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ABSTRACT : s

Astola, Jeakke and Virtgren, Tlkka (1982). Entropy correla-
tion coefficient, & measure cf statistical dependence for
categorized data. Proceedings of the University of Vaasa.
Pitscussion Papers No LU, 12 p. :

The main use of Shannon's entrepy in statistics has been in
measuring the dispersion of cne-dimensicnal categorized data.
However, entropy can alsc be defined for a two- or multi-
dimensional distribution given as a contingency table. This
generalized entropy, called coentropy, forms a basis for a
measure of overall dependence between the variables in the
table. By reducing the lower order entropies from the
coentropy and using an appropriate scaling, such a measure
of dependence, that fulfills the criteria for a well-defined
correlation coefficient, can be constructed. This entropy
eorrelation coeffieient 1g introduced and then analyzed in
this paper.

Jaakko Astele, Lappeenranta University of Technology, Box 20,
8F-53851 Lappeenranta 85, Finland.

Ilkka Virtanen, School of Business Studies, University of
Vaasa, Raastuvankatu 31, SF-65100 Vaasa 10, Finland.

1. INTRODUCTION

The concept of enfropy has been widely used in physics and
information theory. Over the years the idea has been
borrowed by other disciplines and has been applied in
several problem arsas within the social sciences, especial-
ly in statistics, sconomics, business, geography and cpera-
tional research. Entropy has become an important planning

tool in the area of system modelling.

The use of entropy in statistics has its origin in informa-

tion theory. Entropy, Shannon's measure for uncertainty



(Shannon 1348), has been especially used as a measure of _ -

dispersion for gualitative data. The dispersion of a

distribution X: (pl’Pz"“’Pn) ‘can be measured by its
entropy
n
(1) H=- Ep, 1log D
. i=1 1 1

due to the good properties of H as a measure of dispersion:
H is non-negative, H=0 4if and only if some Py = 1, and
H gets its meximum value (= logn) for the uniform distri-
bution Py * Py = +ee TPy T 1/n, see e.g. Asteola and
Virtanen (1981, 4-10).

It is possible to calculate entropy also for a two-dimensional
distribution given as frequency data. In this case entropy
reveals both the dispersion of the distribution and the de-
pendence between the two variables, sse Thell (136%, 469-472),
Astola and Viptanen {1981). In this paper the main results

of the report Astola and Virtanen {(1981), concerning the
entropy-based measures of statistical dependence, are summa-

rized: we define the concept of coentropy, analyze and inter-

prete it, demonstrate its definiticnal analogy with covariances

and especially, construct an entropy-based measure, called
antropy correlation coefficient, for the degree of dependence
between the variables. Finally, some preliminary results

concerning the three-way tables are presented.

2. COENTROPY OF A BIVARTATE DISTRIBUTION

In this section we consider data which are presented as a
two-way contingency table. The two variables, X and ¥,

to be considered are assumed to have r and ¢ classes,
respectively. Let the joint probability (or relative
frequency) distribution of ¥ and Y be (pij), i=1,...,0,

j=i,...5C.

The entropies of the marginal distributions of X and Y are

r .
¢2) B, = - L p, logp.
X 121 1t i.
c
(3) H, = - L p .logp + »
. Y j=1 | .3
whers p; i =1,...,» and p 50 j=21,...,c are the mar-

ginat probabilities (relative frequencies) of the distribu-

tions of ¥ and Y, respectively.

The entropy of the joint distribution, called now cgeniropy,

is defined as

r C
(4) H,, = -2 £Z p.. log p..
I *

HXY has also been called joint entropy (Theil 1968, #6&-472)
and overall entropy (Preuss 1980, 1566).

.

In the following the elementary properties of univariate
entropy are assumed to be known. Next we list some general
properties of coentropy. The proofs can be found e.g. in
Astola and Virtanen (1981). Tirst we have

{5) max{HX,HY} 2 Hyy 2 Hy Hy

such thaf'equality holds in the right hand side of (5} if
and only if X and Y are independent. As numerical bounds
for Hy, we have

(8) 0 < Hy, < loglred.

XY
From (5) and (6) we see that both the dispersion of the joint

distpibution (the entropies of %the marginal distributions) and
the degree of independence of the two variables have a contri-

bution to the value of coentropy.



Mext we shall present for the concepts entropy and coéntropy
an .interpretation that shows the analogy of their definitions
with those of variance (or its square root standard deviation)
and covariance of quantitative and measurable variables,

regpectively.

.

We can write the entropy of an one-dimensional distribution

Z: (pl,...;pn) also in the form

(M H, =

u ot

1pi lgg(i/pi).

i
Introducing a random variable H = H{Z}, which has the value
n; = 1og(1/pi) when the value of Z belcngs to the i'th

class, we can wWrite

d
(8) E, = %p;mn; = (M),
=1

ie. Ho is expressed as the mean value of the random vari-
able H. The quantity n; = log{i/p;) may be interprated
as the amount of uncertainty in the 1'th class: the un-
certainty equals zerc, if P; equals one, it increases
monotonically when P; decreases, and approaches infinity
when Py appreoaches zero. Entropy thus expresses the mean
uncertainty appearing in the distribution. If we compars
(8) with the definition of the usual standard deviation of

a4 quantitative variable %, i.e. with D(Z} = tptz-s{z1121%/2,
the analogy of these two definitions is evident. The standard
deviation expresses the mean inacouracy appearing in the dis-
tribution, the mean inaccuracy being measured as the root

mean sgquare deviaticn about the mean.
Fof.coentropy (4) we get analogously to (8)

) r ¢ r c
(9} Hyy = iEi jiipij log (1/pij) = I LDjiNias

where the quantity nij = logti/pij) may now be interpreted
as the value of a two-dimensional random variable H(X,Y),

8
as the amount of uncertainty in cell (i,j). We have again;
: r <
(10} Hyy = T T p..n.. = E{H(X,Y3)},

i=z §=1" 1 4

i.e. coentropy'-HXY _expresses the mean uncertainty appearing
in ‘the frequency table. The analogy with the covariance ol

a two-dimensional guantitative variable (X,¥), viz. with
Cov(X,Y) = E{(X~E{X})(Y-E{Y}}} is again evident: covariance
gives the mean inaccuracy (about the mean) appearing in

the distribution.

3. ENTROPY CORRELATION COEFFICIENT

As we have seen, coentropy measures both the dispersion of
the jeint distribution and the degree of independence between
the variablss. In order to get an appropriate measure for
the degrse of dependence, we must sliminate the effects of
the marginal sntropies from coentropy and change its sign.
Because we ape. working with legarithms, the natural way

to carry out these modifications is subtraction.

e define the quantity mean dependence information, denoted

by IXY’ as
(11} IXY = -(HXY-HX-HY) = HX + HY - HXY .
I has alse beean called the expected mutual information

XY
{Theil 19589, 470) or mean information (Kullback 1959, 5}.

The role of IXY
justifiad, however, as follows. We can, after some manipula-

as the mean dependence information can be

tion, write
. r .
(123 I = E I p..log(p../p; P )= L LD, 155 s

where ij° toglp,-/p; P +) 4is the amount of information



about dependence in cell (i;j): if it holds for a certain
cell (i,3) Piy = P; P4 {which is the rule for all cells
in the case of independent variables), the cell gives no

contributicen to the amount of dependence of the variables,

otherwise 4 0 and the cell contains some information

Iij
about the dependence of the variables. ' From (12} we see
that IXY expresses the mean value of this information.

Analogously to (8) and (9) we can write

T
(13) . I = E i3 143 = BE{1{X, 1},
where 1 = [{X,¥) is a two-dimensional random variable

describing the dependence information of the cells.

Fprom (11) we can also see thét the definition of the mean
dependence information is analogous to the definition of the
product moment correlation coaefficient p{¥X,Y) = Cov(X,¥)/
ID(X}ID(Y)] defined for quantitative variables: the quantities
IXY and p(X,Y¥) are formed with the help of the two-
dimensional coentropy (covariance) and the one~dimensional
marginal entropies (standard deviations). In (11) we,
however, instead of multiplication and division use addition
and subtraction. This is, of course, due to the use of

logapithms in the definition of the entropy quantities.

The following statements consider the possible values of
Iyy and show that Iy, can be used as a measure of the
degree of dependence. TFor proofs, see 2.g. Astola and Virta-

“nen (1981, 16). We have

1

(143 0 < IXY 25 (HX+HY)

(135) 0 2 Iyy < @in{logru log ¢}

(16) I., = 0 if and only if X and Y are independent

XY

(i?) Iyy * %(HX+HY) if znd only if X and Y are
ctel : £, ie. D ap. . =0 if
’ completely dependent, 1.e P113P123 g if
i1 # i2’ j=1,...,c and PijiPijz = if

jl # j2, iz d,...,r.

The statements (14%) and {15} show that Ing_as a measure

of dependence still has some disadvantages. It is not
satisfactorily scaled (we prefer scaling between G and 1.
The maximum value of IXY depends on the size and type of
the frequency table (we reguire independence on the formaticn
of the table). And at last, reaching of this maximum value
depends on the marginal distributions {we require reaching

of the maximum value independently of the marginal distribu-
tions in the case of complete dependence). We nsed, there-
fore, another derived measure for dependence that fulfills

all the requirements presented above.

The new measure of dependence, called sntropy correlation

goefficient and denotad by Py, is now defined as

{18)

The division by %(HX+HY) in (18) is needed to meet the

requirements set above for the final measure. The square

root in the definition is not necessary from the theoretical

point of view, but by magnifying variations especially near .

zepo it gives a behaviour which surprisingly well

p
H
matches our intuitive ideas of the degree of dependence.

In the following we present the properties of entropy corre-
lation coefficients as a well-behaving measure of dependence.
They are direct consequences from the corresponding properties

of the mean dependence informaticn IXY' We have



(20) .DH_= 0, iff Pis =Pi.p.j s, ¥Y1=d,0000, :] = 1,..00C
. P; 4 Pj =0, Vi £ i2 s =100
(21) oy =1, iff { T °
Piji Pij2 =0, Vv j1 # 3 i=1,..050.

We see that Oy has been scaled between 0 and 1, 0 indicating
full independence (property (20)) and 1 complste dependence
{property (21)). By complete dependence we here mean the
highest degreé of dependence: if we for an individual know

the class of ¥ we also know the class of ¥ it belengs to,
and vice versa. This degree of dependence is sometimes called
absolute dependence (Xendall and Stuart 1873, 570}. We can
also see that the values of pp are independent of the size
and type of the table: Py can reach all the values betwsen

0 and 1 both in square and rectangular tables. Further, Py
doesnot depend on the forms of marginal distributions (the num-
ber of classes in these, the locaticn and dispersion indices

of these ete.}: there.are ne special reqﬁirements for the
marginal probabilities P, and P.j for py to reach the
end values 0 and 1. And at last, the populaticn size has no

effect on From the point of view of purely mathematics,

Prpe
it is interegting to note that oy does not depend on the

base of the logarithms to be used. As & summary cf the
properties of py we can state that for qualitative categorical
vapriables it is difficult to find another measure of dependence
~ that fulfills all the properties verified for oy above,

of. for example the discussion in Kendall and Stuart (1873,

586-530).

.

4. GENERALIZATIONS TO THREE-WAY TABLES

The entropy-based concepts presented in the previous sections
can be generdlized to contingency tables with any number of

dimensions. In the following, however, only three-way tables

ia

are cgﬁsidered. Thig is mainly to keep the notation simple.

Further, the results are to be takén as preliminary due to

‘the ongoing unfinished research by the authors. The more

spesific results will be published in a near future.

Consider three variables ¥, Y and 2 having the joint
distribution (Pijk)’ 21,0000, 3=1,..0.,e, k=1,...,1L1.
The coentropy of the joint distribution is new defined as

. T c 1
(22} H = -1 z L p.., LOZEP:xy -
XXYZ i=1 §=1 k=1 ik ijk
We can also calculate the coentropies ny, HXZ and HYZ

of the two-dimensicnal marginal distributions and the
entropies Hy, Hy and HZ'.of the one-dimensional marginal
distpibutions analogously te the bivariate and univariate

case, respectively.

In opder to get an overall measure for total dependence
between the three variables, we eliminate the effects of
lower order dependences and dispersion. We define the mean

total dependence information as

(23) Tyyy = Hyyy = (igg =y = By) = (Hygy = Hy =)
(Hyp - Hy ~Hy) = B - Hy = H
= He + By + By = Hyy = Hyy = Hyg # Hyyg o

The role of IXYZ as the mean total dependence information
can be justified analogously to the bivariate case (equations
(12) and (13)). It is zlsc possible o show that I... has
the following properties

1 . 1
(24) - 'S—(HX+HY+HZ) < IXYZ < §(HX+HY+HZ)
£25) Iyyz © 0, if X, Y and Z are mutually in-
dependenf



11

. - 4 : P
(26) IXYZ z 3(HX-+HY-+HZ) if and only if -for

: each i,'j and k there is at most cne
pair (j,k), (k,1) and (i,3), respectively,
such that Pijk >0
27 Tyy, = - % (8, +H
T X¥7 37X Y
for each (i,3), {(i,k) and (k,i) there

ig at most one k, i and j, respectively,

+HZ) if and only if

such that Pijk * 1/m2, where m=min{r,c,1}.

The final rationally scaled measure of dependence, called
total entropy correletion coeffieient, is defined analogical-

1y to the bivariate case:

{28}

.

Using the properties (24) - (27) derived for IKYZ we see
that Py
maximal negative correlation) is reached for a distribution

vapies between -1 and 1. The minimum -1 (indicating

in which there is a diagonal distribution in each layer but
+these distributions situate in different positions in different
layers. The maximum valus 1 is reached for a diagonal distri-
pution, i.e. in the case of complete (or absclute) dependence.
And at last, independence is scored as 0. ALl these critical

values of match extremely well our intuitive idea of the

Py
nature and degree of dependence. The cubic root transforma-

tion is needed to quarantee an intuitively rational

p
H
behaviour between the extyeme values, too.

It is clear that in three or higher dimensicns gp can
highlight dependence from enly cne point of view, from the
peint of view of total correlation. More information about
dependence can be obtained when different types of partial
correlation coefficients are introduced. These partial corre-
lation coefficients can also be based on entropy and coentropy

concepts.

12
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