considerable evidence to suggest 
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that the market expectations of the two major European currencies are closely 

linked to each other. On a shorter time-scale, the statistically significant cross-

correlations span from lag –4 to lag +3. This cross-correlation function is slightly 

asymmetric towards negative lags. 

 

Figure 21. Wavelet cross-correlations of implied kurtosis coefficients. The solid 

and dashed lines represent statistically significant causality from 

exchange rate i to exchange rate j over short (4-8 days) and long (64-

128) time-scales, respectively. 

 

The longer scale cross-correlations between the kurtosis coefficients of the 

EUR/USD and GBP/USD densities are positive and significant between lags –40 
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and +12. The cross-correlation function is strongly asymmetric, with the highest 

correlations observed at lags –16 to –10. These findings indicate that, in terms of 

general trends, the expectations of future extreme movements in the EUR/USD 

exchange rate are leading the expectations about extreme movements in the 

GBP/USD rate by about two to three weeks. The market expectations regarding 

the JPY/USD exchange rate appear to be unrelated to the developments of the 

European currencies, as the cross-correlations between the implied kurtosis 

estimates are statistically insignificant at all lags on both time-scales. 

5.6 Conclusions 

This chapter focuses on the cross-dynamics of exchange rate expectations. Over-

the-counter currency options on the euro, the Japanese yen, and the British pound 

vis-à-vis the U.S. dollar are used to extract expected probability density functions 

of future exchange rates, followed by applying recent wavelet cross-correlation 

techniques are applied to analyze linkages in these option-implied market 

expectations over different time-scales. By focusing on the dynamic structure of 

the relations between expected exchange rate distributions, this paper provides 

new insights into the dynamics of foreign exchange markets.  

Empirical findings demonstrate that market expectations are closely linked among 

the three major exchange rates. Regardless of time-scales, significant lead-lag 

relationships between the expected probability densities of exchange rates are 

found. The linkages in market expectations appear particularly strong between the 

EUR/USD and GBP/USD exchange rates. On shorter time-scale, the implied 

volatility of the JPY/USD exchange rate is found to affect the volatilities of the 

EUR/USD and GBP/USD rates. Thus, the Japanese yen seems to have a leading 

role among the exchange rate triplet in terms of short-run dynamics of volatility 

expectations. On a longer scale, however, there are also significant feedback 

effects from the GBP/USD volatility expectations to the JPY/USD volatility.  

The wavelet cross-correlations of the higher-order moments of option-implied 

exchange rate distributions indicate that the market expectations about the 

JPY/USD exchange rate are virtually unrelated to the developments of the 

European currencies. The higher-order moments of the expected EUR/USD and 

GBP/USD densities are strongly linked to each other, especially on a longer time-

scale. The results indicate that movements in the skewness and kurtosis of the 

expected EUR/USD distributions may lead to movements in the GBP/USD 

distributions. In general, empirical findings suggest that the dynamic structure of 

exchange rate expectations may vary considerably over different time-scales. 
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6 WAVELET NETWORKS IN FINANCIAL 
FORECASTING 

This chapter examines the predictability of the major exchange rates on different 

time scales. The applied forecasting method is a wavelet network model which is 

compared to a simple linear forecasting model and a random walk model. It is 

found that the nonlinear forecast method does not improve forecasting 

performance. Fit to a training data is always better with the wavelet network, but 

fit to a testing data is always opposite, the linear model being better. Forecasting 

with the shorter forecast horizon is better, which is in contrast to the recent results 

that forecasting performance improves with longer forecasting horizons. 

6.1 Introduction 

Forecasting a financial time series is a very specific problem in time series 

forecasting and has very long traditions. Almost a hundred years ago Bachelier 

(1914) studied the nature of security prices and proposed a random walk as a 

characteristic for their movement (Lendasse et al. 2000). The consensus thereafter 

has mainly been that security prices have no memory, i.e. the past cannot be used 

to predict the future in any meaningful way. A famous paper by Fama (1965) 

argues that the security prices do follow the random walk model. This result has a 

close connection to the efficient market hypothesis (EMH), which means in short, 

that a security price reflects all the information of the market and the security. 

The seminal work of Meese and Rogoff (1983) provided similar results 

specifically for exchange rates. They argue that a simple driftless random walk 

model outperforms models that are based on economic theory. 

With the availability of non-linear methods, forecasting has again acquired more 

interest. In particular, neural networks have gained popularity among researchers. 

The first results of neural networks in the middle of 20th century were not very 

encouraging and interest to them decreased significantly. At the end of 1980s, 

when Hornik et al. (1989, 1990) proved that neural networks are universal 

approximators, researchers became interested in them again. Thereafter, 

forecasting economic time series with neural networks has been widely studied 

(see for example Swanson & White (1997) for further reference). Neural 

networks particularly in exchange rate forecasting are studied in Majhi et al. 

(2009); Mitra & Mitra (2006); Shazly & Shazly (1999); Meade (2002); Wong et 

al. (2003); Yu et al. (2005) and Zhang & Hu (1998). The progress with exchange 

rates was rather slow. The main conclusion during the nineties was that 

predictability exists only with very long forecast horizons. Chinn & Meese (1995) 
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compare four different structural exchange rate models. They find that, compared 

to the random walk model, there is some improvement with these models only on 

longer horizons.. Faust et al. (2003) question improvements in the exchange rate 

forecasting. They note that in almost every case, the documented improvements 

in the forecasting are achieved only with the original data and disappear with a 

data revision. However recent years have shown some progress in forecasting 

exchange rates. Carriero et al (2009) use a large Bayesian VAR model to forecast 

exchange rates. Their model outperforms other forecasting methods 

systematically in every situation. They also achieve an improved forecasting 

performance on shorter time horizons. Abutaleb et al. (2003) use a time-varying 

exchange rate model and also achieve promising results.  

Wavelet networks are a special class of neural networks where activation 

functions are wavelet functions. The same universal approximation result holds 

also for wavelet networks. It has also been argued in many papers that wavelet 

networks are usually better in non-linear regression than ordinary feed-forward 

neural networks (Zhang & Benveniste 1992). The interest among wavelet 

networks has increased enormously during recent years. The best results among 

financial time series are achieved by Chauhan et al. (2009). They combine 

wavelet networks with a differential evolution algorithm (Storn and Price 1997) 

and achieve very promising results. Their prediction model outperforms previous 

models in all cases. 

The purpose of this chapter is to study the non-linear structure in exchange rates 

and the performance of wavelet networks in financial forecasting. The 

comparison was made between a pure linear model, a linear model + wavelet 

network –model and a random walk model. Including the linear model to the 

wavelet network, the aim is to let wavelet network focus on the non-linear 

structure of the data. Results show that the non-linear wavelet network model 

does not improve forecast and fits only to the noise of the data. In this way the 

results confirm the original views of Meese and Rogoff (1983) and support the 

views of Faust et al. (2003). There is also no improvement in predictability as we 

move from a short forecast horizon to a long forecast horizon. This is in contrast 

to the recent consensus that forecasting improves at longer time intervals. 
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6.2 Continuous wavelet transform and wavelet 
networks 

6.2.1 Continuous wavelet transform 

Wavelet networks are constructed using radial wavelets, which have a one 

dimensional dilation parameter regardless of their dimension. Behind the wavelet 

networks is the theory of continuous wavelet transform Central in the theory of 

the continuous wavelet transform is the admissibility condition. A pair of radial 

functions ( )2
,

dLϕ ψ ∈ �  is admissible as analysis and synthesis wavelets, if they 

satisfy the condition 

 ( ) ( )1

0

ˆˆ 1, ,
da a a daϕ ω ψ ω ω

∞
− = ∀ ∈∫ �  (31) 

where ϕ̂  and ψ̂  are the Fourier transforms of ϕ  and ψ  respectively. 

Because the functions ϕ  and ψ  are radial, the integral in (31) does not depend on 

ω ≠ 0 . Daubechies proves the following theorem (Daubechies 1992). 

Let ϕ  and ψ  be a pair of radial functions satisfying (31). Then for any function 

( )∈ �
2

df L , the following formulae define an isometry between ( )�2 dL  and  

( )+ ×� �
2

dL : 

 ( ) ( ) ( )( )ϕ
−= −∫

�

1 2
,

d

d
u a a f a dt x x t x  (32) 

 ( ) ( ) ( )( ) 1 2
, ,

d

d
f u a a a dadψ

+

−

×
= −∫x t x t t

� �

 (33) 

where 
+∈ �a  and ∈ �dt  are dilation and translation parameters. Dilation 

parameter stretches and translation parameter moves a wavelet function along 

coordinates.  Equations (32) and (33) define the continuous wavelet transform of 

function f and its inverse transform. 

For this transform to be implementable on digital computers, it has to be 

discretized. For a discrete version of (33) 

 ( ) ( )ψ= −∑ i i i
i

f u ax x t  (34) 
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to hold, some conditions are required. It can be proven that the family of 

translated and dilated wavelets 

 ( ){ }ψ − ∈ �2
:

d

i i i
a a ix t  (35) 

can be used to form the discrete reconstruction (34) if the family constitutes a 

frame (Daubechies 1992). 

6.2.2 Wavelet Network 

The family of wavelets (35) is usually a regular lattice 

( ){ }∈ ∈� �
0 0
, : ,
n da mt n m . In high dimensional problems, this wavelet basis or 

frame grows very large. This curse of dimensionality can be dealt in some 

particular situations, for example when the function f is mostly smooth but has 

localized irregularities. Then we can expect that the wavelet estimator will be 

more efficient if the wavelet “basis” is constructed according to the training data. 

This idea of adaptive discretization is behind wavelet networks. 

When forming the discrete reconstruction (34), the values of ( ),i i
a t  can be 

adaptively determined according to the function f or the sampled data. So all the 

parameters ( ), ,
i i i
u a t  of (34) are adapted and we get something that, in form, 

closely resembles feed-forward neural networks in form. Therefore this adaptive 

discrete inverse wavelet transform is called wavelet networks and techniques of 

neural networks can be applied. 

Ordinary feed-forward neural networks used in the context of nonparametric 

regression are usually first randomly initialized and then trained by a 

backpropagation procedure. In this respect, wavelet networks have an advantage 

through their connection to the continuous wavelet transform. For example one 

could first form the wavelet basis and then use the methods of wavelet shrinkage 

(Percival & Walden 2000) to reduce the number of wavelets.  In this analysis the 

initialization method proposed by Zhang (1994) is used. This method combines 

techniques in regression analysis and backpropagation procedures. 

6.3 Methodology 

The approach in the empirical part follows the method proposed by Zhang (1994). 

The outline of this approach is as follows: 
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1. Construct a library W of discretely dilated and translated versions of given 
wavelet ψ  that is constructed according to the available training data set. 

2. For selecting the best wavelets from the library, the second method of Zhang 

(1994) is used. It is called stepwise selection by orthogonalization –method. In 

this method the wavelet that linearly spans with the previous wavelets closest 

to the space wanted is repeatedly selected. 

3. The last step is ordinary backpropagation using a quasi-Newton procedure 

with steps 1 and 2 as initialization. 

Constructing the wavelet library is in principle the same procedure as discretizing 

the continuous wavelet transform. The standard discretization is a regular lattice 

 ( ){ }ψ − ⋅ ∈ ∈� �
0 0

: ,
n da n mx m t  (36) 

Usually in discretization a dyadic grid is used. 

The countable family (36) is too large to be used in wavelet networks. But almost 

always regression concerns only a compact domain ⊂�dD . Hence in practice 

∈�dm   can be replaced by ∈
t

m S  in (36), with a finite set ⊂ �d
t
S .  

Restrictions on n can also be set by focusing on the resolution levels that have 

significance to the problem at hand. So the family (36) becomes 

 ( ) ( ){ }ψ − ⋅ ∈ ∈
0 0

: ,
n

a t
a n S m S nx m t  (37) 

Some wavelets in (37) do not contain any sample point in their support. So after 

forming the library (37) the training data is scanned and for each sample point the 

wavelets in (37) whose supports contain the sample point are determined. This 

method is preferable in this situation because it is not necessary for the large 

library to be actually created and allows us to handle problems of relatively large 

input dimensions. With these methods the library of wavelet regressor candidates 

are formed 

 ( ) ( )( ) ( )( )
1

22

1

: , , 1, ,

N

i i i i i i i k i

k

W a a i Lψ ψ α ψ α ψ

−

=

= = − = − =
                 

∑x x t x t …  (38) 

where α
i
 are normalization factors of wavelets. 

The selection of the candidates proceeds in the following way. For the first stage, 

select the wavelet in W that best fits the training data, and then repeatedly select 

the wavelet that best fits the data while working together with the previously 
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selected wavelets. This method of stepwise selection by orthogonalization is a 

very straightforward method. It consists of many small steps that are not 

presented here. Thorough explanation of the method can be found from Zhang 

(1994). Zhang presents calculations of the computational burden of his three 

methods for selecting the best wavelets from the library. He finds that in most 

cases the method applied here is the best compromise between the effectiveness 

of the regressor selection and the computational burden. He however warns that 

because these methods are heuristic, one cannot determine a method that is 

always more effective than others (Zhang 1994). 

In the last step this construction is then used as the initialization of a 

backpropagation procedure that will further refine the wavelet network by 

adapting its dilation, translation and linear parameters on the training data. A 

quasi-Newton algorithm is applied in the backpropagation algorithm. Also linear 

connections are included to capture the linear properties of the empirical data. 

6.4 Empirical analysis 

6.4.1 Empirical data 

The data consists of average returns and volatilities of the exchange rates between 

the Japanese Yen, the British Pound and the Deutsche Mark vis-à-vis the US 

dollar. Daily observations cover the period from January 6, 1971 to February 15, 

2007. From these daily observations 10 and 30 day average returns and 10 and 30 

day volatilities are calculated. The volatilities are calculated as standard 

deviations of the daily returns. 
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Figure 22. Average returns series for the exchange rates studied. The sample 

period begins on January 6, 1971 and ends on February 15, 2007 

 

 

 

Figure 23. Average volatility series for three exchange rates. The sample period 

begins on January 6, 1971 and ends on February 15, 2007 
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Figures 21 and 22 present the studied series and table 11 and 12 descriptive 

statistics. The mean returns, except the pound, are slightly negative, and the mean 

volatilities are around 0.4. The skewness is negative for DEM and JPY for the 

return series but otherwise positive. All series have excess kurtosis. Because of 

only a few extreme values, the minimum and maximum values are quite large. 

Despite these statistics, no transformations were made. For example Meese and 

Rogoff (1983) suggest log-transformation for forecasting purposes. These kinds 

of transformations were not considered vital in this work, because the main focus 

is on the comparison, not in the absolute forecasting performance. 

 

Table 11. Descriptive statistics for return series. The statistics are presented 

on both time horizons. The mean, standard error and standard 

deviation are presented as percentages to maintain readability. 

10 DAY RETURNS 

 USD-JPY  USD-GBP  USD-DEM  

Mean (%) -0.0082 0.0015 -0.0067 

t-value (mean=0) -1.71 0.35 -1.43 

Standard Deviation (%) 0.17 0.16 0.17 

Excess Kurtosis 6.59 3.45 1.45 

Skewness -1.00 0.36 -0.16 

Range 0.022 0.019 0.016 

Minimum -0.015 -0.0074 -0.0086 

Maximum 0.0067 0.012 0.0071 

Count 1318 1318 1318 

30 DAY RETURNS 

 USD-JPY  USD-GBP USD-DEM 

Mean (%) -0.0082 0.0015 -0.0067 

t-value (mean=0) -1.59 0.33 -1.33 

Standard Deviation (%) 0.11 0.097 0.10 

Excess Kurtosis 1.55 1.23 0.63 

Skewness -0.58 0.13 -0.11 

Range 0.0073 0.0072 0.0065 

Minimum -0.0044 -0.0033 -0.0035 

Maximum 0.0029 0.0040 0.0030 

Count 439 439 439 
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Table 12. Descriptive statistics for volatility series. The statistics are 

presented on both time horizons. The mean, standard error and 

standard deviation are presented as percentages to maintain 

readability. 

6.4.2 Empirical results 

Figure 23 shows examples of the performance of both forecast methods for an 

out-of-sample returns data. 10 day averages have a very strong variation around 

zero. The linear forecast method is not capable in capturing this kind of extreme 

variation and the fitted series stays close to zero for the whole period. The 

wavelet forecast method follows these extreme variations somewhat better. 

However the fitted series is still far from the original series. 

Things are somewhat better for the 30 day averages. Variations are slower and the 

forecast models have a greater chance to follow the data. The linear forecast 

method still stays quite close to zero. The wavelet forecast method, however, 

follows the out-of sample data subsequently better. So the results of Chinn & 

Meese (1995) appear to be correct at least visually. On longer forecast horizons, 

the variations are not strong and the applied forecast method is able to adapt to 

10 DAY VOLATILITIES 

 USD-JPY USD-GBP USD-DEM 

Mean (%) 0.43 0.41 0.46 

Standard Error (%) 0.0074 0.0065 0.0068 

Standard Deviation (%) 0.26 0.24 0.25 

Excess Kurtosis 10.18 3.36 5.78 

Skewness 1.85 1.26 1.55 

Range 0.030 0.017 0.024 

Minimum 0 0 0.00015 

Maximum 0.030 0.017 0.024 

Count 1318 1318 1318 

30 DAY VOLATILITIES 

 USD-JPY USD-GBP USD-DEM 

Mean (%) 0.45 0.42 0.48 

Standard Error (%) 0.011 0.0097 0.010 

Standard Deviation (%) 0.23 0.20 0.21 

Kurtosis 3.88 2.08 2.21 

Skewness 1.04 0.85 0.90 

Range 0.018 0.013 0.015 

Minimum 0.000048 0.00015 0.00025 

Maximum 0.018 0.013 0.015 

Count 439 439 439 
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the changes. And thus, succeeds an improved forecast performance on longer 

time horizons 

 

 

 

Figure 24. Examples of forecasts for return series. The green line represents the 

true series and the blue line the forecast for wavelet network and 

linear model. 

 

Similar conclusion can be made from the volatility forecasts presented in Figure 

24. Extreme variations of the shorter forecast horizon makes the forecasting 

difficult for both forecast methods. Now the linear forecast methods appear to be 

more suited. For some reason, the wavelet forecast method has very poor 

forecasts at the beginning of the data after strong volatilities. On the longer 

forecast horizon, things look quite good for both models. Especially the wavelet 

forecasts follow the data flawlessly. So again the improvements on the longer 

forecast horizon are seen. 
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Figure 25. Examples of forecasts for volatility series. The green line represents 

the true series and the blue line the forecast. 

 

Figure 25 presents mean square errors for the forecasts with different models. In 

every instance we see that the nonlinear wavelet network does not improve 

forecasts. The mean square error of the linear model is the smallest closely 

followed by the wavelet network model. When compared to the forecasts of the 

random walk model, some improvement in the forecasts can be seen, expect for 

the 30 day volatility forecasts. 

However the improvements are quite modest and the results somewhat support 

the conclusions of Meese and Rogoff (1983). More important is the results that a 

complex non-linear forecast method does not improve forecast performance at all. 

This result supports the conclusions of Faust et al. (2002). Although there has 

been an increasing popularity in different nonlinear forecasting methods, 

especially neural network methods, the documented improvements are probably 

not so significant. The nonlinear methods tend to fit to the noise of the data and 

do not improve forecasts. Linear methods are more robust. Surprisingly, the MSE 

results do not support the consensus of the nineties that longer time horizons are 

easier to forecast (see for example Chinn & Meese 1995). On the contrary there is 

stronger improvement against the random walk model on the short time horizon. 

This results are in line with the results of Carriero et al. (2009). 
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Figure 26. Mean square errors for the forecasts. The errors are presented on two 

different time horizons. The left side represents the 10 day horizon 

and on the right side the 30 day horizon. Different colors present 

different forecasting method. 

6.5 Conclusions 

This chapter examines the predictability of return and volatility series on different 

time scales. The results show that using a non-linear forecasting method does not 

improve forecasting performance. The wavelet network just fits to the noise of the 

training data and forecasts from the network are worse than forecasts from the 

linear model. These results support the findings of Faust et al. (2002). They 

question the improvements of the previous contributions and note that reported 

improvements are seen only with the data used in the original paper. 

Forecasts of both the wavelet network model and the linear model are somewhat 

better than the random walk model, suggesting that there is predictability in these 
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series. However the improvements are quite modest so in this sense we are still 

quite close to the conclusions of Meese and Rogoff (1983). The predictability 

does not improve on the longer forecasting horizons. On the contrary there is a 

larger difference between the studied models and the random walk model when 

we are dealing with shorter forecast horizons. This is in contrast to the recent 

results that forecasts improve when time horizon increases (Chinn & Meese 1995) 

and somewhat supports the findings of Carriaro et al. (2009). Using even longer 

forecast horizons might change the picture, which is left for future research. 
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7 CONCLUDING REMARKS 

The previous chapters have presented new applications of wavelet in finance and 

have extended previous work within the research area. 

In the second chapter, the linkages between major world stock indices are studied. 

The methodology is based on wavelet correlation (and cross-correlation), that 

give us multiresolution analysis of interdependence between indices. With 

wavelet correlation we can study correlation's dependence on the time scale. The 

third chapter studies the presence of contagion between major world markets. 

This chapter extends the contagion literature by adding the time scale dimension 

to the picture. Different time scales are analyzed using the continuous wavelet 

transform based wavelet coherence and the discrete wavelet transform based 

wavelet correlation. The results show how the correlations change as a function of 

the time scale. The fourth chapter examines extensively the lead-lag relations of 

the three major European currencies using the wavelet cross-correlation methods. 

This makes it possible to investigate scale dimension of the linkages of the 

exchange rates. The maximal overlap discrete wavelet transform was used to 

decompose the original series into different scale wavelet coefficient series and 

cross-correlation functions were then calculated between the coefficient series to 

analyze the dynamics of cross-dependence of the exchange rates on different time 

scales. The fifth chapter focuses on the cross-dynamics of exchange rate 

expectations. Over-the-counter currency options on the euro, the Japanese yen, 

and the British pound vis-à-vis the U.S. dollar are used to extract expected 

probability density functions of future exchange rates. The moments of density 

functions are analyzed using wavelet techniques to study linkages in these option-

implied market expectations over different time-scales. Focusing on the dynamic 

structure of the relations between expected exchange rate distributions, this 

provides new insights into the dynamics of foreign exchange markets. The sixth 

chapter examines the predictability of return and volatility series on different time 

scales. The purpose of this chapter is to study the non-linear structure in the 

exchange rates and the performance of wavelet networks in financial forecasting. 

Results of these chapters are promising. The empirical findings of the second 

chapter revealed rich structure between stock market indices. There was a clear 

trend that the correlation between indices increases, when the time horizon gets 

longer. This research extends the results of the previous research. For example 

results of Wongsman (2006) are extended to longer scales than solely daily time 

scales. The correlations between Nikkei and other indices were the smallest on 

every scale. Therefore this research also gives wider support on the results of 

Morana & Beltratti (2008) about the separate nature of Nikkei among indices. 
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The results of the second chapter state that from the standpoint of portfolio 

diversification, Nikkei listed stocks should always be included in the portfolio. 

The difference is that on shorter time scales, Nikkei listed stocks should 

accompany stocks from SP500, while on longer time scales, European stocks 

should be used. 

The short cross-correlation analysis of volatilities in the second chapter revealed 

interesting structures between volatilities of major indices. On the shorter time 

scales there was a volatility spillover from SP500 to other indices. On the time 

scale of one month, volatility spillover from the European indices, especially 

DAX30, to SP500 and Nikkei is observed. The longest time scale is again similar 

to the shorter time scales, where the changes of volatility of SP500 lead changes 

amongst the other indices. The results follow previous literature. Morana & 

Beltratti (2008) remark on the flow from the US to other markets and the separate 

nature of the Japanese market. On certain scales there is also support for the 

results of Lin et al (2004) on the influence of the Nikkei market on other markets. 

The strong spillover from the DAX30 index to other indices on a month timescale 

is something new which has not been documented before. 

With the novel wavelet coherence method, clear signs of contagion are found in 

the third chapter. Several times has contagion has been a major factor between 

markets in the last 25 years. Correlations on shorter time scales increase 

significantly while longer time scales remain approximately the same. This is 

most clearly seen with the 1987 stock market crash, the Gulf War and the ongoing 

global financial crisis. The results also show how the short time-scale correlations 

decrease at tranquil periods (bull markets) giving support to the conclusions of 

Longin and Solnik (2001). An overall increase in the long timescale correlations 

during the studied time period is also found. The results of third chapter conclude 

that this increase of interdependence (Forbes & Rigobon, 2002) plus contagion 

during the ongoing crisis makes the markets very highly correlated on every scale 

at the moment.  

The findings in the fourth chapter were in line with the previous research. The 

euro and the Swiss franc had very symmetric cross-correlation functions on all 

scales with a very strong positive contemporaneous correlation suggesting close 

connection without any significant lead-lag dynamics. This result is similar to the 

findings of Nikkinen et al. (2006). Krylova et al. (2009) find an evidence of 

nonlinear relationship between the Swiss Franc and the euro. There are some very 

weak findings that support this observation as the lead/lag -relations between the 

euro and the franc change direction when we move from shorter time scales to 

longer time scales. The results with the pound were expected. They support the 
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observations of Matsushita et al. (2007) who argue that the pound and euro 

behave differently and should not be considered the same currency. The 

asymmetry towards the euro on larger scales suggests the leading role of the euro 

against the pound which is similar to the results of Krylova et al. (2009) and 

Nikkinen et al. (2006). 

The only other study which also considers the interrelations of exchange rates on 

different time scales is Wu (2007) and this study only examines the USD/DEM 

and USD/JPY exchange rates. However there is one clear difference between the 

results of Wu and the results found using the wavelet cross-correlation methods. 

Wu argues that the correlations between exchange rates are stronger on a daily 

time scale than on longer time scales. Nonetheless, the wavelet cross-correlation 

diagrams suggest just the opposite. Almost without exceptions the correlations 

become stronger when the time scale increases.  

The empirical findings of the fifth chapter demonstrate that market expectations 

are closely linked among the three major exchange rates. Regardless of time-

scales, there are significant lead-lag relationships between the expected 

probability densities of exchange rates. The linkages in market expectations 

appear particularly strong between the EUR/USD and GBP/USD exchange rates. 

On a shorter time-scale, the implied volatility of the JPY/USD exchange rate is 

found to affect the volatilities of the EUR/USD and GBP/USD rates. Thus, the 

Japanese yen seems to have a leading role among the exchange rate triplet in 

terms of short-run dynamics of volatility expectations. On a longer scale, 

however, there are also significant feedback effects from the GBP/USD volatility 

expectations to the JPY/USD volatility.  

The wavelet cross-correlations of the higher-order moments of option-implied 

exchange rate distributions indicate that the market expectations about of the 

JPY/USD exchange rate are virtually unrelated to the developments of the 

European currencies. The higher-order moments of the expected EUR/USD and 

GBP/USD densities are strongly linked, especially on a longer time-scale. The 

results indicate that movements in the skewness and kurtosis of the expected 

EUR/USD distributions may lead to movements in the GBP/USD distributions. In 

general, empirical findings suggest that the dynamic structure of exchange rate 

expectations may vary considerably over different time-scales. 

The results of the sixth chapter show that using a non-linear forecasting method 

does not improve forecasting performance. The wavelet network merely fits to the 

noise of the training data and forecasts from the network are worse than forecasts 

from the linear model. These results support the findings of Faust et. al (2002). 

They question the improvements of the previous contributions and note that 
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reported improvements are seen only with the data used in the original paper. The 

empirical findings are also quite close to the conclusions of Meese and Rogoff 

(1983). The predictability does not improve on longer forecasting horizons. On 

the contrary there is a larger difference between the studied models and the 

random walk model when working with shorter forecast horizons. This is in 

contrast to recent research which argues that forecasting performance improves 

when time horizon increases (Chinn & Meese 1995). The results somewhat 

support the findings of Carriaro et al. (2009). 

The contribution of this thesis is to extend the applications of wavelet methods in 

finance. Overall, these chapters show that time series analysis in economic and 

financial research can gain new insight with wavelet analysis by separating 

processes on different time scales and repeating the traditional analysis on these 

different scales. The characteristics of wavelet methods fit inherently to the 

features of financial time series. Economic and financial processes build up 

naturally from multiple processes on separate time scales. When we are 

decomposing economic and financial time series to their wavelet components, 

simultaneously we are decomposing them to their natural building blocks. 

The previous chapters introduce many new results and open up new frontiers. 

Wavelet methods play a vital part in many of these new results. There are two 

main aspects are behind the success of wavelets in finance. One is the intelligent 

compromise between the time dimension and the frequency dimension which help 

wavelets to avoid the obstacles that have plagued time or frequency analysis. 

Another is the multiscale structure that is a natural part of financial processes. 

Investors naturally work on many different timescales. And with wavelets we can 

separate these different timescales. The results also show that the boundaries of 

the possible applications of wavelets are not yet found and that there are many 

other uninvestigated frontiers of wavelet applications in finance. 
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